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Abstract

Wnt/b-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of
Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region
and the inhibition of GSK3b bound to the scaffold protein Axin. However, it remains unknown how GSK3b is specifically
inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr
rich cluster and a PPPSPxS motif impairs the activity of GSK3b in cells. Synthetic peptides containing the PPPSPxS motif
strongly inhibit GSK3b in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos
confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we
show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3b. These observations
demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3b using two distinct portions of its
cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway.
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Introduction

The Wnt/b-catenin signaling pathway is essential for normal

development, and is inappropriately activated in a number of cancers

and other diseases [1]. This signaling pathway functions by regulating

the phosphorylation and degradation of the transcription co-activator

b-catenin [2]. In the absence of Wnt, b-catenin is phosphorylated by

GSK3b in a complex that includes Axin, GSK3b, and b-catenin [2].

Phosphorylated b-catenin is targeted for degradation via phosphor-

ylation-dependent ubiquitination [3,4]. Wnt stimulation shuts off b-

catenin degradation by inhibiting GSK3b in the Axin complex [5].

This inhibition is believed to be the key event in the activation of the

Wnt/b-catenin signaling pathway [6,7].

Wnt/b-catenin signal transduction is triggered at the plasma

membrane by two distinct receptors, the serpentine receptor

Frizzled, and the single-transmembrane receptor LRP6 or LRP5

(LRP6/5) [7–9]. The extracellular ligand Wnt is thought to

promote the assembly of Frizzled, LRP6/5, the cytoplasmic

protein Dishevelled and the Axin complex, resulting in the

sequential phosphorylation of two Ser/Thr residues in each of five

cytoplasmic PPPSPxS motifs of LRP6/5 [10,11]. The PPPSPxS

motif was proposed to be dually-phosphorylated by membrane-

recruited GSK3b [10] in the Axin complex and membrane-

localized CK1c [12,13]. The dually-phosphorylated PPPSPxS

motifs are known to mediate the interaction between LRP6/5 and

the Axin complex [14], which somehow leads to the activation of

the Wnt/b-catenin pathway.

It was previously reported that the overexpression of the

intracellular region of LRP6 (residues 1417–1613 of the human

sequence), a region that contains a Ser/Thr rich cluster and five

PPPSPxS motifs, constitutively activated Wnt/b-catenin signaling

and potentiated Wnt3a-induced Wnt/b-catenin signaling [15].

This group also reported that the purified intracellular region of

LRP6/5 attenuated GSK3b activity by 20% in vitro, strongly

indicating that this region of LRP6/5 contains the inhibitory

sequence targeting GSK3b and is thus responsible for activating

the Wnt/b-catenin signaling pathway in cell [16]. Very recently, it

was reported that an intracellular region of LRP6, which contains

the Ser/Thr rich cluster and the five PPPSPxS motifs, inhibits the

phosphorylation of b-catenin by GSK3b, and that an intact

PPPSPxS motif is required [17]. Davison et al. reported that a

truncated receptor containing a transmembrane domain and a

shorter fragment of LRP6 (residues 1460–1505; referred to as

miniC), including the Ser/Thr rich cluster and the first PPPSPxS

motif, can activate the Wnt/b-catenin pathway [12]. In particular,

they observed CK1-dependent phosphorylation of the PPPSPxS

motif and the recruitment of Axin to the membrane, identifying

these steps as crucial for the activation of the pathway [12].

However, the actual mechanism by which the GSK3b is inhibited

in the Wnt signaling pathway has been obscure.
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In this study, we examine the actions of the intracellular region

of LRP6/5 on GSK3b in Wnt/b-catenin signaling. We find that

phosphorylated LRP6 binds to and directly inhibits GSK3b, and

that GSK3b can bridge LRP6 and Axin. These findings lead to a

reinterpretation of earlier studies and allow us to propose a

molecular mechanism for the activation of the Wnt/b-catenin

signaling pathway.

Results

The LRP6 PPPSPxS motif can inhibit GSK3b both toward
b-catenin and glycogen synthase

We hypothesized that the intracellular LRP6 region acts as a

direct GSK3b inhibitor in Wnt/b-catenin signal propagation.

Within the intracellular region of LRP6, the miniC region of

LRP6, especially the PPPSPxS motif, might be the GSK3b
inhibitory sequence; replacement of the cytoplasmic domain of

LRP6 with this region can induce Wnt/b-catenin signaling even in

the absence of the LRP6 extracellular region [12,13].

To test our hypothesis, we constructed a GFP-fusion protein

based on LRP6-miniCL (Fig. 1A), which is similar to the miniC

construct (this protein is called GFP-miniCL; Fig. 1). We also

constructed a mutant of LRP6-miniCL containing an Ala

substitution at Ser1490 as a GFP-fusion construct (GFP-

miniCLMT; Fig. 1). We transfected the constructs into A549

(Figs. 1B and C) and HepG2 cells (Figs. S1 and S2) and analyzed

the distribution, expression, and phosphorylation state of each

construct, and their effects on b-catenin. Both wild type and

mutant miniCL were evenly distributed throughout the cytoplasm

(GF; Fig. 1B and Fig. S1). However, only wild-type miniCL

dramatically increased the total amount of cellular b-catenin and

promoted the translocation of b-catenin into the nucleus (b-cat;

Fig. 1B and Fig. S1). We consistently observed an increased level

of b-catenin with the miniCL transfection in western blot analyses

(b-catenin; Fig. 1C and Fig. S2). These observations are consistent

with the results of Cselenyi et al., who used the LRP6 cytoplasmic

region containing the Ser/Thr rich cluster and five PPPSPxS

motifs, and variant in which the first Ser residue of each PPPSPxS

motif is replaced by Ala [17]. To confirm the activation of the

Wnt/b-catenin signaling pathway, we measured the transcription-

al activity of b-catenin using luciferase in 293 cells. Forced

cytoplasmic expression of wild type miniCL, but not the mutant

miniCLMT, significantly induced TOP-flash activity (Fig. 1D).

These results suggest that the LRP6 miniCL works as an inhibitor

of GSK3b regardless of its cellular localization, and that the

PPPSPxS motif plays a crucial role in this effect.

The wild-type miniCL, but not the mutant miniCLMT, also

suppressed phosphorylation of glycogen synthase (GS; p-GS in

Fig. 1C) without the induction of phosphorylation of Ser9 in GSK3b
(p-S9-GSK3b; Fig. 1C). Suppression of GS phosphorylation normally

occurs when GSK3b is phosphorylated at Ser9 by AKT as a part of

the insulin/IGF-1 signaling pathway [18]. Our data indicate that the

miniCL protein can inhibit GSK3b independently of AKT activity

when this LRP6 fragment is overexpressed in the cytoplasm, implying

that it can act as a general inhibitor of GSK3b. Note that under

physiological conditions, such inhibition would not occur due to the

localization of the LRP6/GSK3b/Axin complex at the plasma

membrane (see below).

Phosphorylated PPPSPxS of LRP6/5 motif directly inhibits
GSK3b in vitro

Since phosphorylation of the PPPSPxS motif in the miniCL

region of LRP6/5 is correlated with the inhibition of GSK3b, we

asked whether the PPPSPxS motif can directly inhibit GSK3b in

vitro. We synthesized one dually-phosphorylated (NPPPpSPAp-
TERSH, where pS or pT designates a phosphorylated Ser or Thr

residue), two singly-phosphorylated (NPPPSPApTERSH and

NPPPpSPATERSH) and one non-phosphorylated (NPPPSPA-

TERSH) peptides derived from the first PPPSPxS motif of LRP6

(Fig. 1A). To measure the GSK3b activity toward b-catenin in vitro,

we utilized a b-catenin N-terminal fragment (residues 1–133), whose

Ser45 was prephosphorylated by CK1, as a substrate (Ha et al.,

2004). Each synthetic peptide was added to a reaction mixture

containing the purified GSK3b enzyme and the substrate b-catenin

N-terminal fragment. The GSK3b activity was determined through

measurement of the intensity of the supershifted (retarded) b-catenin

bands (Fig. S3), which represent the phosphorylated product species

(Fig. S4), on an SDS-polyacrylamide gel (Figs. S3, S4, S5, S6, S7).

The dually-phosphorylated peptide showed a strong inhibitory

effect on GSK3b in a concentration-dependent manner (1–

100 mM), while the non-phosphorylated peptide did not show any

inhibitory effect on the GSK3b activity at concentrations up to

100 mM (Fig. 2A). The two singly-phosphorylated peptides showed

distinct inhibitory effects. Whereas the peptide phosphorylated at

the second Ser/Thr residue [PPPSPx(p)S; Fig. 2A] exhibited only a

marginal inhibitory effect at 100 mM, the peptide phosphorylated at

the first Ser/Thr [PPP(p)SPxS; Fig. 2A] exhibited a strong

inhibitory effect close to that of the dually-phosphorylated peptide

(Fig. 2A). Our results demonstrate that the dually-phosphorylated

PPPSPxS motif directly inhibits GSK3b, and that phosphorylation

at the first Ser residue plays a more important role. This

corresponds well with the results of Zeng et al., who reported that

the first Ser residue in the PPPSPxS motif has a more important role

in Wnt/b-catenin signaling than the second Ser residue [13]. Since

the non-phosphorylated peptide does not inhibit, the inhibition is

not due to competition between this potential alternative substrate

and the b-catenin substrate.

Based on steady-state kinetic analyses [19], the dually

phosphorylated LRP6 peptide competitively inhibits GSK3b with

an apparent inhibition constant (Ki) of 13 mM. Thus, the

phosphorylated LRP6 motif is a much stronger inhibitor of

GSK3b than the phosphorylated N-terminal fragment of GSK3b
(Ki ,700 mM), which is a known pseudosubstrate inhibitor of

GSK3b [20] (Fig. 2B).

It was noted above that cytoplasmically expressed miniCL

inhibits phosphorylation of GS. To further test whether the dually-

phosphorylated PPPSPxS peptide can act as a general inhibitor of

GSK3b, we tested its effect on GSK3b-mediated phosphorylation

of an Axin fragment (mouse Axin amino acids 512–650), in which

Ser614 is the only site phosphorylated by GSK3b in vitro and in vivo

[21]. As shown in Fig. 2C, the phosphorylated PPPSPxS peptides

inhibited GSK3b-mediated phosphorylation of the Axin fragment

as efficiently as on the primed b-catenin N-terminal fragment

substrate. This result is consistent with the observation that the

intracellular region of LRP6 decreased GSK3b phosphorylation of

an unprimed substrate Tau protein and the primed substrate full-

length b-catenin in vitro [16]. In addition, the phosphorylated

PPPSPxS peptides did not show any inhibitory effect on CK1

when we use the unphosphorylated b-catenin fragment as a

substrate (data not shown), confirming that the phosphorylated

PPPSPxS peptide inhibits only GSK3b. Collectively, these data

suggest that the phosphorylated PPPSPxS motif of LRP6/5 can

act as a general inhibitor of GSK3b in vitro.

Axin-bound GSK3b is inhibited by the phosphorylated
LRP6 PPPSPxS motifs

We next sought to determine if the phosphorylated LRP6 motifs

are capable of inhibiting GSK3b in the Axin complex. An in vitro

Inhibition of GSK3b by LRP6
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Figure 1. LRP6 constructs and their cytoplasmic overexpression in cell. (A) Schematic representation of the full-length LRP6 and amino acid
sequences of LRP6 intracellular fragments used in this study. The Ser/Thr rich cluster and PPPSPxS motif are underlined in each sequence.
Phosphorylated residues are highlighted. (B) Cytosolic overexpression of the LRP6 constructs. A549 cells in which control (empty vector, EV, encoding
only GFP), miniCL and miniCLMT were transfected as GFP fusion proteins. Control, miniCL and miniCLMT were detected through the green
fluorescence from GFP. b-Catenin was detected using an anti-b-catenin antibody, and the nuclei were detected by DAPI staining. (C) Western blotting
analysis from the transfected A549 cells used in (B). Labels at the left side of blots indicate the antibody used for detection of the corresponding
protein. Endogenous b-catenin was detected by an anti-b-catenin antibody. p-GS indicates the level of the phosphorylated GS by GSK3b, detected by
anti-glycogen synthase (Ser641) antibody. p-S9-GSK3b indicates the phosphorylated Ser9 of GSK3b, and was detected by anti-phospho GSK3b (Ser9)

Inhibition of GSK3b by LRP6
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kinase assay with Axin-bound GSK3b was performed by adding

the purified GSK3b binding domain (GBD) of Axin to the

reaction mixture. Although full-length Axin increases GSK3b
activity toward full-length b-catenin through its scaffolding of

GSK3b and b-catenin [22], the Axin GBD domain itself slightly

inhibited GSK3b (Fig. 2D), which is consistent with the reduced

activity of Fratide-bound GSK3b [23]. As shown in Fig. 2D, the

dually-phosphorylated PPPSPxS peptide inhibits Axin-bound

GSK3b similarly to free GSK3b. This result is consistent with

the crystal structure of GSK3b complexed with Axin, which shows

that Axin does not occupy the active site of GSK3b [22]. The in

vitro inhibition of Axin-bound GSK-3b indicates that the

phosphorylated PPPSPxS motifs of LRP6/5 can be an in vivo

inhibitor of GSK3b in Wnt/b-catenin signaling.

Microinjection of the peptide containing the
phosphorylated PPPSPxS motif into the Xenopus embryo
potentiates Wnt/b-catenin signaling

It is well established that Wnt signaling reduces GSK3b activity

during development of the Xenopus embryo [24], and that the

suppressed activity of GSK3b induces a second body axis in the

Xenopus embryo in the response to Wnt [25]. To examine the in vivo

effect of the PPPSPxS motif on Wnt/b-catenin signaling, we

injected the synthetic peptides into Xenopus embryos, along with a

small amount of Xenopus Wnt8 that is insufficient to induce second

body axis formation on its own. The dually-phosphorylated peptide

[PPP(p)SPx(p)S; Fig. 3] strongly induced the second body axis,

whereas the non-phosphorylated peptide [PPPSPxS; Fig. 3] did not.

The peptide phosphorylated at only the first Ser residue

[PPP(p)SPxS; Fig. 3] induced the second body axis with an

efficiency comparable to that of the dually-phosphorylated peptide.

This result indicates that the phosphorylated PPPSPxS motif can

induce Wnt signaling in vivo. Although the amount injected is likely

to be higher than physiological concentrations, it is interesting that

microinjection of each peptide in the absence of Xenopus Wnt8 did

not induce a second body axis (data not shown). It is likely that a

slight reduction in the GSK3b activity due to the activity of the

exogenous Wnt on the endogenous LRP6/5 is required for the

peptide to cause a sufficient inhibition of GSK3b to trigger Wnt/b-

catenin signaling. Moreover, even if the amount of peptide injected

is well above physiological concentrations, the effect is specific to the

phosphorylated peptide. Thus, the peptide injection experiments,

when considered with the experiments using purified proteins,

indicate that the phosphorylated PPPSPxS motif directly inhibits

GSK3b and leads to the activation of b-catenin.

It was recently reported that injection of a recombinant portion of

the LRP6 cytoplasmic region containing the Ser/Thr rich cluster

and the five PPPSPxS motifs induced a second body axis as

effectively as the phosphorylated PPPSPxS peptide in the absence of

the exogenously-added Wnt ligand, even when the LRP6 protein

was not prephosphorylated by GSK3b and CK1 [17]. It seems

likely that the longer fragment of the LRP6 cytoplasmic region is

phosphorylated by endogenous kinases in the embryo, and has a

stronger inhibitory effect on GSK3b due to the multiple PPPSPxS

motifs. Also, as we show below, the Ser/Thr-rich region upstream of

the PPPSPxS motifs, may have an important role in this process.

GSK3b preferentially binds to the phosphorylated
intracellular region of LRP6

The evidence above suggests that the phosphorylated PPPSPxS

motifs of the LRP6/5 intracellular region competitively inhibit

GSK3b. The intracellular region of LRP6/5 has been implicated

in binding both GSK3b and Axin [6,12,13,16]. Whereas GSK3b
bound to LRP6 or 5 in the absence of Axin in yeast two-hybrid

experiments [13,16], GSK3b dramatically increased the interac-

tion of Axin with LRP6 or 5 in cells and in vitro [6]. Moreover,

both the GBD and DIX domains of Axin were present in

constructs that interacted with LRP5 in yeast two-hybrid

experiments [6]. The Axin-binding site found in vertebrate

GSK3 [22] is conserved in the yeast homolog. These observations

suggest that GSK3 can associate directly with LRP6 and bridge

LRP6 to Axin.

We first investigated whether the intracellular region of LRP6

binds to GSK3b in a phosphorylation-dependent manner. To

detect binding, we used recombinant GST-fused LRP6 fragments

(miniCL, miniCLMT, PPPSPxS, PPPAPxS; Fig. 1A) and GSK3b
proteins in a far western binding assay. This assay is appropriate as

the LRP6 cytoplasmic region is expected to be natively

unstructured and therefore should not suffer from denaturation

artifacts. Prior to the binding reaction, the GST-fused LRP6

fragments were phosphorylated by GSK3b and CK1 and

transferred to a PVDF membrane. The membrane was incubated

with GSK3b, and bound GSK3b was detected with an anti-

GSK3b antibody. GSK3b bound to GST-miniCL and GST-

miniCLMT, but not GST-PPPSPxS or GST-PPPAPxS (Fig. 4).

Comparison with LRP6 that had not been phosphorylated

revealed that phosphorylation enhanced the binding by four to

five fold (Fig. 4A Right). Since the S1490A mutation does not affect

binding, these results suggest that the Ser/Thr rich cluster present

in miniCL plays more important role in mediating the

phosphorylation-dependent interaction of LRP6 with GSK3b.

Also, given the measured Ki value of the single PPPSPxS motif, it

was expected that the single PPPSPxS motif might exert a limited

role in recruiting the GSK3b.

To investigate whether the Axin-bound GSK3b is able to bind to

the phosphorylated LRP6 fragments (miniCL), we incubated

GSK3b with excess Axin GBD protein to saturate its binding to

GSK3b and then tested the binding of GSK3b and LRP6 using the

same far western blot analysis (Fig. 4B). Binding of GSK3b to the

LRP6 fragment was not affected by the presence of Axin, indicating

that the Axin GBD, GSK3b, and LRP6 miniCL proteins form a

ternary complex in vitro. Furthermore, we observed that an Axin

fragment including the GBD was bound to the LRP6 miniCL

fragment only when GSK3b was co-incubated (Fig. 4C), demon-

strating that GSK3b mediates the association of the Axin fragment

with the LRP6 intracellular region. Taken together, we propose that

the GSK3b plays an important role in mediating Axin binding to

LRP6/5 in vivo mainly through the Ser/Thr rich cluster of LRP6/5.

Discussion

Here we have provided evidence that the phosphorylated

PPPSPxS motif of LRP6/5 directly inhibits GSK3b. The dually-

antibody. Levels of transfected proteins were detected using monoclonal GFP antibody, indicated by GFP. Total cellular levels of GS and GSK3b were
measured by anti-GS antibody and anti-GSK3b antibody, which are indicated by t-GS and t-GSK3b, respectively. Actin is shown as a loading control.
(D) Activation of Wnt/b-catenin signaling, which was measured by the Top-flash luciferase activity. Either the top-flash (TOP) or fop-flash (FOP)
luciferase reporter and each construct were transfected into 293 cells. The luciferase activities were measured after 24 h of the transfection. Error bars
represent standard deviation from 4 independent experiments. Statistical analysis revealed that overexpression of the miniCL construct significantly
activated Wnt/b-catenin signaling compared to that of the empty vector and the miniCLMT construct (* p,0.01, # p,0.01).
doi:10.1371/journal.pone.0004046.g001

Inhibition of GSK3b by LRP6
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Figure 2. Direct inhibition of GSK3b on the b-catenin N-terminal fragment by LRP6 PPPSPxS peptides. (A) GSK3b activity is inhibited by
the LRP6 PPPSPxS peptides depending on the phosphorylation state of the LRP6 motif. The graph is plotted as a percentage of uninhibited GSK3b
activity (Lane 1) from 4–7 independent experiments; the standard deviation is indicated by error bars. Gels used in this experiment are shown in Fig.
S5. (B) Measurement of the inhibition constant (Ki) of the dually-phosphorylated LRP6 peptide. Varying concentrations (0, 1, 3, 10, and 30 mM) of the
dually-phosphorylated LRP6 peptide were used to measure the Ki value. The data points are the mean of three independent experiments. The
progressive increase in slope indicates that the Ki for the peptide is ,13 mM. (C) The dually-phosphorylated PPPSPxS peptide inhibits the GSK3b-
mediated phosphorylation of mouse Axin fragment (residues 512–650). The intensities of the Coomassie-blue stained phosphorylated bands were
quantitatively analyzed. The purified Axin fragment (5 mg) was used as a substrate in the same reaction buffer as in (A). The graph is plotted as a
percentage of uninhibited GSK3b activity from 3 independent experiments; the standard deviation is indicated by error bars. Gels used in this
experiment are shown in Fig. S6. (D) GSK3b is inhibited by the phosphorylated LRP6 motif independently of the Axin GBD protein (Left). Binding of
Axin GBD to GSK3b is fully saturated at above 2.5 mM of the Axin protein [35], where ,20% of the GSK3b activity was inhibited by the Axin GBD
protein (Right). GST-fused mouse Axin GBD (GST-Axin GBD, residues 512–530) was used in these experiments. The graph is plotted as relative GSK3b
activities from three independent experiments. Error bars indicate the standard deviation. Because the binding constant of Axin GBD domain to
GSK3b is about 1 mM, most GSK3b is bound to Axin GBD domain at above 2.5 mM of Axin GBD domain in vitro. A representative gel is shown in Fig.
S7. Binding of Axin GBD to GSK3b was confirmed by the far western blotting experiment (Data not shown).
doi:10.1371/journal.pone.0004046.g002

Inhibition of GSK3b by LRP6
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phosphorylated PPPSPxS motif acts as a competitive inhibitor

with a Ki of 13 mM. Given this Ki value, the inhibitory effect of

phosphorylated LRP6 on GSK3b is relatively low compared to

other cytoplasmic protein inhibitors, such as XIAP (Ki toward

caspase-3 ,2 nM [26]), although it is a much stronger inhibitor

than the phosphorylated N-terminal segment of GSK3b in trans.

However, the weak inhibitory effect of the phosphorylated LRP6

on GSK3b could become important when GSK3b and LRP6 are

both localized to the membrane, which would bring the enzyme

and its inhibitor into close proximity. Moreover, the five PPPSPxS

motifs could enhance the avidity of the interaction with GSK3.

Cselenyi et al. (2008) found that the recombinant, nonpho-

sphorylated LRP6 intracellular region at ,4 mM can inhibit b-

catenin phosphorylation by GSK3b, but not Tau, another GSK3b
substrate, which led these authors to propose that GSK3b
phosphorylates LRP6 and that the phosphorylated species

somehow specifically interferes with the b-catenin–GSK3b
interaction rather than inhibiting the kinase. They argue that

the inhibition of GSK3b observed by Mi et al. (2006) may have

been due to the use of supraphysiological concentrations, although

the concentrations used in that study were not reported. We have

shown that phosphorylated LRP6 inhibits GSK3b activity towards

another substrate, Axin, in a purified system (Fig. 2C), arguing

against a b-catenin specific inhibitory activity. We also see

inhibition of glycogen synthase when the LRP6 cytoplasmic

fragment is overexpressed in cells. Although in this case a free

cytosolic LRP6 motif is clearly not physiological, taken with the

other data it is clear that the phosphorylated motif can act as a

competitive inhibitor of GSK3b. The 13 mM Ki is consistent with

the findings of Cselenyi et al. when the avidity of the 5 PPPSPxS

motifs is considered. Although the relevant concentration in vitro is

not known, particularly given the formation of scaffolding

complexes at the plasma membrane, it is clear that the

phosphorylated motifs act as potent inhibitors.

The cytoplasmic scaffold protein Dishevelled is an indispensible

component downstream of Frizzled in Wnt/b-catenin signaling

[27]. A large body of evidence suggests that Dishevelled is

responsible for the direct recruitment of Axin to the membrane in

Wnt/b-catenin signaling, through the interaction of the Dishev-

elled and Axin DIX domains [28–30]. In this study, we found that

the miniCL intracellular region of LRP6/5 has two functional

modules, each regulated by their phosphorylation state: the Ser/

Thr rich cluster appears to contribute to the binding of GSK3b,

and the PPPSPxS motifs regulate GSK3b activity. The interaction

of the Ser/Thr rich cluster with GSK3b suggests that the Ser/Thr

rich cluster of LRP6/5 and Dishevelled may synergize in the

recruitment of the GSK3b–Axin complex to the membrane upon

Wnt stimulation. Concurrently, GSK3b co-localized with Axin at

the membrane would be inhibited by the phosphorylated

PPPSPxS motifs of LRP6/5.

Our findings suggest a mechanism to account for the role of

phosphorylated LRP6 motifs in the initial events of Wnt/b-catenin

signaling (Fig. 5). Binding of Wnt to the Frizzled and LRP6/5

receptors promotes binding of Dishevelled to the cytoplasmic

region of Frizzled. This membrane-localized Dishevelled recruits

the Axin complex mainly through the Axin-Dishevelled interac-

tion and partly through the LRP6 Ser/Thr rich cluster–GSK3b
interaction. The membrane-localized GSK3b in the Axin

complex, together with CK1c, phosphorylates the intracellular

region of LRP6/5, including the Ser/Thr rich cluster and the five

PPPSPxS motifs. The phosphorylated Ser/Thr rich cluster of

LRP6/5 has a higher affinity for GSK3b, and may help to

maintain the Axin complex at the membrane in conjunction with

the Dishevelled-Axin interaction. Finally, GSK3b in the plasma

membrane-localized Axin complexes is inhibited by the phos-

phorylated PPPSPxS motifs of LRP6/5. According to this model,

the cytoplasmic GSK3b molecules involved in insulin/IGF-1

signaling would not be recruited to the membrane because of the

lack of the Dishevelled-Axin interaction. As such, this model is

compatible with the observation that free cytoplasmic GSK3b is

not inhibited in response to Wnt stimulation [18,31], thereby

insulating the insulin/IGF-1 signaling from the Wnt/b-catenin

signaling pathway.

It was previously suggested that the roles of phosphorylated

PPPSPxS motif are to recruit b-catenin [17] and Axin

[6,12,13,16], which would lead to inhibition of b-catenin

phosphorylation by GSK3b. Fluorescence resonant energy

transfer between tagged proteins suggested that the LRP6

cytoplasmic region binds to b-catenin in the cell leading to the

proposal that inhibition of b-catenin phosphorylation results from

the association of the LRP6 region with b-catenin, not from the

inhibition of GSK3b [17]. However, we find that intracellular

region of LRP6 directly binds to GSK3b through the Ser/Thr rich

cluster and thereby mediates the recruitment of Axin, suggesting

Figure 3. The effect of the injected PPPSPxS peptides to the Xenopus embryos. Xenopus Wnt8 protein (XWnt8; 0.5 pg) was co-microinjected
with each peptide (1 ng) into the ventrovegetal region of Xenopus embryos. Representative embryo pictures are shown in the left panel, and the
diagram shows the ratio of the phenotypes (normal shape, partial and complete second axis duplication) in the right panel. Although the injected
peptides would be diluted and degraded as the cells divide due to lack of the de novo biosynthesis, the dually and singly-phosphorylated PPPSPxS
peptides dramatically increased partial and complete second body axis.
doi:10.1371/journal.pone.0004046.g003
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that b-catenin associates indirectly with LRP6 through GSK3b
and Axin. Likewise, the ability of GSK3b to bind simultaneously

to LRP6 and Axin explains earlier co-immunopreciptiation data

[6] that were used to conclude that LRP6 and Axin interact

directly. In summary, our results show that the phosphorylated

PPPSPxS motif of LRP6 acts as a direct inhibitor of GSK3b in

Wnt/b-catenin signaling, and suggest a mechanism for stabiliza-

tion of b-catenin upon activation of cell surface Wnt receptors.

Materials and Methods

Plasmids for transfection
DNA fragments encoding LRP6 miniCL (residues 1470–1510

of human LRP6) were obtained from a human cDNA library by

PCR, and inserted into the pEGFP-C1 vector (Clontech) using

HindIII and BamHI sites of to generate GFP-tagged protein,

resulting in pEGFP-miniCL. The LRP6 mutant (S1490A) was

Figure 4. Phosphorylation-dependent binding of the LRP6 intracellular region to GSK3b in the absence and presence of Axin. (A)
GST (Lane 1), GST-fused miniCL (Lane 3; GST-miniCL), GST-fused miniCLMT (Lane 5; GST-miniCLMT), and their phosphorylated forms (Lanes 2, 4, 6;
indicated by ‘‘phos’’) were loaded onto an SDS-polyacrylamide gel, and then transferred to PVDF membrane (Left top). Because GST-fused PPPSPxS
and PPPAPxS were not phosphorylated by GSK3b and CK1 (data not shown), we only applied the GSK3b- and CK1-treated GST-PPPSPxS or its mutant
form [Lanes 7, 8; indicated by (phos)] to the gel, since the untreated forms would be redundant. The phosphorylated protein bands show an
upshifted mobility on the gel. The PVDF membrane was incubated with 1 mg/ml of GSK3b to allow GSK3b to bind to the proteins in the membrane.
The bound GSK3b was visualized on the transferred proteins by western blotting using an anti-GSK3b antibody (Left bottom), and the GSK3b protein
used to obtain the phosphorylated forms of each protein is indicated by GSK3b*. The band intensities of bound GSK3b were measured from the three
independent experiments (Right). (B) The Axin GBD domain does not affect the binding of GSK3b to the miniCL region of LRP6. The phosphorylated
GST-fused miniCL was transferred to PVDF membrane, and the membrane was incubated with GSK3b (0.1 mg/ml) and GST-fused Axin GBD domain
protein (0, 10 mM). Error bars indicate the standard deviation from three independent experiments. (C) GSK3b mediates the binding of an Axin
fragment to LRP6 miniCL region. A His-tagged Axin fragment (His-Axin; residues 512–650) including the GBD and the b-catenin binding domain (BBD)
was tested if it directly binds to LRP6 miniCL region or its binding is mediated by GSK3b. Fifteen mg of GST-miniCL was transferred to a PVDF
membrane, and the membrane was incubated with GSK3b (2 mg/ml) and/or His-Axin (12 mg/ml) in TBST containing 1% skim milk. The Axin fragment
was bound to LRP6 miniCL only in the presence of GSK3b.
doi:10.1371/journal.pone.0004046.g004
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generated by PCR-mediated mutagenesis, resulting in pEGFP-

miniCLMT.

Antibodies
Antibodies were used according to the manufacturer’s instruc-

tions. Antibodies used include mouse monoclonal anti-b-catenin

(Santa Cruz), anti-GFP (Santa Crutz), and rabbit polyclonal anti-

GSK3b (Cell signaling), anti-phospho GSK3b (Ser9) (Cell

signaling), anti-phospho LRP6 (Ser1490) (Cell signaling), anti-

phospho-glycogen synthase (Ser641) (Cell signaling), anti-GS (Cell

signaling), anti-phospho-b-catenin (Ser45) (Cell signaling), and

anti-phospho-b-catenin (Ser33/37/Thr41) (Cell signaling).

Transfection and protein analysis
pEGFP-miniCL and pEGFP-miniCLMT vectors were trans-

fected into A549 cells and HepG2 cells using jetpei according to

the manufacturer’s protocol (Polyplus transfection). In brief, 2 mg

of DNA and jetpei mixtures were added to A549 cells and HepG2

cell and incubated for 3 h under serum-free conditions, and then

equal volumes of DMEM containing 20% serum were added.

After 24 h incubation, cells were harvested using RIPA (containing

protease cocktail). Subsequently, 20 mg of protein lysates were

applied to SDS-PAGE. After transferring the proteins to a PVDF

membrane, samples were incubated with the appropriate

antibodies, according to standard western blot protocol.

Luciferase assay
To address the transcriptional activity of b-catenin, TOP-flash

(responsive luciferase vector) and FOP-flash (unresponsive vector),

which were kindly provided by Drs. B. Vogelstein and K. Kinzler

(Johns Hopkins Univ.), were transfected into 293 cells. Using 10 ml

of cell lysate, we performed the luciferase assay using the luciferase

assay kit (Promega).

Immunofluorescence staining
Transfected cells were fixed with 100% methanol for 20 min at

220uC. After washing with PBS and subsequent blocking with

blocking buffer (PBS+0.05% BSA), fixed cells were incubated with

anti-b-catenin antibody for 2 h at room temperature. After

washing with PBS, cells were incubated with a rhodamine-

conjugated anti-mouse antibody for 2 h. To visualize nuclei, cells

were stained with DAPI for 5 min. After washing with PBS,

expression of b-catenin, GFP, and DAPI were analyzed using

fluorescence microscopy.

Expression and purification of recombinant proteins
The catalytic domains of mouse GSK3b (residues 27–393) and

CK1e (residues 1–319) were expressed and purified as previously

described [32]. The N-terminal region (residues 1–133) of b-

catenin was expressed in Escherichia coli as a GST-fusion protein

with a TEV protease cleavage site and then purified using

Glutathione-agarose. Subsequently, the GST tag was cleaved

using recombinant TEV protease and was removed by repeated

HiTrapQ anion-exchange chromatography. The N-terminal

region of b-catenin was then phosphorylated by incubation with

the catalytic domain of CK1e (0.28 mg/ml) at 37uC for 20 min in

50 mM Tris buffer (pH 8.0) containing 10 mM MgCl2, 10 mM 2-

mercaptoethanol, and 2 mM phenylmethylsulfonylfluoride. The

phosphorylated b-catenin fragment was then further purified using

HiTrapQ anion-exchange chromatography to remove the CK1e
enzyme. The mouse Axin GBD (residues 512–530), and variants

of human LRP6 (miniCL, residues 1470–1510; miniCLMT,

residues 1470–1510 with substitution at Ser1490 with Ala; LRP6

PPPSPxS, residues 1485–1497; and LRP6 PPPAPxS, residues

1485–1497 with the substitution at Ser1490) were expressed in

E.coli as GST-fusion proteins and purified using Glutathione-

agarose and a HiTrapQ anion-exchange chromatographic

column. The final buffer for the GST-fusion proteins was changed

to 20 mM Tris buffer (pH 8.0) using Centriprep (10 kDa cutoff;

Millipore). His-tagged Axin fragment (512–650 in the mouse Axin

numbering) was expressed in E.coli, and purified using Ni-NTA

affinity and HitrapQ anion exchange chromatographic columns.

Peptide synthesis
Peptides for inhibition assays were prepared by solid-phase

synthesis. The amino acid sequence of each peptide is shown in

Fig. 1A. The N-terminus and C-terminus of all peptides were

modified by biotinylation and amidation, respectively. Biotinylation

was accomplished using sulfo-NHS-SS-biotin (Pierce), which allowed

reductive cleavage of the 15-mer from the biotin group. The identity

and purity of the synthesized peptides were confirmed by mass

spectrometry.

Figure 5. A model for the activation of Wnt/b-catenin signaling. Left, simultaneous binding of Wnt to Frizzled (Fz) and LRP6/5 leads to
recruitment of Dishevelled (Dvl) to the Frizzled cytoplasmic region. Middle, the Axin complex containing GSK3b is recruited to the membrane via
interactions of Axin with Dishevelled, and also the Ser/Thr rich cluster of LRP6/5 with GSK3b in the complex. The membrane-recruited GSK3b,
together with the membrane-anchored CK1c, phosphorylates the Ser/Thr rich cluster of LRP6. Once the Ser/Thr rich cluster of LRP6/5 is
phosphorylated, LRP6/5 makes a greater contribution to the recruitment of the Axin complex due to its increased affinity. Right, the GSK3b in the Axin
complex is inhibited by the phosphorylated PPPSPxS motif in LRP6/5. The phosphorylated Ser/Thr rich cluster is indicated by p in a square, and the
phosphorylated PPPSPxS motif is indicated by p in a circle.
doi:10.1371/journal.pone.0004046.g005
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In vitro GSK3b activity assay in the presence of synthetic
peptides

To measure the GSK3b activity in the presence of each synthetic

peptide dissolved in 10% dimethylsulfoxide, 7.5 ml of the reaction

mixture was incubated for 30 min at 37uC. This reaction mixture

contained 50 mM Tris (pH 8.0), 10 mM MgCl2, 10 mM 2-

mercaptoethanol, 1 mM ATP, 2 ng of recombinant GSK3b
catalytic domain, 7 mM of the primed b-catenin N-terminal

fragment, and the same volume (0.3 ml) of varying concentrations

of each synthetic peptide. After the reaction was stopped by the

addition of SDS-loading buffer and immediate boiling, the resultant

mixture was applied to a 15% SDS-polyacrylamide gel for analysis.

As shown in Fig. S3, S4, S6, and S7, the intensities of the

supershifted bands (substrate, product a, product b) on the

Coomassie-stained gel were integrated using the program IMAGE-

QUANT (Molecular Dynamics, USA). To calculate the GSK3b
activity, the intensities of the two product bands were combined

according to the number of phosphate groups incorporated by

GSK3b. The lower band (product a) contains one phosphate group

(61), while the upper (product b) band contains two or three

phosphate groups (62.5). To examine the effect of Axin GBD on the

inhibitory role of the dually-phosphorylated peptide toward GSK3b
activity, each concentration of GST-fused Axin GBD protein was

added in 7.5 ml of the reaction mixture with GSK3b.

Determination of the Ki value of the phosphorylated
LRP6 peptide toward GSK3b

Thirty ml of the reaction mixture containing 50 mM Tris

(pH 8.0), 10 mM MgCl2, 10 mM 2-mercaptoethanol, 1 mM

ATP, 8 ng of recombinant GSK3b catalytic domain, 6 mM of

the primed b-catenin N-terminal fragment, and varying concen-

trations of dually-phosphorylated peptide were incubated at 37uC.

At each time point, 7.5 ml was taken from the reaction mixture for

SDS-PAGE. The GSK3b activity was measured using a

Coomassie-stained SDS-polyacrylamide gel, as described above.

The initial parts of the activity curves, which show no curvature,

were obtained and their slopes were calculated as initial velocities.

The apparent Ki value was determined according to the equation:

(V0/Vi)21 = [peptide]/Ki, where V0 and Vi are the initial

velocities of the reaction in the absence and in the presence of

the dually-phosphorylated peptide [19].

Xenopus laevis embryo manipulations
Xenopus laevis was purchased from Xenopus I and Nasco. Eggs were

obtained from Xenopus laevis primed with 800 U of human chorionic

gonadotropin (Sigma). In vitro fertilization was performed as described

previously [33], and the developmental stages of the embryos were

determined according to Nieuwkoop and Faber [34]. Microinjection

was carried out in 0.336Modified Ringer’s (MR) containing 4%

Ficoll-400 (GE healthcare) using a Nanoliter Injector (WPI). Injected

embryos were cultured in 0.336MR until stage 8 and then

transferred to 0.16MR until they had reached the appropriate stage.

Phosphorylation of GST-fusion proteins
To phosphorylate GST-fusion proteins, 15 mg of each GST-

fusion protein was incubated for 4 h at 37uC with 0.2 mg of

recombinant GSK3b and 0.4 mg of recombinant CK1e in 10 ml of

50 mM Tris (pH 8.0) buffer containing 5 mM ATP, 10 mM

MgCl2 and 10 mM 2-mercaptoethanol.

Far western blotting analysis
GST-fusion proteins (GST-miniCL, GST-miniCLMT, GST-

PPPSPxS, GST-PPPAPxS) were subjected to SDS-PAGE and

transferred to a PVDF membrane. The membrane was then

blocked for 1 h with 5% skim milk in TBST (20 mM Tris

(pH 7.6), 137 mM NaCl, 0.05% Tween 20), and rinsed with

TBST. Then the membrane was incubated for 3 h with the 1 mg

of the recombinant GSK3b in 1 ml of 5% skim milk in TBST, and

was washed 3 times with TBST. The binding of GSK3b was

detected with rabbit anti-GSK3b antibody and secondary HRP-

conjugated goat anti-rabbit IgG (Pierce).

Supporting Information

Figure S1 Cytosolic overexpression of the LRP6 constructs in

HepG2 cells. HepG2 cells in which control (empty vector, EV,

encoding only GFP), miniCL and miniCLMT were transfected as

GFP fusion proteins. Control, miniCL and miniCLMT were

detected through the green fluorescence from GFP. b-Catenin was

detected using an anti-b-catenin antibody, and the nuclei were

detected by DAPI staining.

Found at: doi:10.1371/journal.pone.0004046.s001 (0.91 MB TIF)

Figure S2 Western blotting analysis from the transfected HepG2

cells. Labels at the left side of blots indicate the antibody used for

detection of the corresponding protein. The endogenous b-catenin

level was detected by an anti-b-catenin antibody. p-GS indicates

the level of the phosphorylated GS by GSK3b, detected by anti-

glycogen synthase (Ser641) antibody. p-S9-GSK3b indicates the

phosphorylated Ser9 of GSK3b, and was detected by anti-

phospho GSK3b (Ser9) antibody. Levels of transfected proteins

were detected using monoclonal GFP antibody, indicated by GFP.

Pan-Ras is shown as a loading control.

Found at: doi:10.1371/journal.pone.0004046.s002 (0.05 MB TIF)

Figure S3 In vitro GSK3b activity assay based on band-shifts.

The numbers at the right indicate the numbers of the incorporated

phosphate groups by CK1 or GSK3b. We used unphosphorylated

b-catenin 1–133 region (0) as a substrate, and CK1 and GSK3b
proteins were sequentially treated in the reaction buffer used in

Fig. 2. The bands for GSK3b substrate is indicated by ‘‘substrate’’,

and the product bands are indicated by ‘‘product a’’ and ‘‘product

b’’. The bands were visualized by Coomassie staining.

Found at: doi:10.1371/journal.pone.0004046.s003 (0.16 MB TIF)

Figure S4 In vitro GSK3b kinase assay based on the phospho-

specific antibodies against b-catenin. Unphosphorylated b-catenin

1–133 region (0) was used as a substrate, and CK1 and/or GSK3b
was treated simultaneously in the same reaction buffer used in

Fig. 2. To confirm the inhibitory role of the PPPSPxS peptides,

each peptide was added to the reaction mixture. SDS-PAGE was

applied to analyze the result. One of gels was stained by

Coomassie blue (Top), the other two gels were transferred to

PVDF membranes. One membrane was visualized using anti-

phospho-b-catenin (Ser45) antibody (Middle), and the other

membrane was visualized using anti-phospho-b-catenin (Ser33/

37/Thr41) antibody (Bottom). The results are well-consistent with

Fig. S1 and Fig. S2, which confirms the fidelity of the in vitro

kinase assay used in this study.

Found at: doi:10.1371/journal.pone.0004046.s004 (0.23 MB TIF)

Figure S5 Gel figures for Fig. 2A. The bands labeled ‘‘substrate’’

are the prephosphorylated b-catenin 1–133 fragment by CK1.

The two product bands are indicated.

Found at: doi:10.1371/journal.pone.0004046.s005 (0.49 MB TIF)

Figure S6 Gel figures for Fig. 2C. The bands labeled substrate

are the unphosphorylated Axin fragment, and the band labeled

product is the Axin fragment harboring phosphorylation at

Ser614. Prior to the experiment, we found that the GSK3b-
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mediated phosphorylation of the Axin fragment can be detected

through a band upshift of the fragment on an SDS-polyacrylamide

gel. The reaction buffer was the same as in Fig. S2, and the

incubation time was 1 hour. In a control experiment, the primed

b-catenin (1–133) was used as a substrate using the same amount

of GSK3b and reaction buffer, but was incubated for 15 min (See

the ‘‘control’’ lanes in the first gel).

Found at: doi:10.1371/journal.pone.0004046.s006 (0.22 MB TIF)

Figure S7 A representative gel for Fig. 2D.

Found at: doi:10.1371/journal.pone.0004046.s007 (0.11 MB TIF)
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