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Abstract

Background: In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations
(valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential
(ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control
mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are
translated into latency effects.

Methodology/Principal Findings: Here, we measured the latency of two ERP components, the N2pc and the sustained
posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short
term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger
contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite
these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasi-
instantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and
these were correlated to the RT effect.

Conclusions/Significance: Results show that latency differences that could explain the RT cueing effects must occur after
visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by the
SPCN, at least in discrimination tasks in which the target is presented concurrently with at least one distractor. Given that
the SPCN was previously associated to conscious report, these results further show that entry into consciousness is delayed
following invalid cues.
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Introduction

Visual-spatial attention can be deployed covertly to specific

locations in space in absence of head or eye movements. Voluntary

deployments of covert attention have been studied extensively

using predictive spatial cueing paradigms [1]. In predictive spatial

cueing experiments, trials begin with either a central or a

peripheral cue, followed by a target, to which a speeded response

is often required. In most trials the target appears at the cued

location (valid trials), but on a minority of trials it appears at

another location (invalid trials). It is well established that reaction

times (RT) are shorter when the target appears at the cued

location (in valid trials) than when it appears at an uncued location

(in invalid trials). The stage(s) of target processing that are

modulated by predictive cues have been strongly debated. Several

results, such as the interaction of target luminance with cue

validity [2] provided support for an early selection hypothesis,

which proposes that the cueing RT effect can be explained by

attention-related perceptual facilitation. However, other results,

such as the absence of a cueing effect on detection sensitivity

accompanied by a lower decision criterion in valid trials [3]

supported a late, post-perceptual interpretation of the cueing RT

effect, which proposes that cue information does not affect

perceptual processes, but rather biases the participants’ decision

criterion for emitting a response [4].

Event-related potentials (ERPs), which provide continuous

millisecond-by-millisecond measures of distinct covert cognitive

processes interposed between the stimulus onset and the overt

response, have provided valuable insights in this debate. Indeed,

an enhancement of the early occipital P1 (90–130 ms) and/or N1

(150–200 ms) components of the ERP are typically observed in

predictive spatial cueing paradigms [5,6]. Given that these early

amplitude modulations have been observed for both relevant and

irrelevant information presented at an attended location [7–9],

and that they seem to arise in early extrastriate visual areas, usually

without (or with very little) latency or scalp distribution
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modulations [10], it has been postulated that they reflect sensory-

perceptual gain control mechanism that amplify signals at

attended locations [11]. It is important to note that although

both P1 and N1 attentional modulations are often observed

together, important dissociations of these two effects have been

reported, indicating that they may well reflect different mecha-

nisms. For example, while the P1 effect has been observed both in

discrimination and detection tasks, the N1 effect seems to be

specifically tied to discrimination tasks [6]. Also, when a large

portion of bilateral displays were used, as in the present study, an

enhanced P1 contralateral to the attended item was accompanied

by a larger N1 ipsilateral to the attended item [12,13].

Although it is now commonly accepted that visual-spatial

attention enhances sensory-perceptual processing, probably

through gain control mechanisms, it is not clear where in the

processing stream processes are in fact accelerated in valid

compared to invalid trials. In other words, where in the processing

stream do the early P1/N1 amplitude effects translate into faster

processing? This is an important question because processing

must, at some point, be accelerated in order to produce the

observed cueing effects on RT.

The present study was designed to constrain the locus of the

cueing RT effect by measuring the latencies of two lateralised ERP

components: the N2pc (N2 posterior contralateral) [14–16] and the

sustained posterior contralateral negativity (SPCN) [17–23].

The N2pc is thought to reflect visual-spatial attention

mechanisms that separate relevant and irrelevant perceptual

information in bilateral, multi-element search arrays (a mechanism

hereafter referred to as visual selection). The N2pc, which typically

starts about 180 ms post-target onset and lasts about 100 ms, is

maximal at posterior electrode sites contralateral to an attended

item and is isolated by subtracting activity at electrode sites

ipsilateral to the attended item from the corresponding activity at

electrode sites contralateral to the attended item (e.g., PO7/PO8).

Luck and colleagues, who were the first to study this component

meticulously in visual search tasks, suggested that the N2pc reflects

distractor suppression processes [15,16]. Others, who have used

bilateral displays with only one distractor, have argued that the

N2pc reflected target enhancement processes [14]. Nonetheless,

even if there is still an ongoing debate on the specific processes that

underlie the N2pc, it is widely accepted as a valid index of visual

selective attention (for a review, see [24]).

The SPCN, which follows the N2pc in the contralateral minus

ipsilateral difference wave, is thought to reflect visual short-term

memory activity [18–23]. One major finding that links the SPCN to

visual short-term memory is that the amplitude of the SPCN, which

is sustained throughout the retention interval, increases as the

number of to-be-remembered items in the visual display increases,

but only up to the participants’ visual short-term memory capacity

[22,23]. The increase of SPCN amplitude as the number of to-be-

remembered items increases has also been reported in choice tasks

that were not memory tasks per se [18]. In this last study, a

modulation of the SPCN amplitude by memory load was not

accompanied by a modulation of the N2pc. Combined with a

complementary dissociation obtained in previous dual-task experi-

ments (i.e., an attenuation of the N2pc and a delay of the SPCN

onset latency without any modulation of the SPCN ultimate

amplitude [17,25]), the results show a double dissociation of the

N2pc and SPCN, strongly suggesting that the SPCN is not merely a

prolongation of the N2pc, but that the N2pc and SPCN are indeed

two functionally distinct components (see also [26]). In agreement

with this view, it has been demonstrated that while the N2pc was

present for both speeded detection and discrimination tasks, the

SPCN was only present in the latter [27]. As the authors have noted,

these results further support the proposal that fine analysis of a visual

item requires an active maintenance of visual information in VSTM

until a decision is made [28].

Interestingly, the SPCN amplitude has been correlated to

conscious report. For example, it has been demonstrated that

delayed-offset four dot masking (also called object-substitution

masking [29]), which reduces report accuracy of the masked item,

does not attenuate the N2pc, but seems to have a large effect on the

SPCN [30]. The reduction of the SPCN amplitude associated to a

reduction in report accuracy has also been observed in the

attentional blink paradigm, where dual-task interference is reflected

by both a decrease in second target report accuracy and a sharp

attenuation of the SPCN elicited by the second target [19,20,31]. In

contrast, in the psychological refractory period paradigm, where

dual-task interference is usually reflected by an increase in RT to the

second target without any effect on second target report accuracy,

the SPCN onset latency was lengthened as dual-task interference

increased, but finally reached a similar amplitude in all conditions, in

contrast to the N2pc, which was attenuated, but not delayed [17,25].

As in the previously mentioned experiments, the SPCN amplitude

seemed to follow closely report accuracy, and suggests that the time

at which a visual representation is encoded in a format that supports

conscious report can be tracked by measuring the SPCN onset

latency.

Given that the N2pc is linked to visual selection and the SPCN is

linked to visual short-term memory activity (and conscious report), it

is possible, by measuring both the N2pc and SPCN onsets in the

context of a spatial cueing paradigm, to evaluate whether the cueing

effect on RTs where accounted for, at least in part, by the

acceleration of processes at or before visual selection, by the

acceleration of processes interposed between visual selection and the

transfer into visual short-term memory, or by an acceleration of

processes after the transfer into visual-short term memory.

In addition, the N2pc results can provide important information

as to the time required to shift attention from one location in space

to another. Indeed, several theories in attention research presume,

more or less explicitly, that the three operations underlying shifts

of attention (e.g., disengagement, movement, and re-engagement)

take time, and that the time required to accomplish these

operations can account for a multitude of attentional phenomena.

In visual search, for example, models such as the feature

integration theory [32] claimed that attention needs to shift from

item to item when the target is defined by conjunctions of features,

producing increasing RT functions with set size in these

conditions. In the inhibition of return (IOR) literature, an

influential theory related the notion of IOR with foraging in

visual search [33,34], implying that attention moves from item to

item, and that IOR reduces the probability of returning to a

previously inspected location. Classic studies of object-based

attention also suggest that attention takes time to shift from

attended to unattended locations and/or objects [35], and time-

consuming shifts of attention have been assumed more or less

explicitly to underlie the costs observed when attention is captured

by sudden onsets [36,37]. Several papers in the contingent capture

literature also imply that attention is drawn to the distractor

location, and then has to return to the target location [38,39].

However, it is difficult to tell from behavioural results whether it is

the shift of attention per se that takes time, or what takes place

downstream, after attention has re-engaged at the new location.

On the other hand, differences in N2pc onset latency between

valid and invalid conditions could be taken as a direct measure of

the time required to disengage attention from one location, move

it to a new location, and re-engage at that new location, and help

evaluate the timecourse of attentional shifts with more precision.

ERPs and Cueing RT Effects
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One important challenge in measuring ERPs in experiments

with multiple events is to eliminate all confounding overlapping

brain activity. By subtracting the ipsilateral from the contralateral

waveforms, it is possible to isolate the N2pc and SPCN from all

activity that is not lateralized with respect to the side of

presentation of the target, such as sensory and response activity

in the present study (for a discussion, see [17]). However, this

subtraction does not eliminate attentional activity related to the

cued side (e.g., P1/N1 cueing effect). It was therefore crucial to

estimate and subtract this activity, especially given the fact that it

superimposes itself to the N2pc/SPCN with opposite polarity in

valid trials (where the target appears at the cued side) and invalid

trials (where target and cued side are opposite). This was

accomplished by including ‘‘no-target’’ trials in which the cue

was followed by a bilateral visual display containing two distractors

instead of a target and a distractor. The no-target trials enabled us

to obtain an estimate of the attentional activity caused by the cue

in absence of any target-related N2pc/SPCN. ERPs obtained in

no-target trials were then subtracted from ERPs obtained in both

valid and invalid trials. This subtraction method depends on the

validity of the assumption that the ERPs in the no-target trial are

identical to the ERPs in the valid and invalid trials, except for the

absence of the N2pc and SPCN. Given that no-target trials are in

fact no-go trials, it is true that they should elicit a larger N2 at

fronto-central sites [40–42] and a larger and more anterior P3

[41,43]. However, given that difference between go and no-go

ERPs, which have been linked to response inhibition and/or

conflict resolution, are not lateralized in respect to the side of

presentation of the target, they will be eliminated by the

subtraction of the ipsilateral from the contralateral waveform,

and therefore do not compromise the validity of our subtraction

procedure (for other successful uses of difference waves, see

[25,44–46]).

Methods

Participants
Twenty-two volunteers participated in this experiment for pay

(25 $ Canadian) after signing a written informed consent

document. Six participants had to be excluded from the analyses

(see below). Thus 16 participants (ages 19–35, mean age 22.9

years, 11 female) remained in the sample. All were neurologically

intact and reported having normal or corrected-to-normal visual

acuity and color vision. The study protocol was vetted by the

appropriate ethics committee at the Université de Montréal.

Stimuli and procedure
Participants sat in a dimly lit, electrically shielded room, facing a

computer screen, at a viewing distance of 57 cm. The experiment

comprised one practice block of 40 trials followed by 16

experimental blocks of 80 trials.

Each trial was initiated by pressing the ‘‘N’’ and ‘‘V’’ keys

simultaneously with the right and left index fingers respectively.

Figure 1 illustrates the sequence of events in a trial. A fixation point

appeared at the center of the computer screen along with two gray

placeholder boxes. The fixation point and the placeholders were

visible throughout the remainder of the trial. The placeholders

subtended a visual angle of 2u62u and their centre was 1u below and

3.5u to the left or right of fixation. A brief 100 ms color change of

the placeholders, 700 ms to 850 ms after trial initiation, acted as the

cue display. One placeholder changed to a target-color and the

other to a distractor-color. The colors were red, blue, green, and

yellow. All four colors and gray were approximately equiluminant to

equate low sensory responses and were presented on a dark

background. The target colors were blue and red for four

participants, yellow and green for four participants, red and yellow

for four participants, and blue and green for the remaining four

participants. The target-colored placeholder, which indicated the

most probable location of the upcoming target, appeared randomly

to the left and right of fixation and appeared randomly in each of

the two possible target colors.

In 80% of all trials, the cue display was followed by a 50 ms

target display containing one target and one distractor, each

appearing in the center of one placeholder. Seventy-five percent of

these trials were valid trials, in which the target appeared in the

target-colored placeholder, and 25% were invalid trials, in which

the target appeared in the distractor-colored placeholder. The cue-

target stimulus onset asynchrony (SOA) was 800 ms. The target

and the distractor were colored squares, each with a gap in one

side (different for each square). Both squares in the target display

subtended a visual angle of 1u61u and the gaps were 0.33u. The

colors used in the target display were always different than the

Figure 1. Stimulus sequence in valid, invalid, and no-target trials. One four-alternative discrimination speeded response was required on
each trial (except in no-target trials) as to the location of the gap in the target-colored square. Colors were equiluminant red, green, blue and yellow
in the actual experiment. The target-colors were counterbalanced between participants. In this example, target-colors are red and yellow.
doi:10.1371/journal.pone.0003967.g001

ERPs and Cueing RT Effects
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colors used in the cue display, so that a color change was present at

both the target location and the distractor location for both valid

and invalid trials. A speeded four-choice response was required on

each trial, as to the location of the gap in the target-colored square.

Response keys were ‘‘C,’’ ‘‘V,’’ ‘‘N,’’ and ‘‘M’’ for left, bottom, up,

and right gaps, respectively. Participants pressed the ‘‘C’’ and ‘‘V’’

keys with the middle and index fingers of the left hand, and the

‘‘N’’ and ‘‘M’’ keys with the index and middle fingers of the right

hand. Instructions emphasized the importance to respond as

quickly and accurately as possible, and participants were informed

to take into account the cue to maximize general performance.

In the remaining 20% of all trials, the target display was

replaced by a distractor display that contained two distractors. The

two distractors were in the same distractor color, which was

chosen to be different from the distractor color in the cue display,

so that a color change was also present at both locations in these

‘‘no-target’’ trials. As mentioned in the introduction, no-target

trials were used to estimate the cue-related attention effects (e.g.,

P1/N1 effects), in absence of any target induced N2pc/SPCN. No

responses were required in these trials.

Both target and no-target trials ended with the simultaneous

disappearance of the fixation point and placeholder boxes, and

appearance of a visual feedback at fixation, 1250 to 1750 ms after

the response (or after distractor display onset in no-target trials). A

‘‘+’’ or ‘‘2’’ indicated a correct or incorrect response, respectively.

Participants were instructed to maintain central eye fixation

throughout the trial and blink only when the feedback was on the

screen.

Electrophysiological recording and analysis
The electroencephalogram (EEG) was recorded from 64 active

Ag/AgCl electrodes (BioSemi ActiveTwo system) mounted on an

elastic cap and referenced to the average of the left and right

mastoids. Electrodes were placed according to the International

10/10 system. The horizontal electrooculogram (HEOG), record-

ed as the voltage difference between electrodes placed lateral to the

external canthi, was used to measure horizontal eye movements.

The vertical electrooculogram (VEOG), recorded as the voltage

difference between two electrodes placed above and below the left

eye, was used to detect eye blinks. A low-pass filter of 40 Hz was

applied and the EEG and EOG signals, digitized at 256 Hz, were

averaged offline.

Trials with eye blinks (VEOG.80 mV), large horizontal eye

movements (HEOG.30 mV), and/or artefacts at electrode sites of

interest (i.e., .80 mV at PO7 and/or PO8 electrode sites) were

rejected. Moreover, only trials with a correct response between

100 and 1200 ms were analysed. Six participants were excluded

because more then half of the trials in at least one condition (no-

target trials, invalid trials, and/or valid trials) were rejected. None

of the remaining participants had residual eye movements that

deviated more than 3.3 mV (i.e., corresponding to about 0.2u of

visual angle) after rejection criteria were applied [47]. The HEOG

criteria was lowered to 25 mV for one participant, to 23 mV for one

participant, and to 20 mV for two more participants so that the

residual HEOG would be less than 3.3 mV.

The ERPs were computed by averaging the EEG starting

100 ms prior to the target display onset and ending 600 ms post-

target display onset, and baseline corrected based on the 100 ms

pre-target display period.

Ipsilateral and contralateral waveforms were computed sepa-

rately for valid and invalid trials, as well as for no-target trials.

When analysing the P1/N1 effects, laterality was defined with

respect to the cued side, whereas in the N2pc and SPCN analyses,

laterality was defined with respect to the side of presentation of the

target. In the latter analyses, to remove all activity that was not

lateralized with respect to the target location (such as sensory and

response related activity), contralateral minus ipsilateral wave-

forms were computed. Furthermore, to isolate the N2pc and

SPCN from the preceding P1/N1 cueing effect, the no-target

ERPs were subtracted from both the valid and the invalid ERPs.

N2pc and SPCN amplitude and latency measures were obtained

from these corrected difference waves.

Latency measures were obtained with the jackknife method

[48–50]. With the jackknife method, N grand average waveforms

are computed with N-1 participants (a different participant is

removed for each waveform). Latency measures are obtained for

each of these n grand average waveforms, and the values are

submitted to a conventional analysis of variance (ANOVA), but for

which the F-values must be adjusted according to

Fajusted ~ F=(N { 1)2

(see [50] for a general proof of this adjustment).

Moreover, in order to perform correlations between possible

component latency effects and the RT effect, we recovered the

N2pc and SPCN onsets of each participant in each condition

based on the jackknife values using the following formula:

Let Li be the latency of the component for subject i and LGA be

the latency of the grand average waveform that includes all

subjects, which we can represent as the average of the individual

subject waveform latencies as follows:

LGA ~

PN
i~1 Li

N
:

Let LJack be the latency of the grand average jackknife waveform

that excludes subject j:

LJack ~

PN
i~1,i=j Li

N { 1
:

From these two values, we can recover the latency of the

waveform for subject i, Li as follows:

Li ~ NLGA { (N { 1)LJack:

Results

Behavioral results
Only trials with correct responses and reaction times between

100 ms and 1200 ms were included in the reaction time (RT)

analyses, and outliers were excluded using the method described in

Van Selst and Jolicœur [51]. As expected, shorter RTs were

produced in valid (685 ms) than in invalid trials (714 ms; F(1,

15) = 16.04, p,.002). As is often the case with highly visible,

unmasked targets, no validity effects was observed on accuracy (95.5

% in valid trials and 94.9% in invalid trials, F(1, 15) = 1.29, p..27).

Mean percentage of false alarms in no-target trials was 1.13%.

Electrophysiological results
P1/N1 cueing effects. Mean amplitude of the P1 (90–

130 ms) and N1 (150–200 ms) were analysed at PO7 and PO8

sites. P1 measurements were submitted to repeated measures

ERPs and Cueing RT Effects
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ANOVAs in which validity (no target vs. valid vs. invalid) and

laterality (ipsilateral vs. contralateral) were included as within-

subject factors. Ipsilateral and contralateral waveforms were

defined with respect to cued side, where attention should have

been at target display onset. These waveforms are shown in

Figure 2. A main effect of laterality (F(1, 15) = 17.77; p,.001)

indicated that the P1 was larger contralateral (0.91 mV) than

ipsilateral (0.55 mV) to the attended side. No main effect of validity

(F,1) nor laterality6validity interaction (F(2, 30) = 1.04; p..36)

were present, indicating that the no-target condition provides a

good estimate of cue related attentional activity in absence of any

target related N2pc/SPCN activity.

Given that the N1 time-window overlaps with the N2pc, N1

laterality effects, uncontaminated by the N2pc, could only be

measured in the no-target condition. A main effect of laterality

(F(1, 15) = 9.80; p,.007) indicated that the N1 was larger

ipsilateral (24.41 mV) than contralateral (24.02 mV) to the

attended location, as observed in previous studies using bilateral

target displays [12,13].

N2pc. To isolate the N2pc and SPCN, corrected difference

waves were computed following three steps. First, the ipsilateral

and contralateral waveforms were redefined with respect to the

location of the target, but only in target present trials (remember

that contralateral and ipsilateral were defined with respect to the

cued location in Figure 2). Second, ipsilateral waveforms were

subtracted from the contralateral waveforms in each type of trial,

leading to the contralateral minus ipsilateral difference waves

presented in Figure 3 (panel A). It is important to note here that in

Figure 3A, ipsilateral and contralateral waveforms in no-target

trials are still defined with respect to the cued location. In the final

step, the no-target difference wave was subtracted from the valid

difference wave (because the target was presented at the cued

location) and was summed to the invalid difference wave (because

the target was presented opposite to the cued location). The

resulting contralateral minus ipsilateral corrected difference waves,

from which we obtained the N2pc and SPCN measures, are

presented in Figure 3 (panel B).

Mean amplitude of the N2pc (210–290 ms), measured at PO7/

PO8 sites, was similar in the valid (21.52 mV) and invalid

conditions (21.60 mV; F,1). To assess possible latency effects, an

Figure 2. Grand-average event-related potential (ERP) wave-
forms time-locked to the target display onset at PO7 and PO8
sites for valid, invalid, and no-target trials. Contralateral and
ipsilateral were defined in relation to the cued location.
doi:10.1371/journal.pone.0003967.g002

Figure 3. A) Contralateral minus ipsilateral difference waves time-
locked to target display onset at PO7/PO8 sites in valid, invalid, and no-
target trials. Contralateral and ipsilateral were defined relative to the
cued location in no-target trials, but were redefined in respect to the
target location in valid and invalid trials. B) Contralateral minus
ipsilateral corrected difference waves for valid and invalid trials. The
corrected valid difference wave was obtained by subtracting the no-
target difference wave from the valid difference wave, whereas the
invalid corrected difference wave was obtained by summing the no-
target difference wave and invalid difference wave. Shown are the
10 Hz low-pass filtered waveforms.
doi:10.1371/journal.pone.0003967.g003

ERPs and Cueing RT Effects
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additional 10 Hz low-pass filter was applied to reduce noise (and

thus increase robustness) and the time at which the corrected

difference waves reached 20.6 mV, starting at 140 ms post-target

onset, was measured using the jackknife method [48–50]. As

suggested in Figure 3B, this analysis revealed no hint of any effect

of cue validity on N2pc latency (valid condition = 181 ms, invalid

condition = 187 ms; Fadjusted,1). Performing the analysis on the

original 40 Hz low-pass filtered waveform also yielded a non

significant result (Fadjusted,1). Using the formula presented in the

Method section, we recovered individual N2pc latency values from

the jackknife values and then performed a two-tailed Pearson

correlation between the N2pc latency effect and the RT effect. As

expected from the absence of a cue validity effect on N2pc latency,

the correlation was not significant (r = 2.203, p..45). A scatterplot

of the N2pc latency effect and the RT effect is presented in

Figure 4 (panel A).

The scalp distributions of the N2pc are shown in Figure 5

(upper panels) for both the valid and invalid conditions. To

evaluate whether the N2pc scalp distributions were typical and

similar between conditions, we normalized the activity centered on

the component’s peak (mean amplitude in the 230–270 ms time-

window in both validity conditions) according to the procedure

described by McCarthy and Wood [52], and posterior electrode

pairs (O1/O2, PO3/PO4, PO7/PO8, P1/P2, P3/P4, P5/P6, P7/

P8, P9/P10) were submitted as a within-subject factor in an

ANOVA in which the second within-subject factor was validity

(valid vs. invalid). A Greenhouse-Geisser correction was used for

the estimation of F statistics. A main effect of electrode (F(7,

105) = 4.79; p,.01) indicated that the N2pc amplitude was

different across these electrodes and was maximal at PO7/PO8

sites. No main effect of validity was observed (F,1), and the

absence of any validity6electrode interaction (F,1) suggests

similar scalp distributions in the valid and invalid conditions.

SPCN. The SPCN is the second negative deflection in the

contralateral minus ipsilateral difference wave (see Figure 3B).

Mean amplitude in the 350–400 ms time range at PO7/PO8 sites

was larger in the valid condition (21.40 mV) than in the invalid

condition (20.23 mV; F(1, 15) = 5.24; p,.04). No main effect of

validity was present in the later 410–460 ms time range (valid

condition = 21.01 mV, invalid trials = 20.79 mV; F,1).

Importantly, to determine whether the apparent shift in SPCN

latency was statistically reliable, we applied a 10 Hz low-pass filter

and used the jackknife method. Given that the SPCN follows the

N2pc, an earlier onset of the former means a greater overlap with

the latter. In this situation, the SPCN is thus superimposed on the

greater negativity of the N2pc, modulating its amplitude. In order

to minimized the variability caused by differences in N2pc

amplitude at the onset of the SPCN, we did not use a fixed

amplitude criterion to measure the SPCN latency, as was done for

the N2pc, but instead we measured the time at which the SPCN,

in each N-1 waveform, reached half of its maximum (peak

amplitude) minus minimum (the junction between N2pc and

SPCN) amplitude. As suggested in Figure 3B, the SPCN latency

occurred earlier in the valid condition (355 ms) than in the invalid

condition (400 ms; Fadjusted(1, 15) = 32.89; p,.0001). Performing

the analysis on the original 40 Hz low-pass filtered waveform did

not change the significance of the result (Fadjusted(1, 15) = 33.04;

p,.0001). An analysis based on peak amplitude latency also

revealed a main effect of validity (F(1, 15) = 16.10, p..001).

The positive deflection in the SPCN time range in the no-target

difference wave (see Figure 3A) could have potentially increased the

SPCN latency difference between valid and invalid conditions. To

test this possibility, we further filtered the no-target difference wave

with a 3 Hz low-pass filter before correcting the valid and invalid

difference waves. Despite the fact that the severe filtering of the no-

target difference wave practically eliminated the positive deflection in

the SPCN time range, the difference in SPCN latency was still

significant between valid (355 ms) and invalid conditions (392 ms;

Fadjusted(1, 15) = 7.07; p,.018), indicating that the SPCN latency

difference was not artificially created by the subtraction method.

Using the recovered SPCN latency values, we performed a two-

tailed Pearson correlation between the SPCN latency effect and

the RT effect. Importantly, the correlation was significant

(r = .503, p,.047). A scatterplot of the SPCN latency effect and

the RT effect is shown in Figure 4 (panel B).

The scalp distributions of the SPCN are shown in Figure 5

(lower panels) for both the valid and invalid conditions. As for the

N2pc, we evaluated whether the scalp distributions of the SPCN

were typical and similar between conditions by normalizing the

activity centered on the component’s peak (mean amplitude in the

360–400 ms time-window in the valid condition and in the 410–

450 ms time-window in the invalid condition) according to the

procedure described by McCarthy and Wood [52], and posterior

Figure 4. Scatterplots of the A) N2pc latency effect and RT
effect, and of the B) SPCN latency effect and RT effect. Individual
N2pc and SPCN latencies were recovered from the jackknife values
according to the formula presented in the Methods section.
doi:10.1371/journal.pone.0003967.g004
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electrode pairs (O1/O2, PO3/PO4, PO7/PO8, P1/P2, P3/P4,

P5/P6, P7/P8, P9/P10) were submitted as a within-subject factor

in an ANOVA in which the second within-subject factor was

validity (valid vs. invalid). A Greenhouse-Geisser correction was

used for the estimation of F statistics. A main effect of electrode

(F(7, 105) = 3.16; p,.02) indicated that the SPCN was, as in

previous reports [17,18,53], different across these electrodes and

maximal at PO7/PO8 sites. No main effect of validity was

observed (F(1, 15) = 2.85; p..11). Importantly, the absence of any

validity6electrode interaction (F,1) suggests similar scalp distri-

butions in the valid and invalid conditions.

Discussion

The locus of the spatial cueing RT effect was investigated by

measuring the onset latency of two lateralized ERP components:

the N2pc, an index of visual selective attention, and the SPCN, an

index of visual-short term memory. The first important result was

that both the onset and the amplitude of the N2pc were unaffected

by cue validity, despite the fact that a larger P1 amplitude was

observed contralateral to the attended (cued) location. The

absence of any cueing effect on the N2pc is important for several

reasons. First, it replicates previous findings [54] and confirms that

the N2pc is not related to the shift of attention per se, but rather to

visual selection. Indeed, if the N2pc reflected (at least in part) the

shift of attention to the target location, then its amplitude should

have been attenuated in valid trials relative to invalid trials, since

attention should have been at the correct location at target onset in

valid trials, and therefore should not need to shift again in these

trials, contrary to invalid trials. Second, the N2pc results

demonstrate for the first time that although there was a clear

benefit for targets presented at the attended location rather than at

the unattended location, in terms of mean RT, the amplitude

change in the P1 component apparently does not translate in an

immediate acceleration of visual target selection, as indexed by the

N2pc, at least in conditions were target luminance is high, and the

selection cue is a pop-out color, as in this study. Indeed, it has been

demonstrated that both P1 amplitude and N2pc latency were

sensitive to target luminance [55]. Therefore, it still needs to be

tested whether sensory gain, as reflected by the P1 cueing effect,

Figure 5. Scalp distributions of the electrical potentials measured during the N2pc (230–270 ms for both the valid and invalid
conditions) and SPCN (360–400 ms in the valid condition and 410–450 ms in the invalid condition) time windows. The scalp
distributions were calculated on the basis of the corrected contralateral minus ipsilateral difference waves used to calculate the N2pc and SPCN, and
are thus symmetrical about the midline.
doi:10.1371/journal.pone.0003967.g005
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results in an N2pc latency shift in low target luminance conditions.

Nevertheless, the present results demonstrate that RT effects can

occur without N2pc latency effects, suggesting that the ‘‘spotlight’’

of attention, if there is such a thing, can move very quickly, as

thought it has no mass [56–58]. Also, the N2pc results further

reaffirms the notion that targets can pop-out of the visual display

in the sense that attention can jump to the appropriate location

very quickly under appropriate conditions. Finally, given that

target colors and distractor colors were equiluminant, and

counterbalanced across subjects, the fact that attention can find

the target location just as fast in invalid trials as in valid trials, is

consistent with recent work on contingent attentional capture,

which suggests that a critical component of attentional control lies

in top-down control settings that can bias how incoming signals

are amplitude-modulated, gated, and processed from very early to

later stages of processing [59–63].

In contrast to the N2pc, the SPCN, which had a typical scalp

distribution in both validity conditions, occurred earlier in valid

trials. Furthermore a positive correlation was observed between

cueing effects on SPCN latency and on RTs, suggesting that latency

differences that contribute to the predictive cueing RT effect occur at

(or before) transfer into visual short-term memory, where visual

information is encoded in a format that supports conscious report

[17,19,20,30,31], and is thought to be actively maintained in order

to perform fine analyses [27,28]. Previous studies have addressed

directly the question of whether the SPCN and N2pc are functionally

distinct [18,26,27,53], and all concluded that, although the scalp

topography of these components are very similar, they index distinct

cognitive processes (i.e., N2pc indexes visual selective attention and

SPCN indexes VSTM retention activity). The present results provide

an additional dissociation that further demonstrates that the N2pc

and SPCN are functionally distinct.

It is unlikely that the effect of cue validity on SPCN onset

latency was the consequence of differences in N2pc parameters,

such as timing variability or offset, which could have led to down

stream effects on the SPCN. Indeed, increased variability in the

timing of a component is reflected by what is termed ‘‘component

smearing’’. Smearing is characterized by a decrease in the

amplitude and an increase in the duration of the component (see

[47] for a detailed explanation). Results show that the amplitude of

the N2pc was not significantly different across valid and invalid

conditions. Although it is very difficult to measure N2pc offset in

this experiment, do to the overlap of the SPCN, Figure 3 suggests

that if there was a difference in the offset of the N2pc, it would

tend to occur later in the valid condition. Because there was no

difference in N2pc onset, a later offset would also mean increased

duration of the component in the valid condition. Therefore, if

there were any differences in overall variability, even though

significant differences in N2pc amplitude were not detected, the

variability would be larger (and the N2pc offset would be later) in

the valid than in the invalid condition. Logically, greater

variability and later offsets could lead to an apparent increase in

the onset latency of a following component, but not the contrary.

Therefore, if it is true that the variability and/or the offset of the

N2pc increased in the valid compared to the invalid condition, and

if these differences led to apparent downstream effects on the

SPCN, then we would predict that the SPCN, if anything, would

occur earlier in the invalid condition, which is opposite to what has

been observed.

Although transfer in visual short-term memory occurs relatively

late in the processing stream, it still takes place before decision

making. The present results therefore confirm that RT effects in

predictive cueing studies are not solely du to the biasing of the

participants decision criterion, as a purely late selection theory

would postulate. However, the present results do not rule out the

possibility that late decision related processes also contribute to the

RT effect.

Conclusion
The modulation of the P1 amplitude as a function of predictive

spatial cueing provides good evidence that attention had been

deployed at the cued location (whether valid or invalid). The fact

that the latency of the N2pc was the same for valid and invalid

trials suggests strongly that attention could be re-deployed quasi-

instantaneously, in invalid trials, to the target location following

the appearance of the target in the visual display, and therefore

that the time required to move attention could not explain the RT

cueing effect. However, the delay of the SPCN onset latency in

invalid trials reveal that following the re-deployment of attention,

the information flow into visual-short term memory, and thus

entry into consciousness, is delayed when the target appears at an

unattended location. In sum, the present results strongly suggest

that although predictive spatial cueing affects the amplitude of

early ERP components, such as the occipital P1, the stage(s) of

processing in which such early amplitude effects are translated into

latency differences that could explain the observed RT effects must

occur after visual selection processes giving rise to the N2pc, but at

or before transfer in visual short-term memory, as reflected by the

SPCN.
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