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Abstract

Except for viruses that initiate RNA synthesis with a protein primer (e.g., picornaviruses), most RNA viruses initiate RNA
synthesis with an NTP, and at least some of their viral pppRNAs remain unblocked during the infection. Consistent with this,
most viruses require RIG-I to mount an innate immune response, whereas picornaviruses require mda-5. We have examined
a SeV infection whose ability to induce interferon depends on the generation of capped dsRNA (without free 59 tri-
phosphate ends), and found that this infection as well requires RIG-I and not mda-5. We also provide evidence that RIG-I
interacts with poly-I/C in vivo, and that heteropolymeric dsRNA and poly-I/C interact directly with RIG-I in vitro, but in
different ways; i.e., poly-I/C has the unique ability to stimulate the helicase ATPase of RIG-I variants which lack the C-terminal
regulatory domain.
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Introduction

Virus infection elicits potent cellular responses that contain virus

spread before the adaptive immune system can intervene, and the

production of type I interferons (IFNa/b) is central to this process

[1,2]. The sensors involved in coupling recognition of virus

infection with the induction of IFNa/b have recently been

discovered. These sensors, or pattern recognition receptors (PRRs)

that recognize pathogen associated molecular patterns (PAMPs),

include RIG-I and mda-5, two cytoplasmic, RNA-binding DExD/

H box helicases (for recent reviews, see [3–5]. Both proteins

contain N-terminal CARD domains, followed by a DECH box

helicase. Both proteins also contain a C-terminal domain, which in

the case of RIG-I acts as an internal repressor or regulatory

domain (RD) that prevents the CARDs from interacting with their

downstream signaling adaptor, IPS-1 [6]. The binding of 59 tri-

phosphorylated RNA (pppRNA, which acts as a viral PAMP [7,8])

to the RD of RIG-I leads to its dimerization, which is thought to

stimulate the helicase ATPase and release the CARDs for

homotypic interaction with IPS-1 [9], the mitochondrial adaptor

of both RIG-I and mda-5. IPS-1 activation then leads to the

recruitment of a series of kinases which in turn leads to the

activation of IRF-3/7 and NF-kB and the expression of the early

IFN genes, such as IFNb.

When RIG-I was first described in the seminal paper of

Yoneyama et al [10], poly-I/C was proposed as its ligand based on

RIG-I over-expression. RIG-I deficient mice, however, were then

found not to be defective in their type I IFN response to poly-I/C

[11], whereas they were unable to mount an innate immune

response to most RNA viruses other than picornaviruses like

EMCV (e.g., Influenza A virus, VSV, JEV and Sendai virus (SeV)

[12]. Mda-5 deficient mice, in contrast, were found to be entirely

unable to mount a type I IFN response to poly-I/C and to EMCV

infection [12,13]. The role of these two helicases in the innate

immune response to virus infection was thus found to be

remarkably specific. Using cell lines derived from these mice,

mda-52/2 MEFs were found to activate IFN genes in response to

various transfected dsRNAs made from complementary pppRNAs

transcribed in vitro, whereas these MEFs did not respond to poly-I/

C. In contrast, RIG-I2/2 MEFs activated IFN genes in response

to transfected poly-I/C, but these MEFs did not respond to

dsRNAs made from in vitro transcripts [12,13]. Subsequently,

ssRNA transcribed in vitro was also found to be a ligand for RIG-I,

and its ability to induce IFN upon transfection depended on the 59

triphosphate moiety of the ssRNA [7,8]. Thus, RIG-I was thought

to act as a PRR exclusively for pppRNA (independent of its single-

or double-strandedness), and mda-5 for poly-I/C, or more

realistically for the RNA elements of picornavirus infection that

are mimicked by poly-I/C.

RIG-I and mda-5 are thus thought to recognize different RNA

ligands (pppRNA and poly-I/C or dsRNA, respectively) that act as

PAMPs, which presumably accounts for the virus-specific response

of these helicases. This is consistent with our view of RNA virus

replication. Except for picornaviruses (and caliciviruses) that

initiate all RNA synthesis with a protein primer; the other RNA

viruses initiate all RNA synthesis with an NTP, and at least some

of the viral pppRNAs remain unblocked during the infection (e.g.,

the minus-strands of plus-strand and dsRNA viruses) [14]. Thus,

except for picornaviruses (and possibly caliciviruses), cells require

RIG-I (and not mda-5) to activate IFNb in response to other RNA

virus infections. In order to test this contention, we have designed

a SeV infection that generates dsRNA with capped 59 ends [15] to

examine whether this SeV infection requires mda-5 rather than

RIG-I to activate IFNb. Remarkably, this dsRNA-generating SeV
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co-infection also requires RIG-I [and not mda-5] to activate IFNb.

This study also provides evidence that RIG-I binds dsRNA devoid

of free 59 tri-phosphate ends, and that poly-I/C is not a simple

analog of dsRNA; i.e., poly-I/C has the unique ability to stimulate

the helicase ATPase of RIG-I variants which lack the C-terminal

regulatory domain.

Materials and Methods

Cells, viruses, and antibodies
RIG-I2/2 and mda-52/2 MEFs were obtained from H Kato

and S Akira, Osaka, Japan [11,12]. All cells were grown in

Dulbecco’s modified Eagle’s medium supplemented with 10%

fetal calf serum.

SeV-GFP(+), which expresses green fluorescent protein (GFP)

from a transgene between the M and F genes, and SeV-GFP(2),

which expresses antisense GFP mRNA from a similarly located

transgene, were prepared as previously described [16]. DI-H4

stocks were described previously [17].

Primary antibodies used included anti-Flag MAb (F1804;

Sigma), rabbit anti-mda-5 and mouse anti-Rig-I (J. Tschopp,

Lausanne, Switzerland). Rabbit anti-RIG-I which reacts with both

the human and murine helicases was provided by S. Akira (Osaka,

Japan).

Plasmids, transient transfections, infections, inductions,
and luciferase assay

Flag-tagged RIG-I, and mda-5 were obtained from Klaus

Conzelmann (Munich) and Jurg Tshopp (Lausanne). Mda5-

DCARD was obtained from S Goodbourn (London). N-terminal

deletion mutants of RIG-I (residues 242–925) were constructed by

PCR amplification with mutagenic sense primers that introduced a

Kpn I site and a met codon in lieu of phe241. C-terminal deletion

mutants were constructed with antisense primers that introduced a

stop codon and a Kpn site in lieu of Pro 797. The PCR products

were digested with kpn and then inserted into pEF-BOS (kindly

provided by J. Tschopp). The inserts of the resulting pEF-BOS

Rig-I plasmids were confirmed by sequencing.

pb-IFN-fl-lucter, which contains the firefly luciferase gene under

the control of the human IFN-b promoter, was described

previously [18]. pTK-rl-lucter, used as a transfection standard,

contains the herpes simplex virus TK promoter region upstream of

the Renilla luciferase gene (Promega).

Transfections. 100,000 cells were plated into six-well plates

20 h before transfection with 1.5 mg of pb-IFN-fl-lucter; 0.5 mg of

pTK-rl-lucter; 1 mg of plasmids expressing RIG-I and MDA-5;

1.5 mg of plasmids expressing RIG-DCARD, Mda-DCARD (as

indicated); and TransIT-LT1 transfection reagent (Mirus). At 24 h

posttransfection, the cells were (or were not) infected with various

SeV stocks or transfected with 5 mg of poly(I-C) using TransIT-

LT1 transfection reagent. Twenty hours later, cells were harvested

and assayed for firefly and Renilla luciferase activity (dual-luciferase

reporter assay system; Promega). Relative expression levels were

calculated by dividing the firefly luciferase values by those of

Renilla luciferase.

Immunoblotting. Cytoplasmic extracts were prepared using

0.5% NP-40 buffer. Equal amounts of total proteins were

separated by SDS-PAGE and transferred onto Immobilon-P

membranes by semi-dry transfer. The secondary antibodies used

were alkaline phosphatase-conjugated goat anti-rabbit (or mouse)

immunoglobulin G (Bio-Rad). The immobilized proteins were

detected by light-enhanced chemiluminescence (Pierce) and

analyzed in a Bio-Rad light detector using Quantity One software.

Recombinant RIG-I cloning and expression. The open

reading frame of human RIG-I was amplified by PCR using

primers designed to introduce a HindIII site upstream of the start

codon and a XhoI site downstream. The PCR products were

digested and then inserted between the same sites of pET28-

His10Smt3, to fuse the RIG-I proteins in-frame with an amino-

terminal His10Smt3 domain. RIG-I (1–796) was constructed with

an antisense primer that introduced a stop codon in place of

pro797 and a XhoI site. RIG-I (242–796) was constructed with

sense primer that introduced a HindIIII site upstream of

lys241and the antisense primer used above. The K270A

mutation was introduced by a PCR-based two-stage overlap

extension method. The plasmid inserts were sequenced completely

to ensure that unwanted mutations during amplification and

cloning had not occurred.

The pET28-His10Smt3-Tgs1 plasmids were transformed into E.

coli BL21. Cultures (500 ml) derived from single transformants

were grown at 37uC in LB medium containing 50 mg/ml

kanamycin until the A600 reached 0.6. The cultures were adjusted

to 0.2 mM IPTG and 2% ethanol and incubation was continued

for 20 h at 17u. Cells were harvested by centrifugation and stored

at 280uC. All subsequent procedures were performed at 4u.
Thawed bacteria were resuspended in 25 ml of buffer A (50 mM

Tris-HCl, pH 8.0, 200 mM NaCl, 10% glycerol) and one tablet of

protease inhibitor cocktail (Roche) and lysozyme (100 mg/ml) were

added. After incubation for 30 min, imidazole was added to a final

concentration of 5 mM and the lysate was sonicated to reduce

viscosity. Insoluble material was removed by centrifugation. The

soluble extracts were mixed for 30 min with 1.6 ml of Ni2+-NTA-

agarose (Qiagen) that had been equilibrated with buffer A

containing 5 mM imidazole. The resins were recovered by

centrifugation, resuspended in buffer A containing 5 mM

imidazole, and poured into columns. The columns were washed

with 8 ml of 10 and 20 mM imidazole in buffer A and then eluted

step-wise with 2.5 ml aliquots of buffer A containing 50, 100, 250,

and 500 mM imidazole. The elution profiles were monitored by

SDS-PAGE. The 250 mM imidazole eluates containing the

recombinant RIG-I polypeptides were dialyzed against 50 mM

Tris-HCl, pH 8.0, 200 mM NaCl, 2 mM DTT, 1 mM EDTA,

10% glycerol and then stored at 280uC. The protein concentra-

tion was determined using the Bio-Rad dye binding method with

BSA as the standard.

qRT/PCR of endogenous IFNb mRNA
RNA was extracted from cell lysates with TRIzol reagent

(Invitrogen) and reverse transcribed with random hexamers

(Roche) and Reverse Transcriptase Superscript II (Invitrogen)

according to manufacturer’s instructions. The cDNA was then

amplified using a TaqManH 7500 (Applied Biosystems) thermo-

cycler. Results were analysed using the SDS 1.4 programme

(Applied Biosystems). 18S rRNA primers and probe sequences

used were as described previously [15]. Murine beta IFN primers

and probes used were as described in [19].

In vitro synthesis of RNA, purification, and

transfection. DNA for T7 RNA polymerase synthesis of

model RNA1 was prepared by PCR using the following partially

complementary primers: 59-TAATACGACTCACTATAgggAC-

ACACCACAACCAACCCACAAC-39 (forward) (start sites are in

lowercase type) and 59-GAAAGAAAGGTGTGGTGTTGG-

TGTGGTTGTTGTGGGTTGGTTGTGG-39 (reverse). Transcri-

ption was performed on 100 pmol of purified PCR product using

T7 MEGAshortcript from Ambion, according to the

manufacturer’s instructions. Biotinylated RNA1 was synthesized

using equal amounts of 59 biotin-UTP and UTP. The T7

IFNb Activation
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transcripts were purified on NucAway Spin columns from Ambion

(to remove unincorporated nucleotides).

For RNA transfection, RNA was transfected into MEFss using

TransMessenger transfection reagent (QIAGEN).

The various homo-polymers were from Sigma. 59 OH

chemically synthesized Tr41 (the first 41 nt of the SeV trailer

RNA) and its complement, as well Tr41 with a 39 C12 extension

(539mer) were purchased from MicroSynth. TransIT-LT1 trans-

fection reagent was from Mirus.

pppssRNA beads
Streptavidin agarose beads (Fluka 85881) were pre-equilibrated

with Blocking buffer, i.e., Base buffer (20 mM Hepes pH 7.9,

2 mM EDTA, 15% glycerol, 0.05% NP40, 50 mM NaCl, 500

unit/ml RNasin (Promega N2515), 0.02 mg/ml tRNA (Roche

10109495001), 1% protease inhibitor cocktail (Sigma P8340) and

2 mM DTT) plus 100 mM NaCl, another 100 unit/ml RNasin,

0.1 mg/ml glycogen and 2.5 mg/ml BSA, for 2 hours at 4uC.

Biotinylated RNA was bound to the beads in Base buffer for

2 hours at 4uC. Beads to which 1.5 ug of RNA were added were

used for each assay.

Results

SeV Infections of RIG-I2/2 and mda-52/2 MEFs
Unnatural SeV infection is commonly used to induce IFN, as wt

SeV infection induces IFN very poorly [17]. This is because the wt

SeV genome expresses C and V proteins which counteract the

innate immune response in several ways, most notably by their

ability to inhibit IFN activation by transfected pppRNA and poly-

I/C [15]. The extent to which IFNb is activated during SeV

infection presumably depends both on the level of the RNA

PAMPs produced and that of the viral products that counteract

the innate immune response. For mononegaviruses whose genome

and antigenome RNAs are tightly covered with N protein during

their synthesis (and thus are unlikely to act as PAMPs), small

promoter-proximal (leader and trailer) ppp RNAs are made

independent of assembly with N [15,20,21]. These promoter-

proximal ppp RNAs are essential for the control of genome

replication. Viral dsRNA could also be generated by the annealing

of trailer pppRNA and L mRNA read-thru transcripts. During wt

SeV infection of non-immune cells, the activity of both PAMPs is

presumably neutralized by the viral C proteins [15]. Akira and

coworkers have previously used SeV-Cminus infection to induce

IFN [12]. The SeV which is more commonly used to induce IFN

(‘‘Cantell strain’’) is in fact a mixed virus stock composed mostly of

copyback defective-interfering (DI) genomes, and this DI infection

both under-produces the C and V proteins and overproduces

trailer pppRNA. In addition, because some of the copyback DI

genomes are exceedingly small (546 nt vs 15,264 for wt), some of

these genomes may also be made without being assembled with N

[17]. If so, these unassembled DI genomes would self-anneal to

form pppdsRNA panhandle structures because their ends are self-

complementary [22]. Thus, both pppssRNA and pppdsRNA (i.e., in

which one strand contains a 59 tri-phosphate end) are thought to

induce IFNb activation during SeV-Cminus and DI infections.

More recently, we have also used quasi-wt SeV co-infections

that express GFP mRNA and anti-GFP mRNA (from separate

genomes) to activate IFNb [15]. The ability of this co-infection to

induce IFN depended on the presence of both complementary

GFP mRNAs in the cytoplasm, and RFP mRNA expression could

not substitute for one of the GFP mRNAs. IFNb activation

induced by the GFP+/2 co-infection thus presumably results from

the generation of GFP dsRNA in which both 59 ends are capped.

Moreover, this IFNb activation also appeared to depend on RIG-

I, as a dominant-negative form of RIG-I (RIG-I-DCARD)

inhibited this response. However, the precise manner in which

RIG-I-DCARD acts as a dominant-negative inhibitor of RIG-I is

not known, and this mutant helicase may be acting non-specifically

when over-expressed.

To further investigate the helicase requirement for the GFP+/2

infection, RIG-I2/2 and mda-52/2 MEFs were transfected with

plasmids expressing luciferase under the control of the IFNb
promoter (and control plasmids), and then infected with SeV DI-

H4 or GFP+/2 stocks. Cells extracts were prepared at 20 hpi and

their luciferase activities were determined. As shown in fig 1A,

neither infection of RIG-I2/2 MEFs activated the IFNb promoter

above background levels. When RIG-I was re-expressed in these

cells by transfection (along with the reporter plasmids), this

restored the ability of both infections to activate IFNb. In contrast,

the DI-H4 and GFP+/2 infections of mda-52/2 MEFs activated

Figure 1. SeV infection of RIG-I2/2 and mda-52/2 MEFs. RIG-I2/2

(panel A) and mda-52/2 MEFs (panel C) were transfected with pIFNb-
(ff)luciferase and pTK-(ren)luciferase, plus and minus pEBS-Flag-RIG-I
and pEBS-Flag-mda-5, respectively. Parallel cultures were then mock-
infected, or infected with either 20 pfu/cell of SeV-GFP+ and SeV-GFP2
(GFP+/2), or an equivalent amount of SeV-DI-H4 (H4) in duplicate at
24 h post-transfection. Cell extracts were prepared at 20 h.p.i. and their
luciferase activities were determined. This experiment was repeated
twice with similar results. Wild-type MEFs were also transfected with
pEBS-Flag-RIG-I and pGFP. At 24 hpt, some of the cells were analyzed
by FACS to determine the fraction expressing GFP. Cell extracts were
prepared at this time and Western blotted with antisera that recognize
both the human and murine forms of RIG-I (panel B).
doi:10.1371/journal.pone.0003965.g001
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the IFNb promoter in both cases. The re-expression of mda-5 in

these cells roughly doubled their response to the GFP+/2

infection, but did not stimulate their response to the DI-H4

infection (fig 1C). Thus, the presence of RIG-I is essential for IFNb
activation during GFP+/2 infection that generate capped-

dsRNA, as well as during DI-H4 infections. In contrast, the

presence of mda-5 is not essential, but can stimulate IFNb
activation in response to capped dsRNA in mda-52/2 cells.

To determine the levels of RIG-I generated by transfection

relative to those of the endogenous helicase in MEFs, wt MEFs

were also transfected with (human) p-Flag-RIG-I (and pGFP as a

transfection indicator) under identical conditions as in panels A

and C. Cell extracts were then Western blotted with an antibody

that reacts with both human and murine RIG-I. This estimation of

RIG-I levels is also more informative in wt MEFs because they are

efficiently transfected (ca 50%), in contrast to the helicase-deficient

MEFs that are poorly transfected (,5%). As shown in panel B, the

level of flag-RIG-I expressed by transfection (the upper band of

the doublet) is estimated to be 50–100% as strong as the

endogenous band. Given that 48% of these wt MEFs were

transfected (as indicated by GFP expression), Flag-RIG-I is

expressed under these condition at levels that are 1 to 2 times

those of the endogenous helicase (assuming that our anti-RIG-I

reacts equally with both forms of the helicase).

Interaction of RIG-I with poly-I/C in vivo
We would of course like to confirm that RIG-I also senses dsRNA

without 59 tri-phosphate ends, by examining whether capped GFP

dsRNA (from SeV infected cells) activates IFNb upon transfection.

SeV infected cells, however, will also contain viral leader and trailer

Figure 2. The effect of CARD-less forms of RIG-I and mda-5 on pppRNA and poly-I/C induced IFNb activation. Parallel cultures of wt MEFs
were transfected with pIFNb-(ff)luciferase and pTK-(ren)luciferase, plus and minus either pEBS-RIG-I-DCARD (residues 242–925) or pEBS-mda-5-DCARD
(residues 197–1025). 24 h later, these cells were transfected in duplicate with either 3 ug ppp(ss)RNA1 (panel A) or 5 ug of poly-I/C (panel B). Cell
extracts were prepared after a further 20 h, and their luciferase activities were determined. Equal amounts of cell extracts (total protein) were Western
blotted with anti-flag and anti-mda-5. Cross-reacting host bands (h) serve as an internal loading control.
doi:10.1371/journal.pone.0003965.g002
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pppssRNAs, and pppdsRNAs (made from trailer RNA and L mRNA

read-through transcripts), and determining the level of purity of the

GFP dsRNA is problematic. We have also tried to prepare such

capped dsRNA by capping GFP transcripts (made in vitro) with the

vaccinia virus guanylyl transferase, but we were unable to cap more

than 70% of each strand. Natural dsRNA that can be obtained in

pure form, like reovirus RNA, contains a free 59 tri-phosphate

(minus-strand) end. We therefore turned to poly-I/C that contains

59 di-phosphate ends, as model RNAs containing these 59 ends were

found not to activate RIG-I [8].

We examined the possible interaction of poly-I/C and RIG-I in

MEFs using helicases that lack their N-terminal CARDs, which

appear to act as dominant-negative inhibitors of the helicases. For

example, over-expression of the tandem CARDs of RIG-I alone

induce IFN independently of the presence of viral RNA,

suggesting that the CARDs mediate IPS-1 activation and

downstream signaling [10]. Mutation of the RIG-I ATP binding

site abolishes RIG-I activity, suggesting that ATP and RNA-

dependent conformational changes are essential for sensing viral

RNA [10]. Finally, over-expression of the RIG-I RD alone inhibits

RIG-I signaling in response to SeV DI infection, by apparently

interfering with the oligomerization of wt RIG-I [6]. RIG-I-

DCARD could then act as a dominant-negative inhibitor of RIG-I

because of its ability to bind viral RNAs and oligomerize with wt

RIG-I, but this mixed oligomer would not activate IPS-1. Less is

known about the manner in which mda-5 signals to IFNb.

When IFNb activation in MEFs in response to transfected

pppssRNA or poly-I/C is compared, this activation is largely

inhibited by the co-expression of RIG-I-DCARD in both cases

(fig 2). In contrast, the co-expression of mda-5-DCARD has no

effect on the activation induced by pppssRNA, and a mimimal

effect on that induced by poly-I/C. This does not appear to be

because mda-5-DCARD is inactive, or because RIG-I-DCARD is

acting non-specifically. When the CARD-less helicases are

expressed in RIG-I2/2 MEFs in which mda-5 is (or is not)

expressed by transfection, mda-5-DCARD clearly inhibits the

poly-I/C induced activation due to the (over-)expressed mda-5,

whereas RIG-I-DCARD does not at all inhibit this activation that

is exclusively due to the presence of mda-5 (fig 3A). In contrast,

when the CARD-less helicases are expressed in RIG-I2/2 MEFs

Figure 3. Effect of CARD-less helicases on poly-I/C induced IFNb activation. Parallel cultures of RIG-I2/2 MEFs were transfected with pIFNb-
(ff)luciferase and pTK-(ren)luciferase. Some of the cultures were (or were not) transfected with plasmids expressing mda-5 (panel A; +mda-5 and ctrl)
or RIG-I (panel B; +RIG-I and ctrl), along with plasmids expressing RIG-I-DCARD or mda-5-DCARD as indicated at the bottom of each panel. 24 h later,
the cultures were transfected in duplicate with 5 ug of poly-I/C, as imdicated. Cell extracts were prepared after a further 20 h, and their luciferase
activities were determined.
doi:10.1371/journal.pone.0003965.g003
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in which RIG-I is (or is not) expressed, mda-5-DCARD now does

not inhibit (but rather stimulates) the poly-I/C induced activation

due to the (over-)expressed RIG-I, whereas RIG-I-DCARD clearly

inhibits this activation in the presence of both helicases (fig 3B).

Thus, mda-5-DCARD does indeed act as an inhibitor of poly-I/C

induced IFNb activation, but only when this activation is due

exclusively to mda-5. When both helicases are present, it is RIG-I-

DCARD (and not mda-5-DCARD) that inhibits poly-I/C induced

IFNb activation.

Although the helicase-deficient MEFs transfect poorly with

plasmid DNA, they appear to be more efficiently transfected with

either relatively small poly-I/C (400 bp on average) or pppRNA

(55 nt)(fig 4). When RIG-I2/2 MEFs are transfected with poly-I/

C or pppRNA, the level of endogenous IFNb mRNA increases only

in response to poly-I/C as expected (fig 4A), as mda-5 does not

respond to pppRNA [12]. The increased IFNb mRNA apparently

leads to the secretion of IFN, as pretreatment of wt MEFs with the

supernatants from the above experiment efficiently prevented the

growth of VSV-GFP in these cells only when poly-I/C had been

transfected (fig 4C). In contrast, when mda-52/2 MEFs are

transfected with poly-I/C or pppRNA, the level of endogenous

IFNb mRNA increases in response to poly-I/C as well as to

pppRNA (fig 4B), and the supernatants from both these

transfections have the capacity to inhibit VSV-GFP replication

when used to pretreat other MEFs (fig 4D). These results further

indicate that RIG-I responds to poly-I/C as well as to pppRNA.

We also examined whether the level of IFNb activation was

proportional to that of RIG-I expression in RIG-I2/2 MEFs.

Increasing amounts of RIG-I were expressed in these cells, which

were then subsequently transfected with either pppssRNA or poly-

I/C. Expression of increasing amounts of RIG-I had little or no

effect on IFNb activation in the absence of transfected RNA (none,

fig 5). In the presence of transfected RNA, the level of IFNb
activation was indeed proportional to that of RIG-I expression for

both poly-I/C and pppssRNA, and poly-I/C was, remarkably, half

as efficient as pppssRNA. Although it is possible that the combined

effect of poly-I/C and increasing RIG-I levels act indirectly to

increase IFNb activation (e.g., by increasing mda-5 levels), the fact

that this increase in IFNb activation depends on the presence of

both poly-I/C and increased RIG-I suggests that RIG-I can

interacts with poly-I/C in vivo.

Interaction of poly-I/C and RIG-I in vitro
DExH/D box helicases share 7 conserved sequence motifs that

mediate ATP and nucleic acid binding [23]. Nucleic acid binding

stimulates the helicase ATPase and results in a conformational

power stroke [24]. ATP binding is essential for RIG-I signaling,

but the mechanistic role of the ATPase activity in RIG-I signaling

to IFNb is unclear. RIG-I is required for non-immune cells to

mount an IFN response to SeV-Cminus and DI-H4 infections,

which presumably express different levels of pppssRNA and

pppdsRNA. RIG-I is also required for non-immune cells to mount

an IFN response to capped dsRNA (i.e., without any free 59 tri-

phosphate ends). Consistent with these results, the RIG-I ATPase

is stimulated not only by pppssRNA, but also by several dsRNAs,

including those made by annealing chemically synthesized

complementary RNAs (dsRNA-tr41, containing two 59-OH

ends)(fig 6C), bluetongue (reo)virus dsRNA (BTV RNA; 10

segments ranging from ca. 400 to 4000 bp, which contain one

capped and one 59-ppp end) (fig 6D), and poly-I/C, poly-G/C and

Figure 4. Poly-I/C and pppRNA induced activation of endogenous IFNb in helicase-deficient MEFs. RIG-I2/2 (panel A) and mda-52/2 MEFs
(panel B) were transfected with either 5 ug of poly-I/C, 3 ug of pppRNA1 (55 nt) or empty transfection mix (ctrl) as indicated. Cell extracts were
prepared at 20 hpt, and the relative levels of endogenous IFNb mRNA were determined by qRT/PCR (Methods). The cell supernatants of the
transfected cells were also harvested at this time, and used to pretreat wt MEFs for 12 h before infection with VSV-GFP. The VSV infected cells were
harvested at 12 hpi and analyzed by FACS for GFP expression (panels C and D).
doi:10.1371/journal.pone.0003965.g004
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poly-A/U (all originally containing 59-pp ends)(fig 6E and data not

shown). In contrast, the RIG-I ATPase is not stimulated by

chemically synthesized OHssRNA (data not shown) [9]. Cui et al

have reported that pppssRNA is much more efficient in stimulating

wt RIG-I (1–925) ATPase than OHdsRNA. This difference is less

pronounced, but clear in fig 6B and C.

Two groups have recently reported that the RD of RIG-I alone

binds pppssRNA, in a shallow, positively-charged groove [9,25].

These two studies were largely in agreement, but differed in that the

RD in one case also bound relatively short OHdsRNA (25 bp)[25],

whereas that of Cui et al did not interact with OHdsRNA (50 bp)

even though the ATPase of a RIG-I variant lacking the CARDs was

clearly stimulated by OHdsRNA [9]. We have used streptavidin

beads containing biotinylated pppssRNA to study RNA/RIG-I

interaction. As shown in fig 7, RIG-I binds to pppssRNA beads (lanes

‘‘none’’ (no competitor) vs bald beads). As expected, this binding can

be efficiently out-competed with an excess of unmodified pppssRNA

(559mer, top panel), but the same amount of OHssRNA (419mer, top

and middle panels), poly-I or poly-C (middle panel) had no effect.

More importantly, RIG-I binding to pppssRNA can be efficiently

out-competed with relatively short OHdsRNA (41 bp, bottom panel)

under conditions where an equal amount of OHssRNA (419mer or

539mer (bottom panel)) has no effect. Poly-I/C also competed with

the binding of RIG-I to pppssRNA (middle panel). Thus, the binding

of short OHdsRNA or poly-I/C and pppssRNA to RIG-I appear to

be mutually exclusive, either because their binding sites on RD

overlap [25], or because OHdsRNA binds to the helicase core in an

RD-dependent manner. This latter possibility is suggested by the

finding that the ATPase of a RIG-I variant lacking RD (residues 1–

793) could not be stimulated by either pppssRNA or OHdsRNA [9].

We have repeated and extended these ATPase studies, using

RIG-I-DRD (in this case residues 1–796) and RIG-I-DCARD/

DRD (242–796), as well as full-length (wt) RIG-I (1–925). As a

negative control, we examined RIG-I containing a mutation in the

Walker A box of the helicase ATP binding site (RIG-I-K270A).

We find that the RIG-I-DRD ATPase is essentially inactive with

not only pppssRNA and OHdsRNA, but is inactive as well with

poly-G/C, poly-A/U and BTV dsRNA (closed circles, fig 6, and

data not shown). Unexpectedly, we found that the RIG-I-DRD

ATPase was nevertheless clearly stimulated by poly-I/C (albeit not

as efficiently as wt RIG-I; fig 6E). In addition, the RIG-I-

DCARD/DRD ATPase was hyper-stimulated by poly-I/C as

compared to that of wt RIG-I (fig 6E). These latter results rule out

the possibility that the RIG-I ATPase somehow requires the

presence of the RD for its activity. These results are thus more

consistent with the binding of pppssRNA and OHdsRNA to

overlapping sites on RD. It is also possible that the binding of

OHdsRNA to RD is helped more by its simultaneous interaction

Figure 5. Effect of increasing RIG-I expression on RNA-induced IFNb activation. Parallel cultures of RIG-I2/2 MEFs were transfected with
pIFNb-(ff)luciferase and pTK-(ren)luciferase. Some of the cultures were transfected with increasing amounts of plasmids expressing RIG-I. 24 h later,
the cultures were transfected in duplicate (or not (none)) with either 3 ug ppp(ss)RNA1 or 5 ug of poly-I/C. Cell extracts were prepared after a further
20 h, and their luciferase activities were determined. Equal amounts of cell extracts (total protein) were Western blotted with anti-RIG-I. Cross-
reacting host bands (h) serve as an internal loading control. The intensities of the RIG-I bands were determined by densitometry and their relative
values (RIG-I levels) are plotted above. The insert above shows a blow-up of the IFNb activation in the absence of any RIG-I.
doi:10.1371/journal.pone.0003965.g005
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with the helicase core than the binding of pppssRNA to RD. In

summary, the ability of poly-I/C to stimulate the ATPase of RIG-I

is clearly different from that of heteropolymeric dsRNA. It appears

that poly-I/C has the unique ability to bind to both the helicase

domain and the RD, and can stimulate the helicase ATPase

independently of the RD.

Stimulation of the RIG-I ATPase is necessary but
insufficient for IFNb activation in vivo

Given that the RIG-I-DRD ATPase is stimulated by poly-I/C,

we examined whether poly-I/C could activate IFNb in vivo via this

variant of RIG-I. When additional wt RIG-I was expressed in wt

MEFs, IFNb activation in response to a fixed amount of poly I/C

increased ca. 3-fold (fig 8). However, when additional RIG-I-DRD

or RIG-I-DCARD/DRD was expressed, there was little or no

effect on poly-I/C induced IFNb activation. When additional

RIG-I-DCARD was expressed, this variant acted as a dominant-

negative inhibiter of poly-I/C induced IFNb activation, as

expected. Similar results were obtained when pppssRNA, rather

than poly-I/C was used to induce IFNb activation (data not

shown). Thus, stimulation of the ATPase is necessary but not

sufficient for poly-I/C induced IFNb activation. These results are

consistent with the finding that the RD is required for RIG-I self-

association, and that this self-association is required for down-

stream signaling [6,9]. The finding that poly-I/C also competed

with the binding of RIG-I to pppRNA (which clearly binds to the

RD)(fig 7) suggests that poly-I/C binds to both the helicase core

and the RD. These latter results are consistent with the

demonstration that the binding of pppRNA or short dsRNA to

RIG-I protects a 17kD fragment from trypsin digestion (essentially

the entire RD), whereas the binding of poly-I/C produces a 66 kD

fragment of the helicase core and the RD [25].

Figure 6. ATPase activity of RIG-I variants. (A) Samples (5 mg) of the dialyzed nickel-agarose fractions of wt Rig-I (1–925), Rig-I-DRD (1–796), Rig-
I-DCARD/DRD (242–796), and Rig-I-K270A were electrophoresed on a 10% SDS gel and visualized by Coomassie blue staining. The positions of marker
proteins are indicated on the left. (B to E) Effect of various RNAs on ATPase activity. Reaction mixtures (15 ml) containing 50 mM Tris–acetate
pH 6.0, 5 mM DTT, 1.5 mM MgCl2, 500 mM [c-32P]ATP, increasing amounts of either ppp-ssRNA (panel B), dsRNA-tr41 (panel C), BTV dsRNA (panel D),
or poly-I/C (panel E) as indicated, and 200 ng of recombinant proteins were incubated for 15 min at 37u. The reactions were quenched by adding
3.8 ml of 5 M formic acid. Aliquots (3 ml) of the mixtures were applied to a polyethyleneimine–cellulose thin-layer chromatography (TLC) plates and
developed with 1 M formic acid and 0.5 M LiCl. 32PO4 release was quantified with a phosphorimager. The results are plotted as a function of RNA
concentration.
doi:10.1371/journal.pone.0003965.g006
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Discussion

The dsRNAs generated during nondefective SeV infection (due

to convergent transcription) or to copyback DI infection (due to

intramolecular annealing of the DI genome’s complementary

ends) would both contain one 59 tri-phosphate end. As RIG-I is

thought to be activated by pppRNA independent of its single- or

double-strandedness [7,8], the finding that IFNb activation during

SeV Cminus and DI-H4 infections require RIG-I was not

unexpected. dsRNA devoid of free 59 tri-phosphate ends, however,

is normally found only during (e.g., picornavirus) infections that

initiate RNA synthesis with protein primers, and these infections

activate IFNb via mda-5 rather than RIG-I. The finding that SeV-

GFP+/2 infections also requires RIG-I (and not mda-5; figs 1 and

2) was thus not expected. This latter finding, however, is consistent

with the recent report that pppssRNA and short OHdsRNA bind to

overlapping sites of the RIG-I RD, and that short dsRNAs will

activate IFNb via RIG-I upon transfection if they contain 59

mono-phosphates that apparently stabilize the dsRNAs intracel-

lularly [25]. We have confirmed that short OHdsRNA competes

with pppssRNA for its binding to RIG-I, whereas OHssRNA is

inactive (fig 7).

Even though it has been reported that RIG-I by itself does not

respond to poly-I/C in mda-52/2 MEFs [12,13], especially when

poly-I/C of 4–8 kbp in length is used [26], this does not exclude

the possibility that RIG-I participates in the cellular response to

poly-I/C when both helicases are present, or that RIG-I can

directly respond to poly-I/C when RIG-I levels are elevated.

When RIG-I levels are gradually increased in MEFs, the level of

IFNb activation is proportional to that of RIG-I expression in

response to either poly-I/C or pppssRNA (fig 5). There is other

indirect evidence that RIG-I participates in the poly-I/C induced

IFNb activation when both helicases are present. For example,

whereas Huh 7 cells respond well to poly-I/C, a sub-line of these

cells containing an incapacitating mutation in a CARD of RIG-I

(Huh 7.5 cells) has lost most of its response to this dsRNA [27]. In

addition, even though the ability of paramyxovirus V proteins

(including that of SeV) to bind mda-5 and prevent poly-I/C

induced signaling is well documented [28,29], it is the SeV C

protein (that inhibits RIG-I signaling) and not the SeV V protein

which acts to inhibit the cellular response to poly-I/C in a SeV

infection [15].

We found that both short dsRNAs containing two 59 OH ends

(dsRNA-tr41) and BTV (reovirus) dsRNAs stimulate the RIG-I

ATPase in vitro almost as efficiently as pppssRNA (fig 6).

Unexpectedly, we also found that poly-I/C stimulated the ATPase

of RIG-I variants lacking the C-terminal RD, in strong contrast to

either pppssRNA or heteropolymeric dsRNA (fig 6). Poly-I/C is an

unusual dsRNA, composed of complementary homopolymers, and

one strand being composed of the rare base inosine. Poly-I/C has

been the transfected dsRNA of choice to study IFN induction for

many years, not only because it is commercially available, but

because it works so well. It has been known for decades that poly-

I/C has a special ability to induce IFN [30]. Using DEAE-dextran

to transfect various dsRNAs into chick embryo fibroblasts, the

efficiency of IFN induction of poly-I/C was found to be orders of

magnitude greater than that of poly-G/C or poly-A/U. Moreover,

these differences in activity among the various polynucleotides did

not appear to reflect differences in their thermal stability,

sensitivity to RNase A, the rate or amount of uptake into the

cells or in the rate of intracellular breakdown. Colby and

Chamberlin (1969) presciently concluded that the high degree of

specificity of the induction process was consistent with the

existence of a specific intracellular receptor, most probably a

protein. One of the possible reasons for the remarkable ability of

poly-I/C to induce IFN may be because, unlike other dsRNAs or

pppssRNAs, it can directly bind to both the RIG-I helicase domain

as well as to mda-5, stimulating their ATPases and inducing the

conformational changes that liberate the CARDs for interaction

with IPS-1. At present, there is no clear understanding of the RNA

elements of poly-I/C that mimic the PAMPs generated during

mouse picornavirus infections, or why poly-I/C alone among

various dsRNAs stimulates the RIG-I-DRD ATPase. However, it

is becoming increasingly clear that poly-I/C is not a simple analog

of dsRNA.

While this work was being prepared for publication, Kato et al

[26] reported that the length of dsRNA is important for differential

recognition by RIG-I and mda.5. Long poly-I/C (4–8 kbp) was

found to be a specific ligand for mda-5, whereas relatively short

poly-I/C (300 bp) was a specific ligand for RIG-I. We have

examined the length of our poly-I/C by agarose gel electropho-

resis and found that it was relatively short (200–600 bp relative to

DNA markers), and the maximum length of our GFP dsRNA

would be 714 bp. Our results are thus consistent with those of

Kato et al.
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