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Abstract

Background: With the arrival of the postgenomic era, there is increasing interest in the discovery of biomarkers for the
accurate diagnosis, prognosis, and early detection of cancer. Blood-borne cancer markers are favored by clinicians, because
blood samples can be obtained and analyzed with relative ease. We have used a combined mining strategy based on an
integrated cancer microarray platform, Oncomine, and the biomarker module of the Ingenuity Pathways Analysis (IPA)
program to identify potential blood-based markers for six common human cancer types.

Methodology/Principal Findings: In the Oncomine platform, the genes overexpressed in cancer tissues relative to their
corresponding normal tissues were filtered by Gene Ontology keywords, with the extracellular environment stipulated and a
corrected Q value (false discovery rate) cut-off implemented. The identified genes were imported to the IPA biomarker
module to separate out those genes encoding putative secreted or cell-surface proteins as blood-borne (blood/serum/
plasma) cancer markers. The filtered potential indicators were ranked and prioritized according to normalized absolute
Student t values. The retrieval of numerous marker genes that are already clinically useful or under active investigation
confirmed the effectiveness of our mining strategy. To identify the biomarkers that are unique for each cancer type, the
upregulated marker genes that are in common between each two tumor types across the six human tumors were also
analyzed by the IPA biomarker comparison function.

Conclusion/Significance: The upregulated marker genes shared among the six cancer types may serve as a molecular tool
to complement histopathologic examination, and the combination of the commonly upregulated and unique biomarkers
may serve as differentiating markers for a specific cancer. This approach will be increasingly useful to discover diagnostic
signatures as the mass of microarray data continues to grow in the ‘omics’ era.

Citation: Yang Y, Iyer LK, Adelstein SJ, Kassis AI (2008) Integrative Genomic Data Mining for Discovery of Potential Blood-Borne Biomarkers for Early Diagnosis of
Cancer. PLoS ONE 3(11): e3661. doi:10.1371/journal.pone.0003661

Editor: Oliver Hofmann, Harvard School of Public Health, United States of America

Received August 4, 2008; Accepted October 16, 2008; Published November 6, 2008

Copyright: � 2008 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by US Department of Defense grants (to AIK) W81XWH-06-1-0043, Radioimaging and Radiotherapy of Prostate Cancer;
W81XWH-04-1-0499, Radiodetection and Radiotherapy of Breast Cancer; and W81XWH-06-1-0204, Radiodiagnosis and Radiotherapy of Ovarian Cancer.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: amin_kassis@hms.harvard.edu

Introduction

Currently, there is a continued need for the discovery of specific

blood biomarkers to aid in the noninvasive detection of cancer and

the monitoring of the effectiveness of cancer therapy [1–3].

Biomarkers are molecules that are indicators of physiologic state

and hallmarks of change in a tissue or a bodily fluid during a

disease process [3]. Cancer biomarkers in blood are produced by

tumor cells and secreted or released into the bloodstream of

patients [2]. The measurement of biomarkers in blood is a

noninvasive procedure and relatively simple to perform without

requirements for special instruments and personnel.

In pace with the post-genomic era, advanced technologies

including genomic analysis and proteomics have facilitated the

discovery of effective cancer biomarkers [4–7]. One advantage of

high throughput microarray-based genomic analyses is the

capacity to identify a group or cluster of genes overexpressed in

tissue or body fluids that encode putative secreted or cell-surface

proteins [5,6,8]. However, the mining process in microarray-based

analysis typically requires in-depth statistical and analytical skills

and poses a challenge to researchers who do not possess the

required expertise [9]. This paper proposes and presents a

biologist friendly and effective microarray-based mining method

that facilitates such biomarker discovery.

Recently, we described a rapid, systematic mining strategy to

identify overexpressed genes encoding putative hydrolases suitable

for our in-house Enzyme-Mediated Cancer Imaging and Therapy

(EMCIT) technology, an approach that aims to hydrolyze and

precipitate water-soluble, radioactive prodrugs within the extra-

cellular space of solid human tumors for noninvasive diagnosis or

therapy [10–12]. Herein, we apply a mining strategy that enables

the uncovering of potential blood-borne cancer markers in

humans based on the combination of an integrated cancer

microarray platform, Oncomine [13], and the novel biomarker

filtering capability of the Ingenuity Pathways Analysis (IPA) 5.0

program [14]. To identify genes encoding putative secreted or cell-
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surface proteins in human blood/serum/plasma as potential

cancer markers, all genes overexpressed in the extracellular

environment of cancerous cells relative to that of corresponding

normal cells were filtered and retrieved from the Oncomine

database and then imported to and analyzed by the biomarker

module of the IPA analysis program. The application of this

mining method has led to the identification of hundreds of

biomarkers in human tumors: prostate (224), breast (176), lung

(244), colon (57), ovary (292), and pancreas (147). The approach

also enabled the ranking and prioritization of the identified

potential marker genes for overexpression according to normalized

absolute Student t values.

It has been observed that the expression of common tumor

markers related to universal oncogenic processes is stable and

unlikely to be affected by the natural progression of cancer [15].

Therefore, the identification of common tumor markers ubiqui-

tously expressed by a few cancer types could increase the

sensitivity and specificity of conventional histopathologic evalua-

tion and could serve the general practice of segregating malignant

from benign conditions independently of individual taxonomies

[16]. Consequently, we determined the biomarkers in common

between each two cancer types. The comparison analysis across six

different human tumors has led to the detection of 20 to 134

biomarkers as common hits between every two cancer types,

suggesting the interrelation of multiple oncogenic pathways. These

identified markers may be used as broad molecular pathology tools

after validation analysis. Finally, given the common biomarkers,

we were able to identify between 3 and 59 potentially unique

biomarkers per cancer type. This is unprecedented since one of the

key drawbacks to current biomarkers is that most of them are not

specific for one cancer type, which can easily lead to false positives

in the early detection of cancer. For instance, serum prostate-

specific antigen (PSA) level for the screening of prostate cancer was

also found to be elevated in patients with breast or lung tumors,

leading to 70% failure of early prostate cancer detection [17,18].

The limited specificity and sensitivity of current early diagnostic

biomarkers has greatly restricted their reliability. Therefore, our

mining method could serve as a general strategy for discovering

more effective individual or grouped specific markers for cancer,

hopefully achieving the clinical objective of screening for early and

specific detection. To our knowledge, this is the first study

examining with an in silico genomic approach upregulated marker

genes unique for one cancer type.

Materials and Methods

The data mining strategy for the discovery of cancer biomarkers

is based on our recently published methodology exploring the

cancer microarray platform, Oncomine, and employing the

advanced knowledge bases of Ingenuity Systems, Ingenuity

Pathways Analysis, to identify extracellular hydrolases in various

types of cancer (unpublished results). Oncomine [13] was chosen

because it is a public cancer microarray platform incorporating

264 independent microarray datasets, totaling more than 18,000

microarray experiments, which span 35 cancer types. It unifies a

large compendium of other published cancer microarray data,

including Gene Expression Omnibus (GEO) [19] and Stanford

Microarray Database (SMD) [20], and uniquely provides

differential expression analyses comparing most major types of

cancer with their respective normal tissues. For example, to

identify potentially important genes in a particular cancer, users

can perform a ‘‘cancer vs. normal’’ analysis for a given cancer type

and those genes that are upregulated in cancer relative to its

normal tissue can be retrieved as a list. Each overexpressed gene in

the list can then be assessed by the Student t test to calculate the P

or Q values (false discovery rate) [21–23], mean expression values

(mean 1, mean 2), and the normalized Student t value. In addition,

Oncomine is integrated with the Gene Ontology (GO) annotations

filter, which allows users to identify genes with certain biological

processes, molecular functions, or cellular locations.

Each of six human tumor types (prostate, breast, lung, colon,

ovary, and pancreas) was used in the ÆÆprofile searchææ function in

the Oncomine database to find the available microarray datasets

related to the specific cancer type. The analysis type ÆÆcancer vs.

normalææ was then applied to filter those microarray datasets

exploring cancer relative to its normal tissue. Next, Gene

Ontology (GO) annotation keywords implicating the extracellular

environment were used to remove those genes unregulated in

cancer. Specifically, upregulated genes associated with the

following GO terms were searched: ÆÆextracellular spaceææ,
ÆÆextracellular regionææ, ÆÆcell surfaceææ, ÆÆplasma membraneææ,
and ÆÆintegral to membraneææ. Each GO annotation term was

conceived and consulted in the GO database [24] to deliver the

largest number of relevant hits which are likely to encode secreted

or cell-surface proteins. Then, a corrected false discovery rate Q-

value threshold (Q#0.05) was used to filter and retrieve those

extracellularly-overexpressed genes with a high confidence of

upregulation. Upregulated genes with a Q value less than 0.05

were only kept in the list for further analysis and filtering

(including the redundant which was removed in the later filtering

step).

Human Genome Organization (HUGO) gene identifiers were

then used to export the gene lists, in the Microsoft Excel format,

into the Ingenuity Pathways Analysis (IPA) program [14], an

application that has been built on a large knowledge database

acquired by manual curation of full texts of peer-reviewed

scientific publications covering information on more than

500,000 mammalian genes or proteins, molecular concepts, and

millions of their pathway interactions. IPA biomarker is a module

within the new Ingenuity Pathways Analysis 5.0 program which

allows the (i) identification and prioritization of the most promising

and relevant biomarker candidates according to characteristics

that make a gene product a biologically plausible biomarker (a

gene or its encoding product has to be linked closely to the

pathology of the disease or is on a pathway that is closely linked to

the effect of a treatment) (ii) determination of whether a particular

gene or protein is detectable in body fluids, and (iii) assessment of

whether the candidate biomarker has a strong association with

disease processes such as cancer. The retrieved overexpressed

genes were imported to the IPA biomarker module, the redundant

was resolved, and those genes encoding plausible markers

associated with cancer were identified. These biomarkers were

further filtered in the IPA biomarker filter module based on the

following criteria: fluid – ÆÆbloodææ or ÆÆplasma/serumææ, disease –

ÆÆcancerææ, species – ÆÆhumanææ. These filtered blood-based

markers were then ranked and prioritized by the abs(t) value,

where t is the normalized Student t test value in Oncomine, to

reflect the quantitative change of expression level between cancer

and its normal tissue, similar to the fold-change value in

microarray experiments. The final set of blood-based markers

was exported and stored in a Microsoft Excel spreadsheet (see

Supplemental file S1) containing the gene product name,

synonyms, abs(t) value, description, HUGO gene symbol,

expression in body fluids, IPA-defined subcellular locations,

disease types, and protein family.

Detailed analysis of resulting protein hits was performed

retrospectively using iHOP (information hyperlinked over pro-

teins) [11,25], a program that finds links and cited articles to
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genes/proteins and identifies the particular gene product if the

gene name or synonym name is known. Resulting blood-based

markers were checked and consulted by looking up the associated

literature references or original publications. Finally, the accuracy

of the findings was assessed using control cancer markers either

selected as candidate markers by other studies or well known to be

clinically useful.

IPA biomarker comparison is another function within the IPA

biomarker module, which has the capacity to generate a list of

candidate biomarkers common across different diseases [14]. The

program can maximally compare the candidate biomarkers for three

diseases simultaneously. The filtered biomarkers for each of the six

tumor types from the previous step were thus imported and

compared between every two tumor types to determine the common

biomarkers. The retrieved common biomarkers across the six

human tumor types were then used to determine the unique

candidate biomarkers per cancer type by the exclusion method.

Results and Discussion

The general mining strategy for biomarker discovery reported

here is flexible in nature. Researchers may vary the data-filtering

criteria according to their own interests. For example, in the first

step of the mining process (see Figure 1), they might choose to filter

either ‘‘upregulated’’ or ‘‘downregulated’’ genes to identify

markers for diagnosis or they choose to filter ‘‘differentially

expressed’’ genes in various tumor grades or stages to discover

prognostic markers. In the second step, one may choose to filter

eligible biomarkers in different biological fluids (such as saliva,

tears, and urine) and different species (such as mouse and rat).

Moreover, researchers can vary the genomic database and the

pathway analysis program. Although our primary interest is to

identify markers for human cancer, we believe that this mining

strategy can be broadly applied to identify markers for most other

types of diseases.

Identification of eligible cancer markers
Data mining of 4 to 15 microarray datasets from the Oncomine

platform for genes overexpressed in six human cancers compared

with their expression in normal tissues led to the identification of a

list of 3,064 to 19,645 upregulated gene expression profiles per

cancer type. We were mining for upregulated genes because one of

the prevailing hypotheses is that the most promising biomarkers

will be overproduced genes or their protein products [26,27] (this

may not be generally true, and other researchers could choose to

mine downregulated genes for their specific purpose). Ideally,

Figure 1. Scheme for mining overexpressed genes in six human tumors to identify potential blood-borne cancer markers. Microarray
plates at top represent six tissue types searched in Oncomine platform, including prostate, breast, lung, colon, ovary, and pancreas. Step 1:
Overexpressed genes in cancer relative to its corresponding normal tissue were filtered by GO terms and Q value cut-off. Step 2: blood borne markers
were filtered by ÆÆbloodææ, ÆÆserum/plasmaææ, ÆÆcancerææ and ÆÆhumanææ in biomarker module of IPA program. Trapezoid shape in middle represents
biomarker filtering capability of IPA analysis program. Step 3: common markers were determined between every two tumor types. Step 4: unique
markers were identified for each cancer type.
doi:10.1371/journal.pone.0003661.g001
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blood-borne tumor markers would be secreted or otherwise shed

into the circulatory system during tumorigenesis. They could be

secreted by tumor cells or released consequent to tumor-cell

fragmentation (Figure 2). Therefore, we searched for upregulated

genes by a combination of controlled Gene Ontology keywords to

implicate the extracellular environment (see Materials and Methods)

in cancerous cells including those encoded proteins bound to or

integrated in cell membranes but whose extracellular domains can

be found through shedding in the circulation. When the retrieved

genes were further filtered by the corrected false discovery rate Q

(Q#0.05), between 211 and 2,782 genes per cancer type were

overexpressed in the extracellular environment of cancerous cells

(including the redundant). We used a stringent corrected false

discovery rate cut-off value to select significantly upregulated genes

and to avoid false predictions arising from experimental variation

in different studies. These upregulated genes were imported to the

IPA biomarker analysis module and between 165 and 961 genes

were identified as eligible candidate markers per cancer type

(Table S1).

Identification of blood-borne cancer markers
The eligible markers that we retrieved from IPA biomarker

analysis included those markers upregulated in the tissues or

biological fluids of patients with cancer. Next, we filtered the

blood-borne markers because they have two major advantages

over other types of indicators. First, blood cells communicate with

the cells and extracellular matrixes in almost all tissues and organs

in the body. Thus, the gene expression profiles of blood cells may

reflect the presence of disease in the body [2,3]. Second, blood

sample collection is less invasive and safer, allowing for a larger

sample size and repeated sampling to monitor disease progression.

From the IPA biomarker filter module, between 57 and 292 blood-

borne (blood/plasma/serum) markers were identified per human

cancer type (see identified genes in Supplemental File S1). By

examining IPA and iHOP knowledge bases [11,25], we deter-

mined that the majority of the blood-borne tumor markers are

secreted, or glycosylphosphatidylinositol (GPI)-anchored and

integral membrane proteins. The detection of their upregulation

in patient blood samples can trigger earlier treatment before tumor

growth [2–4]. Further, these upregulated signatures could be

exploited to understand the pathways related to human cancer

and unravel the associations between different tumors. Although

the functional mechanism driving the various gene expression

profiles in the blood of patients with or without cancer is unclear,

the potential clinical utility of these genes or their protein products

is emerging. As controls, we have listed below a few blood-derived

markers, identified by our work, that have also been selected by

other studies as candidate tumor markers or are already being

used clinically,

Erythroblastic leukemia viral oncogene homolog 2

(ErbB2). ErbB2 is commonly referred to as Her-2/neu by

clinicians [28]. It is a cell-membrane-surface-bound tyrosine

kinase receptor that is normally involved in the signal

transduction pathway leading to cell growth and differentiation

[29]. In our study, we identified ErbB2 as a universal blood-borne

biomarker for five cancers (prostate, breast, lung, ovary, and

pancreas). This is consistent with the findings that the

amplification of this gene or overexpression of its protein

product is associated with cancers including breast, lung,

ovarian, and pancreatic [28–31]. In particular, amplification of

ErbB2 gene has been found in 25% to 30% of breast cancer, and it

has been formally approved by the FDA as a serum biomarker for

the diagnosis of breast cancer [30]. To our knowledge, the

overexpression of ErbB2 gene has not been reported for prostate

cancer.

Breast cancer 1/2, early onset (BRCA1/BRCA2). BRCA1

and BRCA2 are genes directly involved in cell growth, division,

and repair of damaged DNA. The variations in either gene or

their protein products have been implicated in prostate, breast,

and ovarian cancers [32]. There is also strong evidence to suggest

that both genes could be used as predictive markers for the

treatment of breast and ovarian cancer [32–35]. We found both

genes as potential markers in these three tumor types as well as

lung cancer. The overexpression of both genes in four human

cancers may suggest that they are involved in a generalized

phenomenon or functional mechanism in patients with these

cancers.

Prostate-specific antigen (PSA). PSA, also known as

kallikrein III (KLK3), is a protein produced by the cells of the

prostate gland and that is often elevated in the presence of prostate

cancer or other prostate disorders [17,18]. It is a well-known

serum biomarker and measurement of serum PSA level is the most

Figure 2. Circulating tumor cells (CTC) and blood-borne markers secreted or released (consequent to tumor-cell fragmentation) in
blood vessel.
doi:10.1371/journal.pone.0003661.g002
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effective test currently available for the early detection of prostate

cancer [36]. Consistent with other experimental findings [37], we

identified PSA as a serum marker for a few tumor types including

prostate, breast, and lung cancer, indicating that PSA is not

prostate-cancer-specific.

Hyaluronan-binding protein 2 (HABP2). HABP2 is a

member of the serine protease family that is found in the

plasma/serum and demonstrated to play important roles in cancer

invasion and metastasis [38]. A real-time reverse transcriptase

polymerase chain reaction (RT-PCR) screening study has

demonstrated the specific overexpression of the HABP2 gene in

lung adenocarcinoma, among six candidate marker genes for

detection of non-small cell lung cancer [39]. We identified two of

these six candidate marker genes, HABP2 and CP (ceruloplasmin),

as potential serum marker genes for lung cancer, demonstrating

the usefulness of our mining strategy in determining novel,

potentially useful, clinical blood markers for human cancer.

Insulin-like growth factor-II (IGF-II). IGF-II encodes a

member of the insulin family of polypeptide growth factors that

are implicated in the pathogenesis of neoplasm in various tissues

[40,41]. Interestingly, our mining approach identified IGF-II as a

potential serum marker for breast, lung, and ovarian cancer. It has

been identified by a recent protein microarray experiment based

on a blood test as one of four serum markers for discriminating

between healthy groups and patients with epithelial ovarian cancer

(EOC) [42]. In this proteomic study, IGF-II protein level is

reduced in patients with EOC compared with healthy controls,

whereas in our gene microarray mining it is upregulated in ovarian

cancer. These findings indicate that gene microarray study alone

may be insufficient and a more rigorous study involving

proteomics experiments or antibody microarrays are necessary

to validate the candidate markers at the protein expression level.

Nevertheless, our study is consistent with other findings that the

upregulation of IGF-II level could be used to diagnose breast

[43,44] and lung [45] cancers.

Identification of common tumor biomarkers
The tumor markers shared between each two tumor types

among the six human tumors were analyzed by the biomarker

comparison analysis function of the IPA program and are

summarized in a matrix form (Figure 3; see Supplemental File

S2). Ovarian cancer has the most markers in common with

prostate (113), breast (107), and lung cancer (134) among the 15

different cancer pairs, possibly because we identified ovarian

cancer as having the most blood-borne biomarkers (292) (see

Table S1) among the six cancer types. Nevertheless, these striking

overlaps between different cancer types indicate that the majority

of the candidate marker genes may in fact be closely related to

multiple oncogenic pathways of cancer metastasis. One of the

bottlenecks in discovering appropriate cancer markers is a poor

understanding of the pathophysiology of the disease [26,27,46]. As

such, the universal overexpression of common markers across

different human cancers may help in understanding and

uncovering the generalized functional mechanisms of tumor

growth and invasion. In addition, the commonly upregulated

marker genes may assist in relating the relevant markers to the

pathogenesis of a particular cancer while any correlation with

other cancer types may suggest novel therapeutic targeting

strategies. Moreover, common markers might be useful in

increasing the sensitivity and specificity of conventional evaluation.

For example, the identified universal biomarkers could be used by

pathologists for uncovering cancer invasion when comprehensive

histologic evaluation is insufficient [15]. To test the hypothesis that

common markers shared by various tumor types could be used to

distinguish between benign/malignant conditions, we have

determined the common set of markers across prostate, breast

and lung cancer (see ‘‘Supplemental File S3 – prostate, breast, and

lung common markers.xls’’). Remarkably, after manually consult-

ing the iHOP database and IPA knowledge database, 13 markers

out of the common 35 markers (,1/3) have been literature-

confirmed to serve as prognostic markers for the progression and

Figure 3. Matrix form for the common markers identified for six human tumors in prostate, breast, lung, colon, ovary and pancreas.
a The comparison of biomarkers between the same tissue type is not available. b The percent overlap of common markers between every two cancer
types is provided in parenthesis.
doi:10.1371/journal.pone.0003661.g003
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invasiveness of human tumors (Table S2). Although there are no

direct evidences that the rest of the 22 common markers can

differentiate between benign/malignant conditions, we believe

that they may all be involved in cancer metastasis.

Identification of unique tumor biomarkers
In examining the common biomarkers between each two cancer

types, we observed 3 to 59 biomarkers exclusive to each cancer type

(Table S1, Figure 4; see Supplemental File S2). In effect, less than

twenty percent of the total identified blood-based biomarkers per

cancer type are unique. A few of the biomarkers reported here have

been suggested as putative specific biomarkers by other studies. For

example, leptin (LEP), a protein hormone with important effects in

regulating body metabolism, has been reported as one of the four

specific serum biomarkers for the early detection of ovarian cancer

[42]. Our study confirms its potential as a unique blood-borne

marker for ovarian cancer. Similarly, we identified matrix

metalloproteinase-2 (MMP-2) as a specific biomarker for pancreatic

cancer, consistent with the experimental findings showing that its

upregulation, compared with that of other metalloproteinases, seems

particularly important in the growth and dissemination of pancreatic

cancer [47–49]. We believe these unique biomarkers could be

combined to produce a panel of markers that could improve

selectivity and sensitivity for the early diagnosis of cancer.

Identification of promising top-ranked marker genes
Another application of our mining strategy is the prioritization

(according to t values) of top-ranked overexpressed marker genes with

biological evidence implicating their significant role in cancer.

Previously little attention has been paid to their potential as candidate

markers or they were missed simply because of the challenge in

validating a large pool of candidate genes. These top-ranked marker

genes are valuable because they are quantitatively more overex-

pressed than the other marker genes and thus increase the sensitivity

of cancer diagnosis. Those scientists interested in discovering cancer

markers could further analyze and validate these candidate markers

to make them clinically useful [26,27]. As examples, we have listed

below four top-ranked genes identified in our study.

Matrix metalloproteinase-1 (MMP-1) for breast

cancer. MMP-1 is a zinc-ion-binding peptidase secreted in the

extracellular space and involved in the breakdown of extracellular

matrix. Upregulation of MMP-1 mRNA and elevated levels of its

protein have been observed in several cancers [50]. However, in

the past, most studies have focused on its diagnostic significance

for lung cancer [51] or its prognostic significance for colorectal

cancer [52]. Notably, our study identified MMP-1 as the most

upregulated marker gene for breast cancer, opening up the

possibility, after follow-up validation studies, for its use as a

putative predictive marker in screening for breast cancer.

CD44 for colorectal cancer. CD44 encodes a cell-surface

glycoprotein involved in cell–cell interactions, cell adhesion, and

migration. This protein participates in a wide variety of cellular

functions, including lymphocyte activation and tumor metastasis

[53]. In the IPA knowledge bases and iHOP database, there is

evidence implicating the expression of this protein in colorectal

cancer [53,54]. We identified CD44 as the most upregulated

marker gene for colon cancer among 57 putative biomarkers.

Thus, CD44 could be another promising diagnostic marker for

screening colorectal cancer.

Ceruloplasmin (CP) for ovarian cancer. CP encodes an

extracellular metalloprotein that binds most of the copper in plasma

and regulates cellular iron-ion homeostasis in the circulation [55]. In

the past, little attention was paid to its role in human neoplasia,

although it had been suspected that the expression of ceruloplasmin

protein is related to ovarian cancer [56]. We identified CP as the

second most upregulated gene for ovarian cancer, indicating its

potential as a promising serum marker.

Notch homolog 4 (NOTCH4) for pancreatic

cancer. NOTCH4 encodes a member of the Notch protein

family that is involved in the Notch signaling network and

presented on the cell surface as a heterodimer. This protein

Figure 4. Potential unique markers identified for each human cancer type. Horizonal axis of plot is tumor type, including prostate, breast,
lung, colon, ovary, and pancreas cancers. Vertical axis on left is number of unique markers identified for each of six cancer types, represented by red
columns in plot. Vertical axis on right is unique marker percentage of total identified blood-borne markers per cancer type, represented by green
columns in plot.
doi:10.1371/journal.pone.0003661.g004
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functions as a receptor for membrane-bound ligands and may play

a role in vascular, renal, and hepatic development [57]. Notch

pathway components and Notch target genes are upregulated in

invasive pancreatic cancer cells [58]. A more detailed gene

expression profiling study has demonstrated that the mRNA of

NOTCH4 is highly upregulated in pancreatic adenocarcinomas

[59]. We identified NOTCH4 as the most specific upregulated

marker gene for pancreatic cancer, strongly suggesting its potential

for the diagnosis of invasive pancreatic cancer.

Conclusion
We present and apply an integrative mining strategy to identify

overexpressed genes which encode secreted proteins as putative

blood-borne biomarkers for six common human tumors. The

mining strategy is based on the combination of a public cancer

microarray platform, Oncomine, and the novel biomarker filtering

capabilities of the IPA pathways analysis program. Our mining

strategy is uniquely biologist friendly and flexible so that it can be

broadly applied to the discovery of biomarkers for many other

disease types. The detection of numerous cancer marker genes that

are clinically useful or experimentally identified supports the

effectiveness of our strategy. We have determined the shared

markers between every two tumor types across the six selected

human tumors; these commonly upregulated marker genes may

serve as a molecular tool to complement conventional blood-assay

examination and distinguish between benign/malignant condi-

tions. The finding that the majority of the identified marker genes

for one cancer type are shared by the other cancer types suggests

the complexity of human cancer and the close relationship of

multiple oncogenic pathways. Finally, we have identified unique

biomarkers for each cancer type. We propose that in combination

they might serve as diffentiating markers for a specific cancer. We

have attempted to identify rapidly by an in-silico approach

significantly upregulated genes as potential blood-borne markers

for human cancers. We hope this study will stimulate further

experimental studies to define clinically useful diagnostic or

prognostic fingerprints in human blood [60]. Nonetheless, this

approach will be increasingly useful to discover putative diagnostic

signatures as the mass of microarray data continues to grow in the

‘omics’ era.
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