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Abstract

Background: Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in
acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well
understood.

Methods: We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P.
falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-
stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-
terminal fragment, MSP1-42).

Results: Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly
increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age
and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest
inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different
time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to
recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive
of inhibitory activity. The level of inhibitory activity against different isolates varied.

Conclusions: Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not
appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood
malaria.
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Introduction

Plasmodium falciparum malaria is a leading cause of childhood

mortality, with around 1 million deaths annually [1]. In malaria-

endemic areas effective immunity against malaria develops after

repeated exposure that limits blood-stage parasitemia and prevents

symptomatic illness and severe complications [2]. Antibodies that

inhibit blood stage replication of P. falciparum are believed to be

important in mediating both acquired immunity and immunity

generated by candidate blood-stage vaccines [3,4,5]. Serum

antibodies that inhibit parasite growth in vitro have been isolated

from clinically immune individuals, but are rarely detected in

malaria-naı̈ve individuals [3,5]. Early studies suggest that these

‘‘growth-inhibitory’’ antibodies are acquired in an isolate-specific

manner following convalescence from acute infection [6].

However, the role of growth-inhibitory antibodies in protection

from clinical disease in humans, or their function in vivo, has not

been established. Furthermore, there is limited knowledge of the

acquisition of these antibodies and it is unclear whether inhibitory

antibodies can be acquired quickly after limited exposure or

instead require repeated exposure over an extended period.

Inhibitory antibodies are thought to mainly act by inhibiting

erythrocyte invasion through targeting merozoite surface antigens

and invasion ligands [7,8]. Data from animal studies support an

important role for antibodies against merozoite antigens in

immunity [9,10]. Merozoite surface protein 1 (MSP1), apical

membrane antigen 1 (AMA1), erythrocyte binding antigens (EBAs)

and P. falciparum reticulocyte-binding homologues (PfRh proteins)

are implicated as important targets of acquired human inhibitory

antibodies [11,12,13,14], and polyclonal and monoclonal anti-

bodies produced in experimental animals against these antigens

can inhibit erythrocyte invasion in vitro [7,10,12,15,16,17]. Studies
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have found variable associations between the level of antibodies to

recombinant merozoite antigens and protective immunity

[18,19,20,21,22,23,24,25,26,27]. However, measuring antibodies

to recombinant merozoite proteins has significant limitations and

antibody reactivity in these assays may not reflect functional

activity. Epitope specificity and the affinity of antibodies are likely

to be essential for inhibitory activity, and are not measured by

standard ELISA. Furthermore, antibodies that can block the

inhibitory activity of other antibodies have been described [28,29],

and antibodies may also act by inhibiting the processing of

antigens required for erythrocyte invasion [29,30]. These findings

further emphasize the need for a greater understanding of growth-

inhibitory antibodies, which is likely to be essential for the

development and testing of blood-stage vaccines.

In order to understand the acquisition of human inhibitory

antibodies and their potential role in immunity, we have evaluated

the presence of inhibitory antibodies, and their association with

active infection and markers of blood-stage malaria exposure and

immunity, across different age groups and between populations

with different transmission levels. Furthermore, we evaluated the

relationship between inhibitory antibodies and antibodies to

recombinant MSP1-42, which is a leading vaccine candidate that

has been shown to induce growth-inhibitory antibodies [31,32,33],

and the C-terminal fragment of which (MSP1-19) has been

identified as a target of human inhibitory antibodies [11,14].

Methods

Study site and population
The main study site of Ngerenya, Kilifi district, Kenya has been

described previously [34,35]. Ngerenya experiences seasonal

malarial transmission following the ‘‘long’’ rains in May–July and

the ‘‘short’’ rains in November, and in 1997/1998 the predicted

entomologic innoculation rate (EIR) was 10 infective bites/person/

year. Serum samples collected cross-sectionally from two separate

Ngerenya cohorts were used. The first set (n = 150) were selected

randomly from samples collected in September 1998 from Ngerenya

adults and children (n = 354), as part of a longitudinal cohort study

involving randomly selected households [34]. After baseline serum

sample collection, individuals were followed-up for 12 months by

active surveillance for symptomatic illness [34]. Study participants of

the Ngerenya 1998 cohort were divided into 3 age groups, in

concordance with age-associated incidence of clinical malaria in the

area [34]; 2–5 years, n = 43; 6–14 years, n = 57 and 18–81 year olds,

n = 50. The second set of samples was collected from the same village

in October 2002 and comprised 237 children aged 1–8 years (1–5

years, n = 129; 6–8 years, n = 108). This subset was derived from a

larger cohort of children (,8 years, n = 297) from randomly selected

Ngerenya households [36]. We included all serum samples that were

available from children $1 year of age.

Written informed consent was obtained from all participants, or

their guardians, in the study. Ethical approval was obtained from

the Ethics Committee of the Kenya Medical Research Institute,

Nairobi, Kenya and from the Human Research Ethics Commit-

tee, the Walter and Eliza Hall Institute, Melbourne, Australia.

Growth Inhibition Assays (GIAs)
The P. falciparum lines 3D7 and W2mef were cultured in vitro [37]

and synchronised by alternate day re-suspension in 5% D-sorbitol

(Sigma, St Louis, MO, USA) in water. Growth assays were

performed over two cycles of parasite replication and parasitemia

was measured using flow cytometry (FacsCalibur, Becton, Dick-

inson, Franklin Lakes, NJ) [13,38]. Assays were set-up with mature

trophozoites and schizonts, at 1% haematocrit and 0.3% starting

parasitemia (50 ml/well) in 96 well U-bottom culture plates (Becton

Dickinson, Franklin Lakes, USA) with pre-treated serum (5 ml) from

cohort members or from non-exposed United Kingdom or

Australian donors (n = 7 to 10). On all plates, PBS was included as

a non-inhibitory control and 1F9 anti-AMA1 monoclonal antibody

(0.5 mg/ml) [39] was included as an inhibitory control. Parasite

growth for each sample is expressed relative to plate PBS controls.

All samples were tested in duplicate in two separate assays.

To remove potential growth inhibitors or enhancers, serum

samples were dialysed against PBS using 50 kDa MWCO micro-

dialysis tubes (2051, Chemicon, Temecula, CA, USA) and

subsequently reconstituted to original volume using centrifugal

concentration tubes (100 kDa MWCO; Pall Corp, Ann Arbor, MI,

USA) prior to testing in GIAs [38]. Purification of immunoglobulins

(Ig) was performed by ammonium sulphate precipitation, as

described [38].

Enzyme-Linked Immunosorbent Assays (ELISAs)
Serum IgG recognising components of schizont protein extract

and recombinant MSP1-42 was measured by ELISA [13].

Schizont protein extract was prepared from 3D7 cultures using

standard methods. Recombinant MSP1-42 and MSP1-19 (3D7)

proteins were kind gifts from Carole Long (NIH, Bethesda) and

Paul Gilson (WEHI, Melbourne), respectively. Samples were

tested in duplicate together with serum from 7–10 non-exposed

United Kingdom or Melbourne donors. Positive and negative

controls were included to allow standardisation.

Statistical analysis
Statistical analysis was performed using Stata Version 9

(StataCorp, College Station, Texas, USA). The association between

continuous variables was assessed using Students t-test or one-way

ANOVA, or by Wilcoxon rank-sum test or Kruskal-Wallis test where

appropriate. The association between categorical variables was

assessed using a chi-square test. Pearson and Spearman’s rank

correlation coefficients were used to assess the association between

two continuous variables. For the Ngerenya 1998 samples, the male

to female ratio varied across the three age groups so the association

between gender and the variables of interest was assessed separately

within each age group. Data exclusions were due to insufficient

sample for GIAs (Ngerenya 1998; 3D7, n = 7 and W2mef, n = 8),

and outliers (Ngerenya 1998; 3D7, n = 3 and W2mef, n = 4).

Survival analysis was performed using the Cox proportional hazards

method. Malaria was defined as symptoms of fever or observed fever

together with a parasitemia of .2500 parasites/ml.

Definitions. In the Ngerenya 1998 cohort, individuals with

antibody levels equal to or greater than the 75th percentile value for

ELISA data were defined as ‘high ELISA responders’. Individuals whose

sera inhibited growth below the approximate median value for each

parasite line (3D7, ,45% growth [% of control], n = 66; W2mef,

,35% growth, n = 69) were defined as ‘high inhibitors’. To examine

breadth and strength of responses, individuals were defined as ‘strong

inhibitors’ (highly inhibitory of growth of both parasite lines (i.e. 3D7

,45% growth plus W2mef ,35% growth)), and ‘weak inhibitors’ as

those samples that were not strongly inhibitory of either 3D7 or

W2mef (3D7 $45% growth plus W2mef $35% growth). The

remaining samples were termed ‘intermediate inhibitors’.

Results

Acquisition of antibody to blood-stage antigens and
MSP1-42 increases with age

Among the 150 individuals selected from the Ngerenya 1998

cohort, there was an age-related decrease in the prevalence and

Antibodies against Malaria
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density of P. falciparum infection, reflecting the acquisition of

immunity in the population (Table 1) [34]. Samples from this

cohort were tested for IgG to schizont protein extract (a marker of

exposure to blood-stage malaria and acquired immunity) and

recombinant MSP1-42 (a major merozoite antigen and vaccine

candidate) by ELISA. Levels of IgG to schizont extract and MSP1-

42 were significantly correlated (Spearman’s rho, rs = 0.79,

P,0.001). Median IgG levels to schizont extract and MSP1-42

increased with age in both aparasitemic and parasitemic

individuals (P,0.02) (Figure 1 A–D). In concordance, the

proportion of high responders to both antigens increased

significantly with age (Table 1). There was no significant

association between parasitemic status or gender and IgG levels

against schizont extract or MSP1-42.

Age and exposure-related pattern of acquisition of
growth-inhibitory antibodies

In contrast to the ELISA data, we did not observe a marked

increase in growth-inhibitory antibodies with increasing age among

the Ngerenya 1998 samples (Figure 2). Age associated profiles of

inhibition differed slightly for the two parasite lines despite a

significant positive correlation between growth of 3D7 and W2mef

(r = 0.62, P,0.001). A small, statistically significant reduction in the

level of parasite growth inhibition with increased age was observed

for W2mef (P = 0.007), but not for 3D7 (P = 0.365). After stratifying

by parasitemic status, a significant association between reduced

growth inhibition of W2mef with age was seen for aparasitemic

participants only (P = 0.002, Figure 2B). The proportion of highly

inhibitory samples was greatest in young children and decreased with

age (3D7, P = 0.294 and W2mef, P = 0.006) (Table 1).

Examining associations between growth inhibitory antibodies

and exposure, a weak positive correlation was seen between

greater W2mef growth (i.e. reduced growth inhibition) and IgG to

schizont extract (rs = 0.342, P,0.001; Fig. 3). This correlation was

stronger for aparasitemic compared to parasitemic individuals

(rs = 0.375, P,0.001 and rs = 0.119, P = 0.153, respectively). No

correlation was seen between 3D7 parasite growth and IgG to

schizont extract (rs = 20.01, P = 0.887). Associations between

parasite growth and IgG to MSP1-42 were similar to those seen

for responses to schizont extract. A positive correlation between

W2mef growth (i.e. reduced growth inhibition) and IgG to MSP1-

42 was observed in both aparasitemic and parasitemic individuals

(rs = 0.301, P = 0.005 and rs = 0.265, P = 0.056, respectively). No

correlation existed between 3D7 growth and IgG to MSP1-42

among samples (rs = 20.055, P = 0.527). Additionally, no correla-

tion was found between antibodies to recombinant MSP1-19 and

inhibition of 3D7 growth (data not shown). Similar results were

obtained when the analysis was restricted to samples from children

(data not shown); there was a weak positive correlation between

antibodies to schizont extract or MSP1-42 and parasite growth

using W2mef, but not 3D7.

Mean levels of inhibition were not significantly different

between parasitemic versus aparasitemic individuals. In the 6

months following sample collection, 41 individuals (40 children, 1

adult) had at least one episode of symptomatic malaria, and

survival analysis was performed for children only (2–5 years,

n = 43 and 6–14 years, n = 57). As expected, older children had a

reduced risk of symptomatic malaria compared with younger

children (HR = 0.24, P,0.001). There was no significant associ-

ation between inhibition of either 3D7 or W2mef growth by

samples and reduced risk of subsequent malaria with or without

adjustment for age.

The contrasting associations with age and exposure between

growth-inhibitory antibodies and total antimalarial antibodies led

us to further examine methods used to measure inhibitory

antibodies and to validate our findings. Immunoglobulins were

purified from an additional 52 sera samples of the Ngerenya 1998

cohort, chosen to achieve a group of children (#12 years, n = 30)

for comparison with adults (.12 years, n = 22), and tested for

growth inhibition in single and two-cycle growth-inhibition assays.

Again, we found little correlation between 3D7 or W2mef growth

and IgG to schizont extract (Fig. 4. A, B); there was a positive

correlation between W2mef growth and IgG to schizont extract for

aparasitemic individuals (rs = 0.67, n = 9; P = 0.047). Inhibition of

growth was not significantly different for adults compared to children

(Eg. mean W2mef growth6SD; adults = 70.7621.8% versus

children = 65.6618.7, P = 0.365) or for high versus low responders

to schizont extract (71.3619.3% versus 66.6621.1%, respectively,

P = 0.461). We typically performed GIAs over two cycles of parasite

replication because we have found this increases the sensitivity of the

assay [38]. We found a strong correlation between one and two-cycle

assays run in parallel for both W2mef and 3D7. The level of growth

inhibition was greater for two-cycle compared to one-cycle assays.

When samples were tested in single-cycle assays, there were no

significant associations between inhibition results and age, parasit-

emia or ELISA data. Additionally, a subset of 80 samples from the

Ngerenya 1998 cohort were independently dialysed and tested in

GIAs against 3D7 and W2mef. Similar to our earlier results, little

association with age was observed and mean inhibition of W2mef

was greater than for 3D7.

Breadth and strength of growth inhibition responses
according to age and exposure

To examine the breadth of response against both parasite lines

as well as the strength of growth inhibition among samples from

Ngerenya 1998 cohort we defined individuals as ‘strong inhibitors’

(n = 45), ‘intermediate inhibitors’ (n = 40) and ‘weak inhibitors’

(n = 51) based on their activity against both parasite lines. The

proportion of strong inhibitors decreased with age (P =

0.009)(Table 1). In addition, the median [inter-quartile range,

IQR] IgG level to schizont extract was significantly lower for

strong inhibitors (0.19 [0.1–0.51]) compared to intermediate (0.19

[0.01–0.53]) or weak inhibitors (0.36 [0.21–0.78], P = 0.037).

There was no evidence of association between breadth and

strength of a response with IgG towards MSP1-42 (P = 0.178).

Profile of inhibitory antibodies in young children with
less malaria exposure

To evaluate the influence of differing levels of malaria transmission

on the acquisition of inhibitory antibodies, we obtained 237 samples

that were collected in a cross-sectional survey in the same community

in October 2002 from children aged 1–8 years. The level of malarial

transmission in the region was lower in 2002 compared to 1998 [40],

which is reflected in the lower proportion of parasitemic individuals

at the time of sample collection (Ngerenya 2002, 6.9% versus

Ngerenya 1998, 39.3%). To compare growth inhibition between the

two studies, analysis was restricted to children of the same age in each

study (i.e. 2–8 years; median age of 5.1 years (Ngerenya 2002,

n = 207) and 5 years (Ngerenya 1998, n = 61)). Growth inhibition of

3D7 was significantly less in Ngerenya 2002 than Ngerenya 1998

(median [IQR] parasite growth as a percent of control was 100.6

[93.4–105.3] for Ngerenya 2002 versus 43.2 [37.1–48.6] for

Ngerenya 1998 samples; P,0.001). For all experiments, the level

of growth inhibition by cohort sera was significantly greater than that

seen for non-exposed control sera (P,0.001).

Because most Ngerenya 2002 samples were non-inhibitory

against 3D7, only an ‘‘inhibitory subset’’ comprised of the top 20%

Antibodies against Malaria
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(n = 46) of inhibitory samples (growth relative to controls was

,92%) was also tested against W2mef. Median W2mef growth in

this inhibitory subset of Ngerenya 2002 child samples was higher

(equivalent to reduced inhibition) than that observed for all

samples from children (aged 2–8 years) of the Ngerenya 1998

cohort (64.2 [55.8–72.4] versus 32.8 [27.9–36.6] respectively;

P,0.001). In considering only the 2002 samples, the inhibitory

subset of Ngerenya 2002 samples had higher IgG to schizont

extract compared with the remaining less-inhibitory (3D7 growth

$92%, n = 191) Ngerenya 2002 samples (median [IQR] IgG: 0.16

[0.09–0.57], versus 0.13 [0.04–0.42], respectively, P = 0.038).

However, there was no difference in age distribution between

the most inhibitory and less-inhibitory Ngerenya 2002 samples

(P = 0.599). This suggests that exposure to blood-stage malaria,

rather than age per se, is the major determinant for the acquisition

of inhibitory antibodies in this cohort of children.

Discussion

Our findings demonstrate that children exposed to P. falciparum

can acquire growth-inhibitory antibodies at a young age after little

exposure to malaria. It appears that once these antibodies have been

acquired they are not boosted by subsequent exposure in the classical

manner described for antibodies to blood-stage antigens. In contrast

to the age-associated increase in antibodies to schizont extract and

MSP1-42, parasite growth-inhibitory antibodies tended to remain

stable or decrease with age, despite on-going exposure, and there was

no substantial association with active infection. Antibodies to

Figure 1. Levels of IgG to schizont protein extract and recombinant MSP1-42, according to age and parasitemic status, among
samples from the Ngerenya 1998 cohort. A, B: Median absorbance (Optical Density, OD) to schizont protein extract and MSP1-42, respectively,
for aparasitemic participants (n = 91). C, D: Median absorbance to schizont protein extract and MSP1-42, respectively, for parasitemic participants
(n = 59). Sera were used at a dilution of 1:1000. Error bars represent the inter-quartile range. P values were calculated using a Kruskal-Wallis test. All
samples were tested in duplicate. The difference in median IgG levels for aparasitemic compared to parasitemic participants was not significant for
schizont extract or MSP1-42 (P = 0.082 and P = 0.14, respectively).
doi:10.1371/journal.pone.0003571.g001
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schizont protein extract probably reflect cumulative exposure to

malaria and the overall level of blood-stage immunity. Similar to age

associations, there was a trend towards declining growth-inhibitory

activity as reactivity to blood-stage antigens in the schizont protein

extract increased, but the association was not strong. It is important

to note that inhibitory antibodies were clearly related to malaria

exposure as we found consistently greater inhibition by samples from

malaria-exposed individuals compared to non-exposed controls, and

inhibition was greater among samples from children collected during

a period of higher malaria transmission. Examination of children in

the Ngerenya 2002 cohort with lower levels of malaria exposure

compared to those children in the Ngerenya 1998 cohort suggested

that the acquisition of inhibitory antibodies was ongoing at that time.

In the 2002 cohort there was a positive association between

antibodies to schizont extract and inhibitory activity and it appeared

that inhibitory activity in this group of children had not yet become

saturated. Findings among this cohort also confirmed that inhibitory

activity can be acquired at an early age and does not require

repeated exposure over several years.

The role of growth-inhibitory antibodies against blood-stage P.

falciparum in immunity to malaria, and their relevance to the

progression of disease in vivo, remains unclear. In our cohort,

growth-inhibitory antibodies were not associated with reduced risk

of symptomatic malaria. As expected, age was significantly

Figure 2. In-vitro growth inhibition of parasite lines 3D7 and W2mef, according to parasitemic status, among samples from the
Ngerenya 1998 cohort. A, B: Mean growth of 3D7 and W2mef, respectively, for aparasitemic participants. C, D: Mean growth of 3D7 and W2mef,
respectively, for parasitemic participants. Growth is expressed relative to control (PBS). Error bars represent standard deviation. P values were
calculated using a one-way ANOVA. All samples were tested in duplicate in two separate assays. For all samples, including parasitemic and
aparasitemic individuals together, mean growth (%, 6SD) was: W2mef (n = 138) 31.866.5, 2–5 years; 35.169.0, 6–14 years; 38.1610.3, 18–81 years;
3D7 (n = 140) 42.468.3, 2–5 years; 44.2612.4, 6–14 years; 45.467.5, 18–81 years.
doi:10.1371/journal.pone.0003571.g002
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associated with reduced risk of malaria, yet inhibitory activity

was not positively associated with age. The acquisition of

inhibitory antibodies at an early age and the relatively stable

levels of inhibitory antibodies through childhood suggest that a

potential role for these responses in protection from early

childhood malaria should be considered. Immunity to severe

malaria is acquired relatively quickly after little exposure whereas

effective immunity to mild symptomatic malaria is acquired

significantly later [2]. It is possible that early immune responses,

such as the acquisition of growth-inhibitory antibodies, are

important for immunity to severe malaria. Further studies are

needed to test this hypothesis.

These findings have important implications for development and

evaluation of candidate blood-stage vaccines. It is assumed that

antibodies to merozoite antigens should induce inhibitory antibodies,

but the relevance of this response to immunity in humans remains to

be established. Vaccine trials with merozoite antigens are usually first

done among older children with prevention of symptomatic malaria

as the end-point; this may not be an appropriate strategy to evaluate

these responses. Our results suggest that individual inhibitory

antibody responses do not continue to increase in effect once they

are acquired, which occurs following limited exposure. This may

explain recent findings that immunization of malaria-exposed adults

with AMA1 boosted total IgG to recombinant AMA1, but did not

Figure 3. The association between in vitro growth of parasite lines 3D7 or W2mef and IgG measured by ELISA, according to
parasitemic status, for the Ngerenya 1998 cohort. A, B: Correlation between ELISA response to schizont extract and 3D7 or W2mef growth,
respectively. C, D: Correlation between ELISA response to MSP1-42 and 3D7 or W2mef growth, respectively. rs values represent Spearman’s rank
correlation coefficients. Results for aparasitemic and parasitemic individuals are represented by black or grey diamonds, respectively. Samples used in
growth-inhibition assays were dialysed serum.
doi:10.1371/journal.pone.0003571.g003
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increase inhibitory activity [41]. An earlier study in The Gambia

similarly found that inhibitory antibodies tended to be lower among

adults than children [42], and recent studies by Dent et al. in western

Kenya report maximum inhibitory activity among young children,

which subsequently declines with increasing age [43]. Two prior

studies also found no association between growth inhibition by

dialysed serum [42] or whole serum [25] and risk of mild malaria

episodes, as we found here. On the other hand, some data suggests

growth-inhibitory antibodies may contribute to a reduced risk of

reinfection. In western Kenya, MSP1-19 specific inhibitory activity

of whole serum and total growth-inhibitory activity of dialysed serum

was associated with reduced risk of reparasitisation after treatment

[23,43]. Further studies are needed to focus on possible associations

between inhibitory antibodies and protection from symptomatic

malaria in early childhood.

The use of untreated serum/plasma by some studies may have

affected the measurement of inhibitory antibodies and the

associations with clinical parameters. Non-specific growth-inhibitory

factors, such as antimalarials, have been reported in untreated

samples [38,44]; therefore we dialysis-treated all samples prior to use

in our study. Comparable inhibitory effects of dialysed serum versus

immunoglobulin isolated from serum have been shown previously

[38]. In the present study, similar associations between growth-

inhibitory activity of samples and other parameters were found using

dialysed serum or purified immunoglobulins suggesting that

antibody rather than other serum factors is the major mediator of

growth inhibition in our assays. Chloroquine was the drug most

likely to have been used for treatment of malaria in the population at

that time [45] and we confirmed that chloroquine was removed by

serum dialysis (data not shown). Furthermore, we found that W2mef

was resistant to common anti-malarial drugs at concentrations that

could be expected in serum following treatment for malaria

(McCallum, Richards, Wilson, unpublished data). Therefore the

presence of antimalarials in samples is unlikely to be a factor

influencing our growth inhibition results.

In our studies, associations between age, exposure, and inhibitory

antibodies were established by extensive testing of two different

parasite lines. Additionally, no association between age and level of

growth inhibitory activity was found using W2mef variants with

different invasion phenotypes (Persson, McCallum, Beeson, unpub-

lished data). Interestingly, W2mef was consistently inhibited to a

greater degree than 3D7. Differences in the inhibitory activity

against different parasite lines may be explained by differences in the

level of exposure in the population to key epitopes expressed by these

isolates. 3D7 and W2mef are known to differ in allelic variants of

several important antigens, such as AMA1, and use different ligands

for erythrocyte invasion [12,46]. Recent studies suggest that

variation in the use of erythrocyte invasion pathways may act as a

mechanism that facilitates immune evasion [13].

Differences in the acquisition and maintenance of ELISA-

measured antibodies compared with growth-inhibitory antibodies

may be explained by several factors. Human antibody responses to

recombinant merozoite antigens have been reported to be short

lived among children [47,48], but appear to stabilise in older

children and adults; this response needs to be investigated with

respect to inhibitory antibodies. Maintenance of inhibitory

antibodies at a sufficient concentration for functional activity

may require exposure to a threshold parasite density that is

reached in young children during infection, but not in adults and

older children who more effectively control and suppress parasite

density. A further consideration is that the polyclonal antibody

response to merozoite antigens includes inhibitory and non-

inhibitory antibodies; repeated exposure may lead to non-

inhibitory antibodies reaching a greater concentration or higher

affinity than inhibitory antibodies, especially if inhibitory epitopes

are fewer in number than non-inhibitory epitopes. Others have

reported the acquisition of antibodies that can block the activity of

inhibitory antibodies [28], which may impede the development of

inhibitory activity with increased exposure; presently, this effect is

not well understood. Antibodies to merozoite antigens may also

act by antibody-dependent cellular inhibition of parasite growth

rather than by directly inhibiting invasion [49].

The lack of association between high levels of IgG to recombinant

MSP1-42 or MSP1-19 and growth-inhibitory activity raises concerns

Figure 4. Correlation between IgG to schizont protein extract measured by ELISA and in vitro growth inhibition using purified
immunoglobulins. A 3D7 parasite line. B W2mef parasite line. Samples used in the assays were immunoglobulins purified using ammonium
sulphate precipitation from Ngerenya 1998 serum samples (n = 52). rs represents Spearman’s rank correlation coefficients.
doi:10.1371/journal.pone.0003571.g004
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regarding the accurate measurement of naturally-acquired and

vaccine-induced immunity. The sum effects of multiple antibodies

towards different merozoite antigens in serum samples may

confound associations between measurements of growth inhibition

and antibodies to a single antigen. However, in our study children

with high ELISA antibodies to MSP1-42, or MSP1-19, often lacked

inhibitory activity, suggesting that ELISA is a not a reliable measure

of inhibitory activity. Vaccination of monkeys with MSP1-42

induced growth-inhibitory antibodies and protected against P.

falciparum challenge [33]. However, vaccination of human volunteers

with recombinant MSP1-42 induced inhibitory antibodies only in a

subset of individuals, despite high rates of seroconversion to the

recombinant antigen [31,32]. Further studies are clearly needed to

understand the relationship between antibody reactivity in standard

immunoassays and growth-inhibitory activity.

These findings have important implications for understanding and

measuring immunity, and for the development and evaluation of

blood-stage vaccines. Our results suggest that the acquisition of

functional antibodies differs from that which has been predicted

from studies of acquired immunity using standard immunoassays.

Antibodies can be acquired at an early age after limited exposure to

malaria, but do not demonstrate continued boosting or enhance-

ment with ongoing exposure. Furthermore, antibodies measured by

ELISA to potential targets of inhibitory antibodies, such as MSP1-42

or MSP1-19, showed little correlation with growth-inhibitory

activity. Results from this work suggest that future investigations

on inhibitory antibodies are needed among younger children at the

time when they are first experiencing malaria episodes.
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