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Populations in the Rodent Spinal Cord

Jesper Ryge'®*, Ann-Charlotte Westerdahl'®, Preben Alstrem?, Ole Kiehn'*

1 Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden, 2 CORE A/S, Frederiksberg, Denmark

Abstract

Background: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are
being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques
in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling
potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular
level.

Methodology/Principal Findings: \We examine the microarray gene expression profiles of two distinct neuronal populations
in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The
gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250
fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization
procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32
genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously
been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the
motor neurons than in the interneurons and of these only one had not previously been described in this population.

Conclusions/Significance: We provide an optimized experimental protocol that allows isolation of gene transcripts from
fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for
microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in
combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor
neurons and the interneurons that reflect the functional differences between these two cell populations in generating and

transmitting the motor output in the rodent spinal cord.
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Introduction

The microarray technology combined with laser microdissec-
tion (LMD) makes it possible to study the gene expression profiles
of identified cell populations [1,2]. These advances have been
embraced by the field of neuroscience to use the microarray
expression profiles either as static classifiers of neuronal cell types
in combination with more traditional anatomical and electrophys-
1ological classification schemes [3-6] or to address the dynamics of
global gene expression regulation within identified cell populations
during development or in connection with disease and injury states
[7,8].

In the present study we aimed at establishing an experimental
protocol that enabled us to compare the static gene expression
profiles of fluorescently identified neuronal populations in the
mammalian spinal cord that are directly involved in controlling
and generating basic motor behaviors, like locomotion. We
sampled neurons from the isolated rodent spinal cord of newborn
animals, the dominant experimental model for the study of spinal
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networks that generate locomotion in mammals [9-12]. Two cell
populations in the lumbar spinal cord that can be readily identified
by fluorescent retrograde tracing [13] and which have been
subject to extensive anatomical and electrophysiological charac-
terization were examined here: the motor neurons (MNs) and the
descending commissural interneurons (dCINs). These two groups
of cells have distinct physiological functions in the spinal cord. The
dCINs are integral elements of spinal interneuron networks that
generate rhythmic locomotor movements and participate in the
left-right coordination of hind limbs during locomotion [9,14-17].
The MNs are principal output neurons of the spinal cord that
transmit all motor related patterned activity to the muscles.
Though being functionally distinct neuronal groups it is not know
to what an extent these cell populations can be distinguished at the
transcriptional level. However, differences in gene expression
between neuronal cell types are likely to be relatively small, so both
the experimental protocol and the subsequent analysis had to be
optimized to detect small, but consistent, differences in gene
expression. As part of this study we also introduce a new pre-
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processing method of microarray probe set intensity values that
helps with the inspection of microarray quality and aides the
choice of background compensation and normalization procedure.
To identify differentially expressed (DE) genes we use a
conglomerate classifier that for a given FDR threshold combines
three existing methods, limma [18], Cyber-T [19] and SAM [20],
to produce a set of significantly DE genes.

Our results show that amplified antisense RNA (aRNA)
hybridized onto GeneChip® Rat Neurobiology U34 Arrays
(RN_U34 chips) originating from as few as 50-250 cells detect
49 genes out of the 1050 annotated probe sets on these arrays as
consistently differentially expressed between MNs and dCINs. In
the MN population 17 genes were more expressed than in the
dCIN population, while 32 genes were found to be more expressed
in the dCIN population compared to the MNs. The DE genes
reflect the anatomical and functional differences between these
two neuronal populations. Together our results provide new
insight to the transcriptional profiles of spinal neurons and outline
an experimental approach that can be applied to examine the gene
expression of individual cell populations in both the normal or
diseased spinal cord.

Results

Cell identification, laser microdissection, isolation and

amplification of RNA

In order to identify the two cell populations, MNs or dCINs,
they were fluorescently labeled with the retrograde tracer
rhodamine [dextran, tetramethylrhodamine (RDA)]. RDA label-
ing of MNs and dCINs is a well-established method in the rodent
spinal cord [13,21]. As shown in Figures 1A and B, the RDA
tracer is applied to cut axons of the target cells and retrogradely
transported back to the cell bodies. After the RDA incubation we
1) immediately snap-froze the spinal cord with CO,y, 2) cryo
sectioned the lumbar (L) segment 2 into 10 pm sections which
were subsequently mounted on polyester (POL) membrane slides
and 3) laser microdissected the identified cells. The laser
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microdissected cells were lysed and the RNA was isolated,
amplified and biotinylated giving good quality aRNA for
microarray hybridization. An example of the LMD can be seen
on Figures 1C and D.

Microarray expression profiles and signal quality

Twenty-two microarrays were each hybridized with 5 ug
amplified and biotinylated aRNA obtained from 50-250 laser
microdissected cells originating from 22 separate animals,
producing the following set of sample arrays: 7 MNs, 7 dCINs
and 8 MIX (random sampling in the ventral horn). Before
calculating gene expression summaries and exploring the data set
for DE transcripts, the microarrays were pre-processed in order to
transform all intensity values onto a common scale, i.e.
background subtraction and normalization. Three background
measures were tested: MAS, RMA and Global. Inspection of the
probe intensity distributions after MAS or RMA background
subtraction showed an extra peak at low intensities that were not
present in the raw probe intensity distributions. To maintain the
signal structure of the low intensity values and prevent the
appearance of such a peak for low intensity probes, each array
distribution was set to an intensity floor of zero by implementing
the Global background subtraction.

Following the Global background compensation we implement
the quantile linear transformation (QLT) normalization procedure
(see Materials and Methods). QLT is a linear transformation
procedure we developed in order to visualize the generally
accepted hypothesis that all samples have identical gene expression
distributions, the principle of which is illustrated in Figure 2.
Figure 2A shows the raw perfect match (PM) distributions of all 22
arrays plotted together with the average distribution. Irom these
plots it is not apparent if all the raw distributions belong to a
common expression distribution (e.g. the average distribution
highlighted as the black dotted line) or if they constitute a set of
different families of distributions (e.g. one distribution per
experimental group). However, when the QLT distributions are
plotted (Figure 2B) the clear superimpositions of these scaled
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Figure 1. Labeling and laser microdissection. A and B show the schematic labeling procedure of cell populations in the lumbar spinal cord of
the neonatal rat. RDA is applied to cut axons and retrogradely transported to the cell bodies. A shows MN labeling and B shows dCIN labeling. C and
D illustrate the LMD of MNs in 10 um thick spinal cord transections. Orientation: midline (M) is towards the right, lateral (L) is towards the left and
ventral is downwards. C shows a spinal cord transection before LMD and D after LMD. The green thick outline illustrates vaporized tissue due to the
laser action from the dissection of one cell, so in essence less tissue is dissected than the wholes might suggest. Each labeled cell is cut out separately

to minimize contamination from surrounding cells.
doi:10.1371/journal.pone.0003415.g001
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Figure 2. Affymetrix array normalization and quality control. The color code for each distribution is the same throughout A-D. A. The
distributions of log, transformed raw PM intensity values. The black dashed line illustrates the average distribution, /., of all 22 arrays (7 MNs, 7 dCINs
and 8 MIX) in both A and B. B. QLT distributions of array PM intensities. C. qg-plots of the QLT distributions versus the average distribution.
Deviations from I, most pronounced at the distribution tails, i.e. at low and high intensities. D. qg-plot of Li-Wong summaries based on QLT+QPN
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PM values. E. Dendogram based on hierarchical clustering of correlation distance between individual microarray expression profiles (Li-Wong
expression measures). The two major branches contain the two cell groups, MNs and dCINs respectively. MIX is dispersed in between the two groups.
F. First two principal components of the gene expression profiles illustrating the Euclidian separation of individual microarrays. MNs and dCINs are
nicely separated by the MIX, which are scattered in between these two groups. Symbols: 1 (black) =dCINs, 2 (red)=MIX, 3 (green) = MNs.

doi:10.1371/journal.pone.0003415.g002

curves do indeed indicate that all arrays in our study follow a
common PM intensity distribution. When inspecting the quantile-
quantile-plots (qg-plots) in Figure 2C we find small deviations in
the distribution tails, which are less obvious in Figure 2B. These
deviations are rather small and constitute less than 5% of the genes
for each array. We assume that these nonlinear effects that the
QLT distributions reveal are of experimental nature and not
biological.

Expression summaries were calculated based on the normal-
ized PM intensity values. QLT could have sufficed as a
normalization procedure in its own right, but dendrograms (i.c.
tree diagrams) based on correlation distances between gene
expression profiles indicated that the addition of quantile
projection normalization (QPN) [22] after QLT had a slight
positive effect on the clustering of expression profiles into the
correct experimental groups. Thus, RMA expression profiles
based on either QLT or QPN alone failed to classify all arrays
correctly according to experimental groups, whereas Li-Wong
based on either normalization procedure did so correctly (not
shown). However, both Li-Wong and RMA expression profiles
based on QLT followed by QPN classified all the arrays
correctly. This is illustrated for Li-Wong expression profiles in
Figures 2E and F (and for RMA in Supplementary Figure S1).
The dendrogram in Figure 2E shows that the arrays fall into two
groups, dCINs and MNs, nicely classifying each array according
to its biological cell type. The MIX population arrays
intermingle with both these groups, which is expected since
these arrays represent randomly laser microdissected cells
including both dCINs and MNs. The separation of the
experimental groups can also be seen in Figure 2F, where the
first two principal components are shown for all array expression
profiles. The separation of the arrays into the correct
experimental groups based on the gene expression profiles
indicates that the pattern of gene expression is indeed different
between these two cellular groups and that it is captured in the
array expression profiles. The fact that QLT followed by QPN
seems to perform better than either QLT or QPN alone suggest
that it is advantageous to separate the normalization into two
steps that independently deals with the linear and nonlinear
variations that may be present in the data set under examination.
QLT handle linear experimental variations by rescaling all array
distributions onto a common average distribution with a linear
transformation, revealing any remaining nonlinear experimental
variations as deviations of the QLT distributions from the
average reference distribution. Significant nonlinear variations
can subsequently be removed by a nonlinear transformation such
as QPN.

As both QLT and QPN are performed at the probe level, we
lastly examine if the PM distributional correlations are preserved
in the expression summaries. Figure 2D shows the qg-plot of Li-
Wong summary measures (after Global background subtraction,
QLT and QPN), where the reference distribution again is the
average quantile distribution this time calculated from the Li-
Wong summary measures. This figure shows very good correlation
among expression distributions verifying that the correlation at the
probe level is indeed preserved after expression summary
calculation. The same is true for RMA summaries (not shown).
We therefore conclude that the QLT followed by QPN probe level
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normalization suffices and no additional normalization was carried
out on the expression summaries. We use the above conclusions
derived from plots in Figures 2B-E as a positive quality control of
the obtained gene expression profiles, which supports the
reliability of our experimental protocol. Since Li-Wong expression
summaries preserve the correlation between samples better than
RMA summaries on our data set, all further analysis was
performed on Li-Wong summaries.

Detection of differentially expressed genes

Three different algorithms for detecting DE genes were used:
limma [18], Cyber-T [19] and SAM [20]. Each method produces
a regularized t-statistic from which a false discover rate (FDR) can
be calculated to identify the most likely DE genes.

Based on a mixed model fit to the p-values a FDR can be
calculated for both limma and Cyber-T. Figures 3A and B show
the histogram of Cyber-T and limma p-values respectively. Both
histograms show a peak at low p-values as expected for a
distribution of few DE genes on a background of non-DE genes.
The horizontal grey dashed line indicates the distribution of p-
values under the null hypothesis of no DE genes. Mixed model fit
to Cyber-T p-values with one, two or three beta functions showed
no significant difference, so only the one beta distribution fit is
included (red dashed curve in Figure 3A). The mixed model fit
with two beta distribution for the limma p-values does on the other
hand introduce an additional peak (green dashed curve in
Figure 3B). This indicates that the limma p-values have some
dependence structure that is not present to the same extend in the
Cyber-T p-values.

The FDRs were estimated from the mixed model regression
parameters with one beta distribution (red dashed curves in
Figures 3A and B) and can be seen as a function of the log-
transformed p-values in Figure 3C for limma (black) and Cyber-T
(red). These curves illustrate the mapping between p-values and
FDRs, e.g. for a 5% FDR the corresponding p-value cutoff
becomes approximately 0.2%. For comparison the FDR based on
Benjamini and Hochberg (BH) [23] is also plotted in Figure 3C.
Both FDRs produce similar curves that primarily deviate at high
FDR. There seems to be little difference whether BH or the mixed
model approach is used to estimate FDR for limma and Cyber-T
on our data set, but since the BH FDR produce values that tend to
increase stepwise whereas the mixed model have a more smooth
increase (more obvious if Figure 3C is plotted in higher resolution,
not shown) we chose to use the mixed model FDR in the following.
For SAM the empirical FDR 1is plotted as a function of the t-
statistic (the d-score), Figure 3D. A significance cutoff level of 10%
for the FDR is illustrated as a horizontal dotted line in Figures 3C
and D. The number of DE genes at this level of significance
corresponds to the amount of points falling below this line: Cyber-
T 40, limma 44 and SAM 76 DE genes. This gives an average of
53 DE genes at the 10% FDR level. Cyber-T and limma produce
similar number of DE genes, whereas SAM classifies almost twice
as many genes as DE at each level of significance. Thus SAMs
empirical FDRs seem less conservative than FDRs based on either
Cyber-T or limma. We therefore set our threshold for DE at 50
genes, slightly biasing the average towards that of Cyber-T and
limma.
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Figure 3. False Discover Rates. A and B display the histogram of p-values based on the regularized test statistics from limma or Cyber-T
respectively when comparing MNs with dCINs. Horizontal dashed line corresponds to the uniform distribution of p-values under the null hypothesis
of no differential expression. A. Mixed model fit to Cyber-T p-values, one beta distribution (red): (Ao, A1, 1, 5) = (0.904, 0.0960, 0.206, 1.570). Regressions
that included two or three beta-functions gave A, =%13=0. B. Mixed model fit to limma p-values, one beta distribution (red): (Ao, Ay, 1, 5)=(0.848,
0.152, 0.296, 1.636) and two beta distributions (green): (Ao, Aq, Ay, 11, S1, 2, S2) =(0.760, 0.117, 0.122, 0.265, 2.245, 3.900, 10.042). C. Log transformed p-
values versus the FDR for limma (black) and Cyber-T (red) for two different measures of FDR. Plot symbols: +represents mixture model FDR based on
the fit to one beta distribution parameters from A or B and closed circles are BH FDR. D. Empirical FDR from SAM as a function of its t-statistic (d-

score). Horizontal dashed line in C and D correspond to a 10% FDR cutoff.

doi:10.1371/journal.pone.0003415.g003

To obtain a conglomerate estimate of the likelihood of DE, all
genes were ranked according to the absolute value of their
regularized t-statistic (ranking according to p-values or FDRs
would give the same order of DE genes) for each of the three
methods separately and a list of genes was produced based on the
average rank of all three methods. The 50 most DE genes from
this list are shown in Table 1. In general there is very good
agreement between all three methods as the rankings for each
gene fall quite close for all three DE classification methods. From
Table 1 it is also clear that SAMs empirical FDR is quite coarse
grained as it increases in steps rather than continuously, which is
also evident from Figure 3D. The FDR is displayed in Table 1 for

@ PLoS ONE | www.plosone.org

each of the three methods and the majority of the DE genes have
at least one of the three FDRs falling below 5%.

Several genes on the RN_U34 chip is represented by two or
more probe sets. This is the case for the gene Apoe which is
represented by two probe sets that both appear in the list of the 50
most DE genes in Table 1. So in fact the unique set of genes in
Table 1 only add up to 49 and not 50.

Validation of differentially expressed genes

Among the unique DE genes displayed in Table 1, a
representative subset of seven genes were chosen for micorarray
validation with real time reverse transcription PCR (real time RT-
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Table 1. Ranking of the 50 most differentially expressed genes.

Gene Rank Rank Rank FDR FDR FDR
Affy ID Symbol Cyber-T Limma SAM Rank Avg Cyber-T Limma AM A M
AF041246_at OX2R 1 5 5 3.7 5.04E-05 0.0605 0 5.79 U2
549491_s_at PENK 3 7 7 57 0.00129 0.101 0 6.17 3.32
U89608_at EAA4 9 6 6 7 0.0221 0.0787 0 7.15 2.79
AF030253_at VIAAT 6 9 8 77 0.00202 0.249 0 7.77 5.29
M83561_s_at GRIK1 8 10 12 10 0.0055 0.271 0 5.45 2.14
AF041244_at OX1R 12 11 11 1.3 0.0784 0.304 0 6.93 253
L10073_at 5HT5B 13 16 19 16 0.0934 0.47 0 5.51 1.66
X04139_s_at KPCB 20 17 15 17.3 0.696 0.624 0 9.18 261
AF058795_at GABR2 17 19 17 17.7 0.384 0.682 0 777 2.72
M61099_at MGR1 10 23 22 183 0.0248 1.63 0 5.78 4.28
AF030358_g_at X3CL1 27 20 20 223 2.26 0.735 0 10.8 2.04
M90518_at Q62916 29 21 21 23.7 257 1.02 0 8.42 223
M93273_at SSR2 25 29 29 27.7 1.8 3 0 5.94 1.61
rc_Al228669_at SC6A1 18 36 31 283 0.391 6.6 0 6.68 3.82
M15880_at NPY 36 26 26 293 6.08 1.79 0 5.92 1.41
L05435_at SV2A 23 35 32 30 1.52 6.2 0 791 294
X55812complete_seq_at CNR1 19 38 35 30.7 0.678 6.74 0 6.75 3.06
rc_AI228113_s_at NPTXR 22 34 36 30.7 1.29 6.08 0 6.15 2.11
X04979_at APOE 49 22 23 31.3 14.2 137 0 12.2 1.61
U08290_at NNAT 71 12 13 32 28.1 0.314 0 9.56 1.51
X62840mRNA_s_at KCNC1 43 30 30 343 11.8 435 0 7.57 1.84
M38061_at GRIA2 26 M 40 357 1.86 8.64 0 5.96 1.87
M32867_at KCNA4 24 45 47 387 1.52 104 1.74 494 1.64
$82649_s_at NPTX2 48 32 37 39 139 5.62 0 7.99 1.88
L14851_at NRX3A 35 47 41 41 5.52 11.8 1.74 7.89 248
M31174_at THA 69 27 27 41 26.5 223 0 11.08 1.51
rc_Al177026_at AT1A2 31 53 44 42.7 2.99 13.2 1.74 7.71 3.06
rc_AA957510_s_at AT2A2 56 39 39 44.7 18 6.95 0 9.1 1.74
U16845_at NTRI 28 58 49 45 253 16.3 1.74 6.22 297
D00833_g_at GLRA1 46 48 54 49.3 12.2 12 2.8 4.41 1.32
M24852_at PEP19 34 64 53 50.3 4.98 194 2.8 9.35 3.75
S76779_s_at APOE 65 43 43 50.3 253 9.8 1.74 8.06 1.72
E12625cds_at ERG25 51 49 55 51.7 14.9 12 2.8 496 1.25
rc_Al029920_s_at IBP5 38 55 52 48.3 7.15 13.8 6.21 578 —-1.59
U03491_at TGFB3 42 44 45 43.7 11.8 9.91 2.8 6.34 —1.61
M84725_at TAGL3 53 33 38 413 16.9 5.63 0 9.9 —-1.71
rc_Al008865_s_at STAT3 47 31 34 37.3 12.8 4.96 0 8.52 —1.85
AF016296_at NRP1 16 37 33 28.7 033 6.61 0 5.16 —3.55
U01227_s_at 5HT3R 37 24 24 283 6.88 1.68 0 6.48 —1.68
rc_AA998683_g_at HSPB1 30 25 25 26.7 2.64 1.72 0 6.09 —1.65
M27925_at SYN2 21 28 28 25.7 1.09 2.51 0 5.15 —1.48
M64488_at SYT2 33 15 18 22 3.68 0.415 0 6.17 —1.56
X12589cds_s_at KCNA1 32 14 16 20.7 3.38 0.39 0 6.03 —1.52
M60654 _at ADA1D 11 18 14 14.3 0.0435 0.637 0 6.01 —2.75
rc_AA818677_at NFH 15 8 10 11 0.272 0.199 0 11.02 —243
U09211_at VACHT 4 13 9 8.7 0.00158 0.346 0 10.21 —-11.07
AF031880_at NFL 14 1 1 53 0.142 0.00165 0 11.31 —23
X05137_at TNR16 5 3 4 4 0.0019 0.0278 0 8.16 —4.51
M11596_at CALCB 7 2 2 37 0.00311 0.00622 0 7.59 —3.93
X86789_at SYUG 2 4 3 3 0.000989 0.0302 0 8.85 —5.34
A =average log, transformed expression; M =log, transformed average ratio.
doi:10.1371/journal.pone.0003415.t001
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PCR); MN>dCIN: WNefl, Calch, Kenal, 5SHT3r, VACKT,
dCIN>MN: Ox2r, Viaat. VACKT (vesicular acetylcholine trans-
porter) and Viaat (vesicular inhibitory amino acid transporter,
GABA and glycine release) were expected a priori to be DE
between MNs and dCINs [15] and were chosen for this reason.
Ox2r (orexin receptor 2), Calch (calcitonin gene-related peptide)
and MNefl (neurofilament light chain) were not expected a priori to
be DE and were chosen for validation to make sure they were not
false positives. There is presently no consensus regarding whether
differences in ion channels and receptors, that constitute the major
functional differences between neurons, are subject to active
regulation at the transcriptional level. We therefore chose the gene
for one receptor, the serotonin receptor 5-HT'55 (9HT37), and the
gene for one ion channel, the potassium voltage-gated channel
subfamily A member 1 (Kemal, synonymous with Avl.1), for
validation to establish whether these were indeed true positives.

The ratios of expression of the real time RT-PCR validated
genes are illustrated both for the microarray data and the real time
RT-PCR counterpart in Figure 4. First, in order to illustrate how
the ratios of expression of the DE genes are distributed among the
total set of genes, the 49 most DE genes from Table 1 are
highlighted as red triangles in two standard plots: the MA
(Figure 4A) and the volcano (Figure 4B) plot. The 7 validation
genes contained within the 49 most DE genes are further
highlighted as enlarged triangles in different colors. In the MA
plot we summarize the differences in gene expression between the
two experimental groups, MNs and dCINs, by plotting the logy
transformed values of the average ratio between the two groups, M
(eq o and ¢g 6 in Materials and Methods), as a function of the
average logy transformed expression values, A (¢¢ 7 in Materials
and Methods). In the volcano plot M is plotted as a function of
significance, in this case the absolute log transformed p-values
from the Cyber-T test. A plot using limma p-values or SAM FDRs
shows similar characteristics (not shown). The grey dotted lines
indicate a twofold ratio of expression in both the MA and the
volcano plot. Positive ratios represent more expression of
respective genes in dCINs compared to MNs and negative ratios
more expression of respective genes in MNs compared to dCING.
From Figures 4A and B it can be seen that the 7 genes chosen for
validation fall throughout the range of expression values A and
ratios M among the 49 most DE genes and thus constitute a good
representation of the genes in Table 1. It can be noted from both
the MA and the volcano plot that significantly DE genes can have
quite low expression ratios as some of the most significantly DE
genes exhibit less than a twofold difference, an otherwise
commonly used ratio cutoff’ level of significance. Acnal and
SHT3r both fall into this category.

From Figure 4A the average ratio for the seven validation genes
were extracted and replotted in Figure 4C, which also illustrates
the standard deviation of each gene (error bars). For the same
genes Figure 4D shows the real time RT-PCR ratios of expression
between MNs and dCINs with respect to the housekeeping gene
Gap-dh, displayed as Figure 4C. The color codes for the validated
genes are the same in all four plots (Figures 4A-D). All seven genes
show good agreement between microarray and real time RT-PCR
ratios. A similar pattern of differential gene expression was seen for
real time RT-PCR ratios with respect to the housekeeping gene
Beta-actin (not shown).

Biological function of differentially expressed genes

To assess the biological relevance of the DE classified genes, the
DE genes from Table 1 were reorganized into functional classes
and displayed accordingly in Table 2. We divided the genes into
seven functional groups: 1) voltage-gated channels and ion pumps,
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2) receptors and ligand gated channels, 3) transporters and
transmitter release, 4) growth factors and axon guidance, 5) axonal
and cytoskeletal structure, 6) cell adhesion and 7) transcriptional
regulation. Genes not fitting into any of these categories were
lumped together into a separate group termed miscellaneous.
Seventeen genes were more expressed in MNs compared to dCINs
and 32 genes were more expressed in dCINs compared to MNs.

Of the 17 genes DE in MNs all but 1 have previously been
described in this cell population in rodents. The exception is a
gene involved in cytoskeletal structures, 7agl3, otherwise only
described in brain neurons [24,25]. Among the DE genes that
correlate with known MN function we note that MNs: release
acetylcholine (VAChT); receives adrenergic (Adald) and serotoner-
gic (5HT3r) input [26,27]; have an extensive cytoskeleton, which is
reflected by the fact that 5 of the 17 DE genes are in this category
i.e. the genes for neurofilament heavy chain (Nefh) [28],
neurofilament light chain (Nefl) [28], gamma synuclin (Syug) [29],
heat shock protein beta-1 (Hspb1) [30,31] and transgelin-3 (7agl3).
The genes for transforming growth factor beta-3 (7gfb3) and
neuropilin-1 (MpI) were also DE in MNs and both have been
described to participate in MN development and survival [32,33].
Additional genes more expressed in MNs that have previously
been reported to be present in this population include the genes for
synapsin II ($yn2) [34] and synaptotagmin-2 ($y2) [35] both
involved in synaptic release and its regulation, a potassium voltage-
gated channel (Acnal, synonymous with Avl.I) [36-38], a
calcitonin gene-related peptide (Caleb) [39], the insulin-like growth
factor binding protein 5 (/bpd) [40], a neurotrophin receptor
(Tnr16) [41] and a transcription factor (Stat3) [42].

There is presently little work on gene expression of dCINs [43],
but of the 32 genes classified as DE in the dCINs in our study all
but 2 genes have previously been reported to be present in the
spinal cord and among these only 1 gene, Viaat, has been shown to
be specifically linked to dCINs [44]. The two genes DE in dCINs
not previously described in the spinal cord constitute a gene coding
for a nuclear thyroid hormone alpha receptor (7%ra) and a gene
coding for a serotonin receptor (9JH7T5b). Serotonin receptors are
present in the spinal cord CINs [45], but the 5-HTsp receptor
(5bHT5b) has not been shown to be expressed in the spinal cord.
Thra has been linked to development and maturation of
GABAergic cells in the neocortex of mice [46] and could therefore
also be part of the development and maturation of the dCINs, a
subpopulation of which are know to contain GABA [43]. The
inhibitory nature of some of the dCINs are also reflected in the fact
that two out of the three DE genes in dCINs that relate to
transmitter release and reuptake codes for proteins involved in
GABA and glycine release: a vesicular transporter for GABA and
glycine (Viaal) [47] and a Na*/Cl™ dependent GABA transporter
(8C6A1, synonymous with Gatl) [48]. The third gene in this
category reflects that some dCINs release glutamate [15,49] as
they express the gene for a membrane transporter of aspartate and
glutamate (EAA4) [50]. Among the known spinal cord positive
genes DE in dCINs there are 10 genes coding for receptors and
ligand gated ion channels: four glutamate receptors, Grikl
(synonymous with GluR5) [51], Gra2 (synonymous with GluR2)
[51], Q62916 (synonymous with mGuR4) [52] and Mgl
(synonymous with mGuRI) [52]; a glycine receptor alpha subunit
(Glral) [53]; a GABA receptor (Gabr2) [53]; two orexin receptors
(OxIr and Ox2r) [54]; a somatostatin receptor (Ss72) [55] and a
cannabinoid receptor (Cnrl) [56]. Additional genes DE in the
dCIN population relating to neuronal signal transduction include
genes for two voltage-gated potassium channels {(Kencl, synony-
mous with Av3.1) [57] and (Kcna4, synonymous with Avl.4) [58]},
an ATPase Na'/K* pump (4¢/a2) [59] plus four genes linked to
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Ox2r

Viaat

Calcb

Nefl

5HT3r

VAChT
Kcnat

Figure 4. Differentially expressed genes. Positive ratios (M in A-B and y-axis in C-D) represent higher mRNA levels in dCINs than in MNs and
negative ratios represent lower mRNA levels in dCINs than in MNs. The scale of ratios is displayed in normal values such that the value of the ratios
can be read directly from the figures. Red triangles in A and B highlight the 50 most significantly DE genes from Table 1. The enlarged filled triangles
in A and B are the genes chosen for real time RT-PCR validation, with the same color code throughout including bar-plots C-D. A. MA plot of MNs
versus dCINs, i.e. for each gene the log, transformed average ratio, M (eq 5 and eq 6), is plotted as a function of the average log, transformed
expression values, A (eg 7). B. Volcano plot of M (same as in A) versus the absolute log transformed p-values from Cyber-T. C. Bar-plot of log,
transformed ratios (M values from A and B) of the genes chosen for real time RT-PCR. The genes are plotted in decreasing order of significance of DE
within each group, dCINs and MNs. The error bars indicate the standard deviation of the log, transformed ratios. D. Barplot of log, transformed ratios
(AACy) from the real time RT-PCR validation of the same genes as in C. Color codes for the highlighted real time RT-PCR genes match on A-D:
red = Ox2r, yellow = Viaat, dark green = Calcb, light green = Nefl, blue = VAChT, purple =Kcnal, pink =5HT3r.

doi:10.1371/journal.pone.0003415.9004

synaptic transmission: a gene involved in vesicle release, the
synaptic vesicle protein 2 (Sz24¢) [60]; a gene involved in Ca*"
channel and release site organization, neurexin-3-alpha (Nx3a)
[61]; two genes linked to glutamate receptor clustering, the peptide
neuronal pentraxin 2 (ANptx2, synonymous with Narp) and its
receptor neural pentraxin receptor (Nptxr) [62]. Two genes
surprisingly found to be DE in the dCIN population codes for
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the opioid neuropeptide precursor pro-enkephalin (Penk) [63] and
neuropeptide Y (Mpy) that mainly have been implicated in pain
perception [64,65]. The ostensible function of either in the dCINs
1s not immediately clear (see Discussion). The last eight DE genes
in the dCINs code for a mixed group of proteins: neuronatin (Nnat)
[66] and neurotrimin (Nrl, synonymous with Hnf) [67] are
involved in maturation and general maintenance of overall
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Table 2. Functional classification of the 50 most differentially expressed genes.
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MNs>dCINs

dCINs>MNs

Gene ID Affy ID

Description

Gene ID Affy ID

Description

Voltage-gated Kcnal
channels & ion

pumps

Receptors & ligand Adald
gated channels

Growth factors & Ibp5
axon guidance

Tnr16
Tgfb3
Nrp1
Axonal & Nefh
cytoskeletal
structure
Nefl
Syug
Hspb1
Tagl3
Cell adhesion
Transcriptional Stat3
regulation
Miscellaneous Calcb

5HT3r
Transporters & VAChT
transmitter release

Syn2

Syt2

X12589cds_s_at

M60654_at

U01227_s_at

U09211_at

M27925_at

M64488_at

rc_Al029920_s_at

X05137_at
U03491_at

AF016296_at

rc_AA818677_at

AF031880_at

X86789_at

rc_AA998683_g_at
M84725_at

rc_Al008865_s_at

M11596_at

@ PLoS ONE | www.plosone.org

Potassium channel (Kv1.1, Shaker- Kcncl
related subfamily 1)

Kcna4
Atla2

Adrenergic alpha-1D receptor Grik1

5-HT54 receptor Gria2
Q62916
Mgr1
Glral
5HT5b
OxI1r
Ox2r
Ssr2
Cnril
Gabr2

Vesicular acetylcholine Viaat

transporter

Synapsin I EAA4

Synaptotagmin-2 At2a2
SC6AT
Sv2a
Nrx3A

Insulin-like growth factor

binding protein 5

Neurotrophin receptor (p75NTR)

Transforming growth factor

beta-3 precursor

Neuropilin-1 (semaphorin

co-receptors)

Neurofilament heavy

chain (NFH)

Neurofilament light chain (NFL)

Gamma synuclein

Heat shock 27kDa protein beta-1

Transgelin 3, Neuronal protein

NP25 or NP22 (actin)
Ntrl

Signal Transducers and Thra

Activators of Transcription 3
(Cytokine-responsive genes)

Calcitonin gene-related peptide Nnat

X62840mRNA_s_at

M32867_at

rc_Al177026_at

M83561_s_at

M38061_at
M90518_at

M61099_at

D00833_g_at
L10073_at
AF041244_at

AF041246_at

M93273_at

X55812complete_seq_at

AF058795_at
AF030253_at

U89608_at

rc_AA957510_s_at

rc_AI228669_at

L05435_at
L14851_at

U16845_at
M31174_at

U08290_at

Potassium channel
(Kv3.1, Shaw-related subfamily 1)

Potassium channel
(Kv1.4, Shaker-related subfamily
4)

ATPase of Na+/K+ pump
Kainate receptor (GIuR5)

AMPA receptor 2 (GluR2)

Metabotropic glutamate
receptor 4b (mGIluR4)

Metabotropic glutamate
receptor 1 (mGIuR1)

Glycine receptor alpha-1 subunit
5-HTsg receptor

Hypocretin (orexin) receptor type
1

Hypocretin (orexin) receptor type
2

Somatostatin receptor type 2
Cannabinoid receptor 1
GABA 5-receptor

Vesicular inhibitory amino acid
transporter

Aspartate/glutamate transporter
4

Endoplasmic reticulum calcium
ATPase 2

Sodium- and chloride-dependent
GABA-

transporter 1 (Gat1)
Synaptic vesicle protein 2

Neurexin-3-alpha

Neurotrimin (Hnt)

Nuclear thyroid hormone alpha
receptor (c-erbA-1)

Neuronatin (transmembrane
protein)
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Table 2. cont.
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MNs>dCINs

dCINs>MNs

Gene ID Affy ID Description

Gene ID Affy ID Description

Pep19 M24852_at Calmodulin-binding peptide 19

ERG25 E12625cds_at Neuropep-1 (methyl sterol
oxidase)

Apoe X04979_at Apolipoprotein E

Kpcb X04139_s_at Protein kinase C beta type

Nptxr rc_Al228113_s_at Neuronal pentraxin receptor

Nptx2 $82649_s_at Neuronal pentraxin 2 (Narp)

Npy M15880_at Neuropeptide Y

X3cl1 AF030358_g_at Fractalkine precursor
(chemokine)

Penk S$49491_s_at Pro-enkephalin

doi:10.1371/journal.pone.0003415.t002

structures in the central nervous system; calmodulin-binding
peptide 19 (Pep19) [68] and endoplasmatic reticulum calcium
ATPase 2 (4t2a2) [69] are involved in calcium regulation; protein
kinase C beta (Kpch) [70] is involved in Ca®* dependent second
messenger signaling; apolipoprotein E (4poe) [71] and possibly
methyl sterol oxidase (ERG25) [72,73] are involved in lipid
metabolism; the chemokine fractalkine (X3¢l/) is involved in
neuron-to-glia signaling [74].

All the 49 DE genes of Table 1 are neuron related, further
indicating that potential contamination from surrounding cells
such as glia during LMD is minimal. There are probe sets on the
RN_U34 chip for genes that have traditionally been used as glial
cell markers: glial fibrillary acidic protein (GFAP; probe sets
AF028784cds#1_s_at and AF028784mRNA#1_s_at) and myelin
basic protein (MBP, probe set K00512_at). Neither show any
change in expression between the two groups and have very low
intensity levels, GFAP (AF028784cds#1_s_at/AF028784mR-
NA#1_s_at): fold change = —1.01/—1.14, FDR =87/74%, aver-
age intensity =29/50 and MBP: fold change =1.03, FDR =87%,
average intensity = 36. Since the dynamic intensity range of our
data set is {1;8642} we conclude that there are no expression of
these genes in our samples which suggest a minimal glial
contamination from the LMD.

Discussion

With the advance of the microarray platforms gene expression
profiling has been widely used, especially for the characterization
of homogenates from whole anatomical structures or tissue
biopsies [75—77]. Recent technical advances have enabled the
extraction of identified cell populations, which combined with the
microarray platform have been used as a classification tool for
neuronal cell type taxonomy [5,6]. Along similar lines we have in
the present study shown that it is possible to obtain specific gene
expression profiles from fluorescently identified cell populations in
the mammalian spinal cord based on microarrays hybridized with
amplified aRNA from as few as 50 cells. The use of identified cell
populations opens up for studies of global gene expression
dynamics within distinct cell populations [78].

Using the optimized experimental protocol complemented with
the microarray analysis methodology, as presented in this study,
we identify 49 genes as DE between the MNs and dCINs. In the
MN population 17 genes were more expressed than in the dCIN
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population, while 32 genes were found to be more expressed in the
dCIN population compared to the MN population. The gene
expression profiles of each of the two neuronal populations reflect
their different anatomical and functional characteristics.

Methodological considerations

We selected a path of analysis that, within the tested methods,
led to a robust classification of DE genes on our data set. We first
introduced a simple algorithm to examine and possible validate
probe level distribution similarity, termed QLT. For each probe,
the microarray signal consists of a combination of true gene
expression signal and several sources of experimental noise, while
it at the same time is subject to biological variation. Since the
correct distributions of the gene expression profiles are in fact
unknown, assumptions have to be made about the corresponding
microarray signal structure in order to extract the true gene
expression signal. First, normalization is carried out to eliminate
experimental effects that cause between-chip variations, while any
remaining common sources of error masking the true signal are
handled in the downstream analysis following normalization. Two
existing normalization methods, QPN and gspline [22,79],
minimize between-chip variation by nonlinear transformations
that map all microarray probe level distributions onto the average
distribution of the constituting data set. Both methods rest on the
biological assumption that all transcript level distributions are
conserved in spite of any experimental perturbations. Hence
differences among the observed microarray probe level distribu-
tions are attributed to experimental effects and the normalization
is designed to equal all these distributions. With the introduction of
the QLT we make an initial normalization step that in effect
separates the experimental variations into linear and nonlinear
parts. The QLT transformation accomplish this by rescaling each
array using parameters from a linear regression between quantiles
of the probe level distributions and the average probe level
distribution, leaving nonlinear variations unaffected. Visual
inspection of the QLT distributions can be used to illustrate the
degree of linear and nonlinear experimental variations in the data
set given the assumption of equal gene expression distributions.
This means that pure linear experimental variations produce
identical overlapping QLT distributions whereas additional
nonlinear variations will show up as deviations of the QLT
distributions from the average distribution. This transformation
could therefore potentially suffice to produce identical intensity
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distributions if there are no nonlinear experimental variations. In
the case of predominant linear experimental variations we also
find it more plausible to assume that the actual gene expression
profiles are in fact identical. The QLT can furthermore be used as
a visualization tool to inspect array quality and effects of
background compensation. Array outliers will typically show up
as deviating distributions among the set of identical distributions.
We found no array outliers, in fact all 22 QLT distributions
superimposed validating the basic assumption that the microarray
distributions are identical in our data set (Figure 2B). Having
confirmed the convergence of the experimental microarray
distributions we further tested the effect of additional QPN
following QLT to compensate for minor nonlinear effects at the
distribution tails. We found that QLT followed by QPN [80]
improved the correct clustering of samples according to experi-
mental groups (MNs, dCINs and MIX) compared with either
normalization procedure used alone. On our data set this effect of
normalization seemed to have the biggest influence on RMA
expression profiles, indicating that the pattern of expression is
better preserved in Li-Wong expression summaries than in RMA
summaries. We therefore based the DE classification methods on
the Li-Wong expression summaries.

Three methods were used to classify genes as DE within a 10%
FDR: Cyber-T, limma and SAM. All three methods agree quite
well with each other, but in order to increase the consistency of DE
detection a conglomerate classifier based on the average rank of all
three statistical tests was used. With a FDR cutoff of 10% for each
method we find that an average of 49 genes are significantly DE.
In other words less than 5% of the neuron related genes on the
microarray. It is worth noting that although we chose an initial
cutoff of 10% for each method, using the conglomerate classifier
presented here has the effect that the majority of genes in fact have
at least one FDR value that fall below 5%. The combination of
three methods to detect DE genes thus gives candidates that have
lower FDRs than would be expected from the actual cutoff of each
individual method. The variation in gene ranks (and FDRs)
between the three methods can possibly be attributed to the
differences in how they attempt to overcome instabilities in the
gene specific variance estimates. Especially any variance-to-mean
dependence remaining after the logy variance stabilizing transfor-
mation will affect the regularized t-statistic when this is based on
the assumption of homoscedasticity (i.e. homogeneity of variance),
which is the case for limma and SAM. Cyber-T is the only of the
three methods that incorporates this sort of dependence into its
estimate of the t-statistic. This could also be the reason why the p-
value histogram of Cyber-T shows less dependence than limma p-
values (Figures 3A and B). Interestingly this dependence structure
for limma p-values seems to be reduced in the RMA expression
profiles (Supplementary Figure S1).

In summary, we conclude that the combined effect of having
three FDRs for each gene may help to determine DE genes. We
also note that the relative high number of seven to eight replicates
within each experimental group improves the power of each test to
detect DE genes. From the list of the 49 most DE genes 7
representative genes were chosen for real time RT-PCR validation
and all confirmed the findings of the microarrays.

Biological significance of differential gene expression
Among the 49 most DE genes in this study all have previously
been described in neurons. Most of these genes have been reported
in either MNs or the spinal cord in general, supporting the quality
of our microarray data. All the genes DE in MNs have previously
been found in this cell class except 7agl3, a gene involved in
cytoskeletal structures [24,25]. Except for Viaat [44], the 32 genes
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found to be DE in the dCINs have never been associated with this
particular neuronal population. Together our findings suggest that
functional differences between MNs and dCINs are reflected at
the level of gene expression.

At the anatomical level MNs are larger in diameter and they
generally have longer axonal projections than dCINs, therefore it
is perhaps not surprising that there is an over-representation of
cytoskeletal related DE genes in the MN population. Five of the 17
DE genes belonging to the MNs fall into this category whereas
none do so for the DE genes i the dCINs. The two cell
populations are also known to release different neurotransmitters,
which is confirmed by the microarray results. MNs release
acetylcholine supported by the DE of VACRT in this population.
The dCINs on the other hand constitute a mixed population of
both inhibitory and excitatory cells that release either GABA/
glycine or glutamate [15,43,49], reflected by the DE of Viaat, Gat!
and EAA4 in these cells. Two genes, Npy and Penk, coding for
neuropeptides that previously have been connected mainly with
the regulation of pain perception in the spinal cord, were
surprisingly found to be DE in the dCIN population. Pro-
enkephalin immunoreactive fibers have been described in motor
columns and close to the central canal [63]. However, there are no
previous studies showing mRINA expression of Penk in interneu-
rons in the ventral spinal cord, although in this study the
expression of Penk was ranked high with all algorithms used for
detection. Neuropeptide Y (Mpy) on the other hand has been
described in interneurons located in the intermediate part of the
spinal cord [81], but it has also been found to be transiently
expressed there and in lamnia X prenataly [82].

Among the observed differences that may relate to functional
specialization in neuronal firing and/or synaptic integration are
the diverse expression of genes coding for three voltage gated
potassium channels in MNs and dCINs: Kv/.7 is more expressed in
MNs whereas A23.1 and Kvi.4 are more expressed in dCINs. Kv/./
and Av3.1 both codes for delayed rectifying channels, where the
channel encoded by Av3./ is activated at more depolarized
membrane potentials and inactivates faster than the channel
encoded by Avl.1 [83]. Avl.4 codes for an A-type fast-inactivating
potassium channel that has been shown to induce rapid
repolarization of the action potential [83]. These properties of
the channels encoded by Av5.1 and Av!l.4 suggests that dCINs can
produce faster spiking [84,85] than MNs although such functional
tests have not been done systematically in the rodent spinal cord.

It furthermore seems that the dCINs have a more dense and
broader range of receptors/ligand gated channels than the MNs,
which will affect the synaptic integration in the two cell
populations. There are 11 genes in this category that are more
expressed in dCINs than in MNs, while there are only 3 genes in
this category that are more expressed in MNs than in dCINs. The
analysis shows that the two cell populations differ in the gene
expression of two different types of 5-HT receptors and an alpha-1
adrenoreceptor (Adald). The gene for the ionotropic 5-HTja
receptor (9JHT3r) is more expressed in the MNs as is the gene for
the alpha-1D adrenoreceptor (Adald), while dCINs express more
of the gene coding for the metabotropic 5-HT'5g receptor (SHT5b).
Expression of SHT5b has not previously been described in the
spinal cord. The consequences of this differential distribution may
reflect functional differences in the response to descending
serotonergic and noradrenergic signals from the brainstem [45].
The additional DE genes for receptors in the dCIN population
reflect the fact that dCINs integrate various synaptic signals to
coordinate left-right movement during locomotion. Ionotropic
receptor channels for glutamate and glycine (GluR5, GluR2 and
Glral) are strongly activated during rhythmic activity such as
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locomotion [14], whereas some of the metabotropic receptors are
know to cause slow modulation of the activity (mGluR1 [86], Gabr2
[87] and Cnrl [88]). Obviously some of these receptors, like the
receptors for AMPA, kainate, glycine and mGluR1, are also found
in MNs [89]. However, our study suggests that the MNs achieve a
synaptic integrative function by a less dense distribution of these
receptors than found in dCINs.

The genes coding for orexin and somatostatin receptors were
DE in dCINs. Orexin has been suggested to be involved in sensory
modulation, as it has been found to have a high expression in both
pre-ganglionic sympathic cell columns and descending fibers
terminating around the central canal close to the location of the
dCINs [90]. The DE of the genes coding for both orexin receptor
1 and 2 in the dCINs indicate that these cells could be a target for
such sensory modulation and integration. Somatostatin is another
molecule connected with sensory input and its modulation, in
particular nociception [91]. Somatostatin is expressed in laminae
I-III of dorsal horn cells [92,93], whereas its receptor has been
found to be expressed in several parts of the spinal cord including
the ventral cord where the dCINs are located [93]. The apparent
DE of the gene coding for somatostatin receptor 2 (Ss72) in dCINs
could imply a role for this population in sensory integration and
modulation.

Conclusions

The protocol developed in this study was used to describe the
static differences in transcript levels between two identified
populations of neurons in the lumbar spinal cord of the neonatal
rat, the MNs and dCINs. Our findings constitute a step forward
towards understanding the functional differences between the
MNs and the dCINs in the spinal cord. We also describe a new
probe-level pre-processing analysis that illustrates the linear
relationship between probe intensity distributions. These linearly
transformed distributions can be used as an initial microarray
quality assessment. This analysis method also helps the user to
determine the distributional effect of background compensation
and normalization and can thus help to guide the choice of these.

The experimental protocol described here furthermore has a
much wider range of application. Long-term changes in
electrical properties due to external perturbations, in particular
spinal cord injury, have been reported in MNs [94-96]. Such
activity dependent changes in membrane and cellular properties
are arguably reflecting underlying modulation of gene expres-
sion, but to pinpoint the molecular mechanisms and targets of
these changes have until recently remained elusive. In traditional
microarray gene expression studies of spinal cord injury, tissue
homogenates of whole spinal cord segments have been used
[75,76,97,98] and they therefore do not address the dynamics of
global gene expression regulation in individual cell populations
[75,76,97]. The present study provides a robust experimental
protocol and an analysis methodology that enables such
examinations at the cellular level and can thus be seen as an
important step to examine changes in cell specific gene
expression profiles over time, as for example in identified
neurons after spinal cord injury or during development.

Materials and Methods

Spinal cord dissection, neuron labeling and cryo
sectioning

Neonatal (postnatal day 0—4) Wistar rats were used in this study.
All animals were cared for and used in accordance with the
directives of the local ethical committee on animal experiments,
the Swedish Animal Welfare Agency and EU. The rats were
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anesthetized with isofluran (Forene®; Abbott Scandinavia),
decapitated, eviscerated and then transferred to a dissection
chamber filled with oxygenated (5% COy in Oy) and ice-cold low
calcium Ringer’s solution [111,14 mM NaCl/3,09 mM KCl/
11,10 mM  Glucose/25 mM  NaHCO3/3,73 mM  MgSO,/
1,10 mM KHyP0O,/0,25> mM CaCl, (all from Merck) in 0,1%
(v/v) Diethylpyrocarbonate-treated (DEPC; Sigma) and auto-
claved dH,O; pH 7,4]. The spinal cords were dissected out by
removing the vertebrate bodies and all dorsal and ventral roots
were cut at the base, except the L1-L6 ventral roots. MNs or
dCINs in the L2 segment of the isolated spinal cord were labeled
with the retrograde fluorescent tracer RDA (3000 MW; Molecular
Probes) applied to the cut ends of the L2 ventral roots (MNs) or the
cut end of the hemi-segmental transection of the spinal cord
between L3 and L4 (dCINs) as described previously [13],
Figures 1A and B. After application of RDA the spinal cords
were incubated in oxygenated (5% COgy in Og) normal calcium
Ringer’s solution (111,14 mM NaCl/3,09 mM KCl/11,10 mM
Glucose/25 mM NaHCO3/1,26 mM MgSO,/1,10 mM
KH,P0O,4/2,52 mM CaCl, in DEPC-treated and autoclaved
dH,O; pH 7,4) at room temperature in a dark chamber for three
hours. Following the incubation the spinal cords (L1-L6 segments)
were snap-frozen with COy and stored at —0°C until sectioning.
The L2 segments were sectioned in a cryostat into 10 m sections,
which were mounted on nuclease and human nucleic acid free
0,9 um POL-membrane frame slides (Leica Microsystems) and
stored at —80°C. until LMD.

Laser microdissection and cell extraction

The RDA positive neurons (MNs or dCINs) were isolated from
the spinal cord sections using the Leica AS LMD laser
microdissection system (Leica Microsystems) at room temperature.
Laser microdissected cells were collected in the cap of a PCR tube
by the force of gravity and incubated in 10 pl extraction buffer
(PicoPure™ RNA Isolation Kit; Arcturus) at +42°C for
30 minutes. The cell extracts were stored at —80°C until the
RNA was isolated. To reduce RNA degradation the LMD
procedure never exceeded one hour before extraction buffer was
added to the microdissected cells. 50-250 labeled neurons (on
average a 100 cells) were laser microdissected per preparation.
Control samples (MIX) were generated from randomly laser
microdissected cells from the ventral part of the L2 spinal cord
sections.

Total RNA isolation, mRNA amplification and aRNA
biotinylation

The PicoPure™ RNA Isolation Kit was used to isolate total
cellular RNA from the laser microdissected cells. A DNAse
treatment was always added to the RNA isolation protocol to
eliminate genomic DNA contamination (RNase-Free DNase Set;
Qiagen). The mRNA fraction of the total cellular RNA was
amplified by a two round T7 linear amplification process using the
RiboAmp® HS RNA Amplification Kit (Arcturus). The comple-
mentary DNA (cDNA) from the second round of the amplification
process was used to generate biotin-labeled aRNA in an in vitro
transcription (IVT) reaction using the GeneChip® Expression 3'-
Amplification Reagents for IVI' Labeling (Affymetrix). The yield
and purity of the biotinylated aRNA samples were determined in a
BioPhotometer (Eppendorf) and only samples of good integrity
were further processed. RNA isolations including DNase treat-
ment, RNA amplifications and biotin-labelings were performed
according to manufacturers’ instructions.

We amplified mRNA from 50-250 laser microdissected cells for
microarray hybridization, keeping the input material within a
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range of a factor five as suggested in [5] and therefore minimizing
complications in downstream analysis due to amplification
artifacts [5,99].

RNA quality control and microarray hybridization

The integrity of the biotinylated and amplified aRINA samples
were furthermore assessed on Agilent RNA chips with the Agilent
2100 Bioanalyzer (Agilent Technologies), both before and after
fragmentation of the samples. Five lg of the fragmented samples
were hybridized to RN_U34 chips, which were subsequently
scanned. One array always originated from one animal. The
Agilent quality controls and microarray hybridizations were done
by the Affymetrix core facility at Novum (Bioinformatics and
Expression Analysis core facility, Department of biosciences and
nutrition, Karolinska Institutet, Huddinge, Sweden) according to
the manufacturers’ instructions.

Real time reverse transcription PCR

Real time RT-PCR was used to validate the microarray
hybridization results for seven of the genes detected as DE. The
real time PCR was performed on one linear round amplified
c¢DNA according to the microarray protocol above to facilitate
direct comparison with the microarray hybridization results. As
normalization genes we used the housekeeping genes Gap-dh and
Beta-actin, which both showed little variation in expression across
samples on the microarrays. The sequences of the primers are
listed in Table 3. The real time PCR was performed using the ABI
Prism® 7000 Sequence Detection System (Applied Biosystems) and
the SYBR® Green PCR Master Mix (Applied Biosystems). The
c¢DNA was first denatured at +95°C for 10 minutes and then the
reaction profile was subjected to 45 cycles of amplification. Each
cycle consisted of denaturation at +95°C for 15 seconds and
anncaling/extension at +60°C for 60 secconds. After the last
amplification cycle, a dissociation curve was constructed by
increasing the temperature from +60°C: to +95°C.. Four individual
MN samples were compared with three dCIN samples. The
limited amount of material from each sample constrained the
amount of replicas to two per sample and primer set. The
variation seen in the real time RT-PCR ratios (Figure 4D)
therefore appear rather large, as it reflects biological variation
between animals rather than experimental variations between
multiple replicas of primer samples. In order to increase the
reliability of the biological validation, the real time RT-PCR was
performed on RNA samples originating from a separate set of
animals distinct from the ones used for the microarray hybridiza-
tion experiments.

The 274D method [100] was used to quantify the difference
of mRNA expression of each gene with respect to a housekeeping
gene (AC) between sample and control (AAC:p). The analysis was
done in R (http://www.r-project.org) on data exported from the
ABI Prism® 7000 SDS software (Applied Biosystems).

Minimizing contamination from surrounding cells

We kept the thickness of the spinal cord sections for LMD at
10 pm to minimize contamination from surrounding cells as
described in [5]. Possible contamination from surrounding cells
after LMD presumably average out in the analysis over the seven
to eight microarray replicas, as the significance analysis of DE
genes only detects transcripts that are consistently DE between the
experimental groups. We do not expect such minimal and random
contamination to produce consistent signals across samples that
could produce false positive DE genes. In worst case scenario such
a small contamination will introduce noise to the “true” cell-
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Table 3. Real time RT-PCR primer sequences.

Gene Oligonucleotides (5'to 3’)

MNs>dCINs:

Nefl

GCA GAG TAT CTG TTT GCT TGC
GTG ATT CAC ATT GCC GTA GAT

—Forward primer
—Reverse primer
VAChT

GTG TTA GGC GTC TAC CTC ACC
AAG AGC TCA CTC CAA TTA CCG

-Forward primer
—Reverse primer
Calcb

GGA AAA CAC CAT TGT CAC TTG
TTT GAC TGG CCA TAG ACT CAG

-Forward primer
—Reverse primer
Kcnal

ATG TAC CCT GTG ACA ATT GGA
GAA ATT GGA CAC AAT GAC AGG

-Forward primer
—Reverse primer
5HT3r

CCT TTT TGA TCA GAG GAA AGC

CCA CAA GTG AGC TGA AGA AGA

-Forward primer

-Reverse primer

dCINs>MNs:

Ox2r

TAG CCA ATA AGA CCA CCC TCT
TGT ACG TCA CCA GAA AGA AGC

—Forward primer
—Reverse primer
Viaat

TCG TAT GTG GCC ATA GCT AAC
GAT ACA CGT CAT CAC CAG CTC

-Forward primer

—Reverse primer

Housekeeping genes:

Gap-dh

TGG GTG TGA ACC ACG AGA AAT A
GCT AAG CAG TTG GTG GTG CAG

-Forward primer
-Reverse primer
Beta-actin

TCG TAC ACT GGC ATT GTG AT
CGA AGT CTA GGG CAA CAT AGC A

-Forward primer

—Reverse primer

doi:10.1371/journal.pone.0003415.t003

specific expression values, which could prevent detection of
differential expression for low expressed genes.

Microarray probe annotation

It has previously been noted that some old probe sets remain
annotated in the Affymetrix chip description files (CDFs) even
though analysis on updated genome and transcriptome sequence
databases show clear miss matches (MM), ie. unspecific
alignments [101,102]. These erroneous probe sets should be
excluded from the analysis and masked, for instance by altering
the CDF files themselves as suggested in [101]. We relied on the
Ensembl [103] transcriptome database to filter out obsolete probe
sets. The Ensembl transcriptome database only includes Affyme-
trix probe sets that match the updated transcript sequences. By
linking to the Ensembl transcriptome database and retrieving the
annotated probe sets for the RN_U34 chip we in essence filter out
genes by excluding probe sets not included in this updated list. For
the RN_U34 chip this procedure reduced the probe sets with 272
transcripts, making it a total of 1050 not 1322. That means that
almost 21% of the probe sets on the RN_U34 chip were obsolete.
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The biomaRt bioconductor package (http://bioconductor.org)
was used to retrieve updated annotations for the RN_U34 probe
sets from the Ensembl transcriptome database.

Background compensation

Three methods were tested to reduce background noise: Global,
MAS (MAS 5.0 software; Affymetrix) and RMA convolution [80].
The Global background compensation is a simple method to
minimize the array-wise background level by subtracting the array
PM intensity minimum from all PM values, i.e. resetting each
array intensity distribution to start at zero prior to normalization.
Both MAS and RMA background compensation are described
elsewhere [80,104].

Normalization

Two widely accepted and popular methods for microarray
normalization, QPN and gspline [22,79], operate on array
distributions through nonlinear transformations of the distribution
quantiles. These methods assume that the gene expression
distributions of different cell types are identical, i.e. any change
in the expression of individual genes is balanced such that the
overall distribution is preserved. Taken together this implies that
any deviation among the measured probe intensity distributions is
due to experimental errors and normalization can be carried out
to equal these distributions. In order to actually test the hypothesis
that all gene expression distributions are identical, we developed a
linear scaling method to inspect for similarity among probe
intensity distributions. In line with the strategy of the QPN and
gspline methods we consider the intensity distributions and hence
re-order the data into quantiles, which plotted against a reference
distribution produces monotonically increasing curves to which a
linear regression can be performed with good results. We thus
combine a nonlinear transformation of sorting the data according
to rank with a linear fit to the transformed data. The parameters of
the fit are then used to rescale the data, in essence making the
normalization itself a linear transformation. In this analysis we
only use PM values excluding the MM values and make use of
probe level normalization in accordance with previous discussions
[80,105,106]. In particular, the procedure is a linear transforma-
tion that maps each array’s PM intensity distribution, 7, onto the
average PM distribution of all arrays, I, We refer to this
procedure as QLT. For the average reference distribution the ¢-th
quantile is calculated as follows:

b (@) =<@)> =3 1) (eq)

j=1

For a total of m probes, the mapping between quantiles and ranks,
7, are given by: ¢ =r/m|r={1, 2, ... , m}. In short, we therefore
sorted the probe intensities of each of the n microarrays according
to rank 7, aligned these vectors of ordered intensity values into
columns of a matrix and averaged each row to give the average
quantiles for the reference distribution (calculated as the QPN
procedure). The scaling parameters for each array were obtained
from a linear regression between quantiles, ¢, of the average
distribution, 7,5 and the PM intensity distribution, j, for array j:

Ii(@)=aj-Ier (q) +b; (eq2)

Thus /; (g) is a vector of ordered intensity values for array j, making
this a regression to pair-wise equally ranked intensities. In
particular we solve:
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min g5, > (5(@)— (a7Ler(9) + ;) (eq3)
q

It should be noted here that, as the distributions do deviate at the
tails (see Figure 2C), the linear fit to quantiles was carried out on a
reduced range: from the Oth to 90th quantile. The variation at the
tails only accounts for a small percentage of the data, the majority
of which correlate nicely with the average distribution. The range
of the linear fit is not fixed and can be adjusted according to the
data set under consideration. The parameters, ¢; and b;, from the
linear regression are used to rescale array j:

L= =t) (eq4)
4
ij is the normalized intensity distribution. Under the assumption
of equal expression distributions and linear experimental
artifacts, this linear scaling should suffice to make all distribu-
tions equal irrespective of the nature of these distributions. That
1, if two distributions belonging to the same family and therefore
only deviate in their distribution parameters, a qq-plot between
these will show a linear relationship that deviates from the
identity line according to the difference in the distribution

parameters .

Expression summary measures

Li-Wong model based index was used as probe set summary
measure [107]. RMA summaries [108] were also tested for
comparison. After expression summary calculation all gene
expression profiles were minimized by subtraction of the universal
minimum of all expression values. This procedure increases ratios
of gene expression between samples. Both summary measures
were calculated using the affy package from Bioconductor (http://
bioconductor.org). The Li-Wong expression summaries for each of
the 22 microarrays were submitted to the National Center for
Biotechnology Information (NCBI), Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/), together with the raw
CEL files under accession number GSE9439.

Quality control

Un-supervised hierarchical clustering with centered Pearson
correlation distance measure and principal components analysis
were used for the final quality assessment of normalized gene
expression summaries. Cluster, pls and amap Bioconductor
packages (http://bioconductor.org) were used to calculate and
plot the dendogram and principal components.

Differentially expressed genes

We used a conglomerate classifier based on three different
regularized t-test procedures to identify DE genes: Cyber-T [19],
limma [18,109] and SAM [20]. The regularized t-test calculation
of either method is implemented for all z genes on the microarray.
To evaluate the likelihood of DE we use FDR that has been
proposed as a good strategy to handle the increasing family wise
error rate of multiple testing [23,110,111]. For SAM the
moderated t-statistic (d score) does not have an associated
distribution theory so estimates of reliability are based on
empirical FDRs calculated from balanced permutations of samples
[20]. Gyber-T and limma on the other hand produce a p-value for
each gene, which is used to calculate FDRs. We use two different
strategies to calculate the FDR: 1) a mixture model approach as
described by Allison et al [112] and 2) a step-up FDR controlling
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procedure suggested by Benjamini and Hochberg [23]. The mixed
model approach calculates the expected FDR for a given p-value
based on a fit of beta distributions to the histogram of p-values; the
higher order beta functions represent the likelihood of true positive
and the “null” beta function the likelihood of false positive, which
combined can be used to calculate the FDR. Dependence
structures in the data manifested as peaks elsewhere in the
histogram violates the general assumptions of the model [112].
The other approach, BH FDR, adjusts the p-values by multiplying
each p-value with a factor determined by its rank (p-values sorted
ascending), 7;, and number of genes, 7. For gene ¢ the adjusted p-
value is given by p.adj; = p.raw; * (n/7;). To control the FDR we
select a FDR =¢ and reject all p.adji<¢p such that ¢% of the
rejected null hypothesis” are expected to be false positive. For each
test all the genes were ranked according to their test statistic and
for each gene the average rank of all three methods were used as a
conglomerate classifier of DE.

Calculation of the FDRs for the mixed model approach was
carried out with scripts modified from the Cyber-T source code.
The BH FDR was implemented by the multtest Bioconductor
package in R. Limma and SAM were implemented using the
standard Bioconductor packages limma and samr respectively.

Ratios
For both Affymetrix gene expression summaries and real time
RT-PCR data the average ratio of gene expression between the
Ecaiv

. . Euy
geometric mean of all ratios, R;, for each gene:

two experimental groups, (R =< >, was calculated as the

(eq5)

logy (Ecin)yq—<logy (Emn)Ya)

i\ (%ilogz (RJ)
(Ry,= (n R,-) =2
=2

where subscripts g and @ on angled brackets indicate geometric and
arithmetic mean respectively and E represent expression values.
For the average log, transformed ratios, M, (as plotted in Figures 4
A-D) we have:

M =log,{R), =<logy(Ecin)>,—logy(Emn)>,  (eqb)

The average log, transformed expression A of any given gene, as
used in Figure 4, is given by:

A=logy E), =logy(E)), (eq7)
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