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Abstract

Background: The scale and diversity of metagenomic sequencing projects challenge both our technical and conceptual
approaches in gene and genome annotations. The recent Sorcerer II Global Ocean Sampling (GOS) expedition yielded
millions of predicted protein sequences, which significantly altered the landscape of known protein space by more than
doubling its size and adding thousands of new families (Yooseph et al., 2007 PLoS Biol 5, e16). Such datasets, not only by
their sheer size, but also by many other features, defy conventional analysis and annotation methods.

Methodology/Principal Findings: In this study, we describe an approach for rapid analysis of the sequence diversity and
the internal structure of such very large datasets by advanced clustering strategies using the newly modified CD-HIT
algorithm. We performed a hierarchical clustering analysis on the 17.4 million Open Reading Frames (ORFs) identified from
the GOS study and found over 33 thousand large predicted protein clusters comprising nearly 6 million sequences. Twenty
percent of these clusters did not match known protein families by sequence similarity search and might represent novel
protein families. Distributions of the large clusters were illustrated on organism composition, functional class, and sample
locations.

Conclusion/Significance: Our clustering took about two orders of magnitude less computational effort than the similar
protein family analysis of original GOS study. This approach will help to analyze other large metagenomic datasets in the
future. A Web server with our clustering results and annotations of predicted protein clusters is available online at http://
tools.camera.calit2.net/gos under the CAMERA project.
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Introduction

The vast majority of microbes cannot be grown in pure cultures.

However, advances in sequencing technology now allow us to

study such microbes directly in their environment without isolation

and culturing. The new science of metagenomics studies the

microbes under many different environmental conditions such as

soil, animal guts, marine and other water body [1–8]. The largest

metagenomic study to date is the Sorcerer II Global Ocean

Sampling (GOS) expedition [1,2]. The first leg of this trip sampled

41 locations from the northwestern Atlantic through the eastern

tropical Pacific and obtained nearly 8 million environmental DNA

reads. Such studies, with the great scale and diversity of data,

challenge both our technical and conceptual approaches in gene

and genome annotations.

The raw sequence reads from a typical metagenomic study

usually cannot be assembled into full genomes since a single

sampling does not produce enough coverage required by assembly

programs. This failure is especially severe for the organisms at low

population densities. Another assembling problem is posed by the

high sequence similarities among closely related species. The

available whole-genome-tested gene prediction programs work

poorly on short and fragmented sequences, the use of such

programs results in a significant underprediction of proteins. And

a significant overprediction arises from predicting proteins by

translating all 6 reading frames, a method used in the GOS study

in Open Reading Frames (ORFs) calling. So, among the 17.4

milliion ORFs identified in the GOS study, many are spurious

ORFs, which are not protein coding sequences. In addition, in

order to accommodate the partial DNA sequences, a GOS ORF

starts at either a start codon or the start of the DNA sequence, and

ends at either a stop codon or the end of the DNA sequence. So

the GOS ORFs are also fragmented.

Recently, several studies, such as simulated datasets[9],

comparative sequence analysis [10], taxonomy [11,12], statistical

comparison [13], functional diversity analysis [14], and binning

[15], were reported to address the metagenomics-specific prob-

lems. Despite these problems, metagenomics offers a fresh view of

the protein universe and classification of protein families. A single

GOS study more than doubled the number of known protein

sequences. Even more sequences will flow from ongoing and

future metagenomic projects. Clustering analysis, which groups

similar sequences into clusters or families, provides a first glimpse

into the internal structure of the metagenomic datasets and
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identifies novel families. In metagenomics, clustering plays another

important role as a tool to help to recognize some of the spurious

ORFs that are introduced in the initial ORF calling stage, thus

providing an error-correction mechanism.

Various clustering approaches have been applied to protein

family analysis [16–24]. However, most existing applications start

from an all-by-all sequence comparison, which is very computa-

tionally intensive and almost impossible to do for very large sets.

Thus, most existing approaches can handle only rather small

datasets or have to rely on incremental buildup of families. In

order to cluster the GOS dataset using such approaches,

extraordinary resources are needed. In the clustering study by

Shibu and co-workers [2], the all-by-all comparison took over 1

million CPU hours (.1 year on a 100-CPU cluster). Given the

computational requirements, it is very difficult to test the

robustness of the clustering method, for instance, by using a

different set of BLAST parameters in calculating sequence

similarities.

In the past few years, we have developed an ultra-fast protein

sequence clustering algorithm, CD-HIT [25–27], which has been

applied widely in sequence analyses such as preparing the UniRef

[28] database in UniProt [29]. Several new features introduced in

the latest version of CD-HIT made it especially useful for its

application for very large metagenomic datasets. In this study, we

used a CD-HIT-based clustering approach to analyze GOS ORFs

for several specific goals:

a) To study the internal structure of the ocean metagenomes,

such as the distribution of protein families and their functions

and the distributions of families among different samples.

b) To identify novel protein families.

c) To reduce efforts in sequence annotation by annotating

clusters instead of each individual ORF.

d) To help to recognize spurious ORFs by analyzing the internal

structure of clusters.

Results

Sequence clustering
The GOS study identified 17,386,448 ORFs of at least 60

amino acids [1,2]. Based on the average coding density in Bacteria

and Archaea, we can estimate that at least half of these ORFs are

spurious. One of our goals is to identify such ORFs by specific

features of their clusters. The clustering was performed by the

program CD-HIT [25–27] using a newly added accurate mode

based on full-length or nearly full-length sequence similarities.

Since the majority of GOS ORFs are partial sequences, we

allowed a short sequence to be clustered with a long sequence if it

was completely contained within the latter. Three clustering steps

at different similarity thresholds (90%, 60%, and 30% identity)

were performed one after another. In each subsequent step, only

the representative sequences of clusters generated in the previous

step were used (Figure 1). This hierarchical clustering approach

not only automatically produced a treelike structure, but also

maximized the computational efficiency and quality of clustering.

Detailed settings of the clustering procedure are described in the

Methods section.

In the first step, the clustering threshold, which is the similarity

cut-off within a cluster, was set at a sequence identity $90% in

order to eliminate redundant (nearly identical) sequences. The

identity threshold in the second step was set at $60%, and the

threshold in the third step was set to include any sequence meeting

either a sequence identity $30% or an expect value #1e-10. We

used conservative clustering thresholds to ensure that each cluster

contained relatively closely related sequences. With more sensitive

tools such as PSI-BLAST [30], PDB-BLAST [31], Hidden

Markov Models (HMMs) [32], and FFAS [33], many clusters

could further be identified as related and be grouped together.

Therefore, we expect that the actual number of families in the

GOS set is much smaller. The reason why we did not proceed with

further clustering is that the presence of many spurious ORFs,

which have an uncommon amino acid composition or pattern, led

to unusual behavior in the profile-based methods.

The first-step clustering identified 12,562,062 non-redundant

sequences from the original 17,386,448 GOS ORFs and yielded a

28% reduction rate (Figure 1). When we mention the ‘‘size of a

cluster’’ in the rest of this paper, it refers to the number of the non-

redundant sequences in that cluster. The second and third steps

resulted in 8,908,121 and 7,049,037 clusters with 49% and 60%

reduction rates. As a reference, we performed the same clustering

procedure on the NCBI NR dataset of February 2006, which

contained 3,289,889 sequences. The numbers of clusters at the

90%, 60%, and 30% levels were 2,104,938, 1,333,002, and

462,965, which corresponded to the 37%, 66%, and 86%

database reduction.

The distribution of clusters identified in the last step is plotted in

Figure 2. There are noticeable differences between the internal

structures of GOS and NR, the most obvious difference being the

unusually large amount of singletons within the GOS ORFs.

Almost certainly, the majority of these singleton ORFs are

spurious ORFs. Such ORFs were not clustered because of their

random characters. If we exclude singletons and very small clusters

of sizes 2–4, then the overall clustering behavior of GOS ORFs

and NR are very similar in terms of fraction of clusters binned by

size, sequence distribution pattern, and power law distribution

curve, despite the significant organism composition difference

between GOS and NR and the fact that GOS ORFs are mostly

fragments. For example, the largest size bin corresponds to sizes

100–499 in both databases.

Clustering described in this study was performed on a 16-

processor Linux cluster. The CPU times for the three steps are

135, 1,224 and 8,200 hours, respectively. The total CPU cost was

about two orders of magnitude less than the clustering effort in the

original GOS study [2].

Figure 1. Step-wise clustering of GOS ORFs.
doi:10.1371/journal.pone.0003375.g001
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Protein enrichment
One of the goals of our clustering analysis was to enrich the real

genes into clusters. One way of testing the enrichment is to check

the ORFs with strong evidence of being real proteins. A total of

3.70 million GOS ORFs match HMM models from either Pfam

or Tigrfam [2]. These HMM-validated ORFs were used as

benchmarks for gene-enrichment estimation.

A total of 3.30 million (89%) HMM-validated ORFs were found

in 46,084 clusters of size $20. Thus, clustering placed most

genuine ORFs in large clusters as expected. About 0.14 million

(4%) such ORFs were found in 49,747 clusters of sizes 10–19. An

additional 4% of HMM-validated ORFs are found in clusters of

sizes 2–9. Nearly 3% of these ORFs are in singletons, most of

which have significant but not full-length similarity to other ORFs,

so they could not be clustered. These ORFs may have novel

domain structure, but more likely, they are just partially correct

sequences with errors such as frame shift and incorrect boundaries

and should be excluded in further analysis.

Predicted protein clusters
We focus on the 46,084 large clusters of size $20, which

contain 6,652,534 (38%) ORFs. These clusters include ,90% of

all the protein-coding ORFs (estimated according to the result of

protein enrichment). Analyzing large clusters allows us to take

advantage of combined information of all homologous sequences

within that cluster to reach more confident results. To proceed,

first we need to detect and filter out the spurious ORF clusters. In

the original GOS study, ORFs that overlap with other more

protein-like ORFs on different reading frames were detected and

called shadow ORFs [2]. Here, we introduce an independent

method to detect spurious ORFs based on sequence consensus of

homologous proteins (details are described in the Methods

section). Most known protein families, even very large and diverse

ones, display conservation patterns along the sequences, which

usually form blocks within multiple alignments. Such patterns are

the result of evolutionary pressure to maintain the structures and

function of proteins. The conserved residues are related with

hydrophobic cores, conserved catalytic residues, and functional

motifs. Clusters that lack such patterns are very likely translations

from non-protein-coding frames.

We define an HMM-validated cluster as having at least one-half

of the ORFs match the same Pfam or Tigrfam family. In total,

13,333 large clusters are HMM-validated. Our sequence consen-

sus-based method identified 33,043 protein-like clusters, which

include almost all (13,006, or 97.5%) the HMM-validated clusters.

Only 327 HMM-validated clusters were missed. Overall, we

preserved nearly all the protein-coding clusters while removing a

big fraction of spurious protein clusters. We combined the 33,043

protein-like clusters and 327 HMM-validated clusters that were

missed for a total of 33,370 and used them for further analysis.

These clusters are called predicted protein clusters, which contain

5,992,629 (34%) ORFs.

Figure 3 shows the distribution of ORFs by length. As expected,

since short ORFs contain more spurious predictions, we observed

that as the length increases more ORFs fall in predicted protein

clusters.

Novelty of predicted protein clusters
For the 33,370 predicted protein clusters, we first ran BLASTP

[30] to search for their homologs from NCBI NR of January 2007

using the representative sequences selected by the CD-HIT

program as queries. For the clusters without any BLASTP hits,

we applied slower but more sensitive homology detection tools

PDB-BLAST[31] and FFAS[33] to search for more remote

homologs. With PDB-BLAST, we searched the same NR

Figure 2. Distribution of clusters of GOS ORFs and NCBI NR proteins. The x-axis is the size of a cluster defined by the number of non-
redundant sequences at 90% identity. Blue bars with numbers plotted against the left y-axis in log scale show the numbers of clusters. Red line
plotted against right y-axis show the number of corresponding ORFs or sequences. Left is for GOS, and right is for NCBI NR.
doi:10.1371/journal.pone.0003375.g002

Figure 3. Distribution of ORFs by length. The x-axis is the length
bin of ORFs. The y-axis is number of ORFs in two groups: ORFs in
predicted protein clusters and other ORFs.
doi:10.1371/journal.pone.0003375.g003
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database, and with FFAS, we searched three databases, PDB,

Pfam, and COG, provided by the FFAS developers.

We classified clusters into three types: having homologs

(BLASTP matches), having remote homologs (PDB-BLAST or

FFAS matches), or having no recognizable homologs in the known

protein space. A match needs to cover at least 60 residues or 50%

of the length of the query with an expect value #1e-3 for BLASTP

and PDB-BLAST, or score #29.5 for FFAS. We have 23,934,

2,711, and 6,725 clusters in these three categories, respectively

(Figure 4a). Actually, many of the ‘‘known’’ clusters (with

homologs or remote homologs) only match a few hypothetical

proteins in NR. So they are really unknown in terms of function. If

we require a cluster to have at least 20 homologs or to be a

‘‘known’’ cluster, then the GOS dataset has 10,835 novel clusters

(Figure 4b).

These novel clusters are very interesting and they are valuable

materials for discovery of new functions. However, they may still

possibly contain spurious ORFs despite having protein-like

conservation patterns. As homology information cannot be used

to predict their function, additional information such as genomic

context may help (see the next section), but such analysis is difficult

to do in a high-throughput mode. However, with today’s

technology, some of them can even be experimentally validated.

Five crystal structures from these novel families were solved by our

collaborators from the Joint Center for Structural Genomics and

deposited in PDB (PDB IDs: 2OD5, 2OD4, 2OD6, 2OP5,

2PGC).

Genomic context analysis
One problem in the analysis of metagenomic data is the

fragmented nature of the sequences. For example, the average

length of GOS assemblies is only ,1,500 bp. Despite this,

information such as relative gene positions on genomic contigs

can still be very valuable in gene annotation. Here, we define a

simple neighboring relation between any ORF that ends with a

stop codon and its next non-overlapping ORF within 500 bp on

the same strand. We found 7,244,944 such pairs of ORFs, and in

addition, we identified 10,436 pairs of clusters where at least 20 or

one third of the ORFs in one cluster are genomic neighbors of the

ORFs in another cluster. Since one cluster can be a neighbor to

multiple clusters, which may correspond to alternative gene

organization in different species, we observed some more

complicated neighboring relations.

For example, we found 17,270 cases where 3 clusters could form

an operon-like structure, and 31,726 cases where 4 clusters could

form an operon-like structure. Detailed analyses of such relations

will be the subject of a separate study. For the 6,725 novel clusters,

2,089 can be assigned to such ‘‘virtual operons,’’ including 1,247

that are next to characterized clusters, providing possible hints to

their functions.

Organism composition and functional class
For the 23,934 clusters that have BLASTP homologs in NR, we

examined the distribution of the clusters in the main phylogenetic

groups that their homologs belong to: Archaea, Bacteria,

Eukaryota, and Viruses (Figure 5). The top three dominant classes

are Bacteria only (B), Bacteria and Eukaryota (B,E), and Archea,

Bacteria, and Eukaryota (A,B,E). There are 436 clusters that have

only eukaryotic homologs—the ‘‘E’’ clusters in Figure 5. These

clusters, perhaps, represent the Eukaryota component within GOS

samples or perhaps, new, previously unknown bacterial or archeal

homologs of families thought to be specific to eukaryotes.

We compared the GOS clusters against the Clusters of

Orthologous Groups (COGs) [34] using BLASTP. For each

cluster that had consistent COG hits, i.e., matches $5 non-

redundant significant homologs from the same COG, the top

matching COG was assigned to this cluster. A total of 14,481 out

of 33,370 clusters were given COG assignment (Figure 5). When

compared to the underlying sequences in COG database, GOS

has many fewer proteins in class ‘‘H’’ (coenzyme transport and

metabolism), but much more in classes ‘‘E’’ (amino acid transport

and metabolism) and ‘‘M’’ (cell wall/membrane/envelope bio-

genesis).

Distribution of clusters among samples
The GOS sequences represent 44 samples taken at 41 different

locations throughout the Atlantic and southern Pacific oceans.

Since the GOS study used a cross-sample assembly strategy, a

single assembly may associate with multiple samples. As a result,

an ORF may also be mapped to multiple samples. We built the

ORF to sample mapping by combining all the mapping

information, including ORF to assembly, assembly to read, and

read to sample, as provided by the GOS study [1,2]. Then, we

created a mapping table between 33,370 predicted protein clusters

and 44 samples. We found that most of the clusters are associated

with many samples (Figure 6). For example, 2,279 clusters are

found in every sample, and 6,593 and 10,316 clusters are found in

$90% and $80% of samples, respectively.

On the other hand, clusters mapped to only a small number of

samples are rare; only 771 clusters are found in #20% samples.

The top five samples containing most of these rare clusters are

GS20, GS11, GS12, GS33, and GS13—each contains 628, 603,

593, 366, and 294 rare clusters. This result is not surprising

because GS20 is the only freshwater sample, GS11 and GS12 are

two of the three estuary samples, and GS33 is the only hypersaline

sample. But it is not very obvious why this should occur for GS13,

one of the 20 coastal samples. There are six completely sample-

specific clusters; all of them are from a single location, the

hypersaline GS033. Three of them are novel clusters; the others

only have hypothetical protein homologs in the NCBI NR. In

terms of the distribution of novelty of clusters, all the samples are

quite similar (Figure 7) known clusters and novel clusters are

distributed evenly among samples.

Small clusters
Small clusters were not investigated in detail, mostly because of

their sheer number, but also because of they are more likely

Figure 4. Pie chart of the predicted GOS protein clusters. The
predicted GOS protein clusters are in three classes by similarities to
existing protein sequences in NR: with homolog (BLASTP hits), with
remote homolog (PDB-BLAST or FFAS hits), and novel (no hit). All
matches to proteins in NR are considered in (a). Only matches to at least
20 non-redundant sequences in NR are included in (b).
doi:10.1371/journal.pone.0003375.g004
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spurious ORF clusters. We did repeat some of the analyses

described in this paper on 49,747 clusters of sizes 10–19, which

contain 971,171 ORFs. We first applied the sequence consensus

measure and selected 24,119 protein-like clusters. Since there are

only a small number of homologs in each cluster, this measure was

not as good as when it was applied to large clusters. Therefore, we

built a sequence profile for each of the 33,370 large clusters with

PSI-BLAST by searching the non-redundant sequences in that

cluster using the representative as the query. These profiles were

used to search the ORFs in small clusters to identify matches of

expect value of #1e-3 over 60 residues. If 50% of the ORFs in a

small cluster match a big cluster profile, this small cluster is also

marked as protein-like. This gave 20,718 protein-like clusters. By

combining these two groups, we obtained 29,882 predicted protein

clusters from these small clusters. The small clusters contain

611,046 ORFs, making a total of 6.6 million ORFs in all predicted

protein clusters.

Annotation server
We annotated the representatives of 33,370 predicted protein

clusters with a list of programs including TMHMM [35], SignalP

[36], Jnet [37], Coils [38], Hmmer [32], BLAST [30], PDB-

BLAST [31], FFAS [33], Clustalw [39] and Modeller [40]. These

programs cover trans-membrane topology prediction, signal

peptide prediction, secondary structure prediction, coiled-coil

prediction, low-complexity region calculation, domain identifica-

tion, homology search, multiple alignments, 3D structure

prediction, and so on. The results are available at http://tools.

camera.calit2.net/gos/.

Discussion

Using ultra-fast clustering followed by automated analyses of the

clusters, we were able to quickly analyze a very large metagenomic

dataset. Since our clustering and annotation pipeline is two orders

of magnitude faster than conventional approaches, it can be easily

applied to other large datasets in the future. With modifications, a

similar clustering method has been used in analyzing several 454

based metagenomic datasets, which will be reported in separate

studies.

Challenges still remain after this initial level of analyses. These

include the further annotation and validation of novel clusters, the

analysis of genes from small clusters, the identification of novel

domains, and the prediction and discovery of new functions. Such

tasks can only be carried out by the whole community of

researchers, so we have made the results of our analysis fully

available on the CAMERA Web site. Metagenomics will require

extensions and optimization of existing tools and the creation of

new, metagenomics-specific ones, as well as the means to do large-

scale data integration of the results from separate observations and

to provide informative annotation on a large scale. New

approaches are needed for assembly and for binning the

Figure 5. Distribution of clusters by their associated organisms and functional classes. The left figure shows the number of clusters by
organisms at the level of main domains of life (Archea, Eucaryota, Bacteria, and Viral). For example, ‘‘A,B’’ means a cluster has only Archaea and
Bacteria homologs. The right figure shows distributions by COG functional classes. Blue bars plotted against left y-axis show numbers of clusters. Red
and green lines plotted against right y-axis are numbers of GOS ORFs and the underlying COG sequences multiplied by 40 for scaling. COG functional
classes are: C, energy; D, cell division, chromosome partitioning; E, amino acid; F, nucleotide; G, carbohydrate; H, coenzyme; I, lipid; J, translation,
ribosomal structure, and biogenesis; K, transcription; L, DNA replication, recombination, and repair; M, cell wall/membrane/envelope; N, cell motility
and secretion; O, posttranslational modification, protein turnover, chaperones; P, inorganic ion; Q, secondary metabolites; R, general function
prediction only; S, function unknown; and T, signal transduction.
doi:10.1371/journal.pone.0003375.g005

Figure 6. Distribution of predicted GOS protein clusters by
their associated samples. The x-axis is the cluster size; the y-axis is
the number of a cluster’s associated samples. The pie chart inset shows
distribution of clusters by the percentage of samples to which a cluster
is associated.
doi:10.1371/journal.pone.0003375.g006
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sequences, and a new conceptual approach to annotation, in

which the community is involved through a wiki environment, will

be essential.

Methods

Sequence clustering
The clustering algorithm behind CD-HIT is a greedy incremen-

tal algorithm. In a single clustering run, sequences are first sorted in

order of decreasing length. The longest sequence becomes the

representative of the first cluster. Then, each remaining sequence is

compared to the representatives of all existing clusters. If the

predefined similarity threshold is met, the sequence is grouped into

the most similar cluster. Otherwise, a new cluster is defined with

that sequence as the representative. When finished, each cluster has

only one representative, the longest sequence. In this study, we

performed the CD-HIT clustering three times in succession with

decreasing similarity thresholds. First, clustering started with the

input dataset, and the last two steps started with representatives of

the previous clustering runs. The clustering of the first two steps

required full-length sequence similarity, but the last step needed

only .L coverage in length. The whole process iteratively joins the

similar sequences into families and therefore produces a hierarchical

structure for the input dataset. In this study, we used the newly

added accurate mode for clustering. The usage can be found from

the CD-HIT user’s guide.

Sequence similarity comparison
Three methods, BLASTP [30], PDB-BLAST [31], and FFAS

[33], were used to compare the GOS ORFs to known protein

databases. PDB-BLAST is a two-step PSI-BLAST searching

method. The first run with three iterations is performed against

a comprehensive database (db1) to build a Position Specific

Scoring Matrix (PSSM). The second run, done without iteration,

searches against the object database (db2) with the pre-calculated

PSSM. In this study, db1 contains non-redundant sequences at

90% identity from GOS ORFs and NCBI NR with sequences of

low-complexity composition masked. The pre-processing of db1

significantly reduces the search time and improves sensitivity.

FFAS is a profile-profile comparison program. In order to

compare two sequences, sequence profiles are built for both of

them. The sequence profiles for queries were built based on the

first step of the PDB-BLAST runs. The target profiles were

provided by the FFAS developers.

Detection of non-protein-coding ORFs with sequence
consensus

A multiple alignment is built for each cluster using the

representative and up to 30 of its nearest sequences with ClustalW

[39]. We identified the consensus positions where the residues are

conserved to $80% of the sequences. Residues are considered

conserved if they are identical or belong to the same groups (K/R,

E/D, T/S, and L/V/I) and their corresponding DNA codons are

not conserved. The latter requirement ensures that the conservation

is maintained by the evolutional pressure at the protein level. Let n

be the number of codons for an amino acid X, the probability of

each codon to be observed is 1/n. We do not consider X to be

conserved if any single codon is too dominant at a level that all other

n–1 codons together are observed at less than half of the sum of their

probabilities: the occurrence of other n–1 codons,(n–1)/2n.

The minimal number of consensus positions required by real

protein families was obtained using the Pfam seed alignments with

at least 20 sequences. We found that 99% of these alignments meet

follow criteria: (1) the number of consensus positions is $15 or

Figure 7. Distribution of predicted GOS protein clusters within each sample. The y-axis is the number of clusters. In the upper figure,
clusters are grouped and colored by the percentage of samples to which a cluster is associated. In the bottom figure, clusters are colored by novelty
in terms of having homologs, remote homologs, or no homolog in known protein database.
doi:10.1371/journal.pone.0003375.g007
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$15% of the alignment length, and (2) consensus residues must

contain $2 active residues (E, D, R, K, H, S, T, C, N, and Q).

These criteria were used to filter out spurious ORF clusters.
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