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Abstract

Despite the emerging experimental techniques for perturbing multiple genes and measuring their quantitative phenotypic
effects, genetic interactions have remained extremely difficult to predict on a large scale. Using a recent high-resolution
screen of genetic interactions in yeast as a case study, we investigated whether the extraction of pertinent information
encoded in the quantitative phenotypic measurements could be improved by computational means. By taking advantage
of the observation that most gene pairs in the genetic interaction screens have no significant interactions with each other,
we developed a sequential approximation procedure which ranks the mutation pairs in order of evidence for a genetic
interaction. The sequential approximations can efficiently remove background variation in the double-mutation screens and
give increasingly accurate estimates of the single-mutant fitness measurements. Interestingly, these estimates not only
provide predictions for genetic interactions which are consistent with those obtained using the measured fitness, but they
can even significantly improve the accuracy with which one can distinguish functionally-related gene pairs from the non-
interacting pairs. The computational approach, in general, enables an efficient exploration and classification of genetic
interactions in other studies and systems as well.
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Introduction

The systematic mapping of genetic interactions in biological

systems has the potential to provide a better understanding of how

genes function as networks to carry out and regulate cellular

processes. In particular, recent advances in the experimental

technologies which allow for the large-scale screening of the effects

of combinatorial gene deletions are providing an exciting glimpse

into the organization of complex genetic networks in terms of

revealing novel interacting cellular components and compensatory

pathways involved in many cell functions. Comprehensive maps of

genetic interactions in model organisms, such as yeast, may also

provide a valuable template for understanding the basic principles

underlying the relationships between genotype and phenotype in

other populations [1]. In humans, genetic interactions are involved

in many complex phenotypes and they contribute to most genetic

disorders, but the organization of the underlying networks is

largely unknown [2,3]. Due to their combinatorial nature, the

mapping of genetic interactions is highly labor-intensive even in

genetically amenable organisms. Efficient computational frame-

works are therefore required to underpin the full potential of these

experiments.

Several large-scale studies, especially in yeast Saccharomyces

cerevisiae, have already identified a number of synthetic lethal

interactions, in which a combination of two individually non-lethal

mutations results in lethality [1,4]. Genome-wide screening

strategies for synthetic sick or lethal interactions, such as those

based on synthetic genetic arrays (SGA) or the diploid synthetic

lethality analysis by microarray (dSLAM), have successfully been

used for providing insights into the nature of genetic robustness [5],

and for identifying functional relationships among the genes and

pathways [6]. In addition to this rather limited spectrum of observed

phenotypes (synthetic sick/lethal vs. non-interacting pairs), quanti-

tative phenotypes, such as the relative growth rate of yeast colonies,

have recently been explored systematically using high-throughput

screening approaches like epistatic miniarray profiling (E-MAP) and

genetic interaction mapping (GIM) [7,8]. The importance of

measuring a broader spectrum of genetic interactions when

identifying functionally-related genes and pathway organizations

has been demonstrated in theoretical and experimental studies [9–

11]. To provide reliable information on genetic interactions,

customized data handling and pre-processing pipelines have been

developed for the different screening approaches [12–13].

Regardless of the experimental technology used, the screening

strategies aim to quantify the extent to which a mutation in one

gene modulates the phenotype (or fitness) associated with altering

the second gene, either by explicitly measuring or analytically

comparing the observed fitness of double-mutants to those of

single-mutants. More formally, a genetic interaction between

mutants i and j can be defined by the deviation (eij) of an observed

double-mutant phenotype (Pij) from the expected neutral pheno-

type of an organism’s fitness (Eij) under the hypothesis that it

carries two non-interacting mutations (the null hypothesis). If the

fitness Pij is evaluated in terms of the growth rate of double-mutant
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wij, relative to the wild-type growth rate, and Eij is a function g(wi,

wj) of the relative single-mutant fitness values wi and wj, this

definition can be formulated as:

eij~Pij{Eij~wij{g wi,wj

� �
: ð1Þ

When testing the null hypothesis, a large absolute deviation |eij|

provides evidence for genetic interaction, while deviations close to

zero indicate non-interacting gene pairs. Significant genetic

interactions can further be classified into so-called synergistic

interactions (eij,0) and alleviating interactions (eij.0). Synergistic

interactions occur when a double-mutant has a more extreme

effect on the fitness than would be expected from independent

single mutants alone, and can therefore identify e.g. complemen-

tary pathways, with synthetic lethality being the extreme case

(wij = 0). Alleviating interactions, in which the double-mutant

phenotype is less severe than expected, can occur, for example,

when the first mutation already impairs the function of a whole

pathway and thereby masks the effect of the second mutation in

the same pathway.

Recently, Mani et al. [14] demonstrated that the product

function g(wi, wj) = wiwj provides a convenient null model in the

sense that it yields a distribution with location close to zero and

low dispersion over all of the measured deviations. The

comparison was based on the principle that, as the vast majority

of gene pairs should be non-interacting, the rare gene pairs sharing

a specific function should be distinguishable from this background

distribution as outlying cases with extreme absolute deviations.

Accordingly, it was shown that the observed deviations based on

the multiplicative null model were indeed most accurate at

identifying functional relationships between the genes [14]. In the

present study, we asked two follow-up questions: (1) whether the

observed deviations could be estimated directly from the double-

mutant phenotypes under the multiplicative model; and (2)

whether the prediction of specific functional links could be made

at a similar accuracy without utilizing the measurements of single-

mutant phenotypes. Under the assumptions that significant genetic

interactions are rare and that the multiplicative model is a

reasonable approximation in the case of no interaction, we

developed a sequential approach that enables a multi-resolution

approximation of the double-mutant fitness matrix to address

these particular questions, and more generally, to provide a

computational framework for exploring genetic interaction

datasets.

Results

Estimating single-mutant fitness values
As an initial study objective, we sought to assess the accuracy to

which the single-mutant fitness vector w~ wið Þni~1 could be

estimated directly from the double-mutant fitness matrix

W~ wij

� �n

i,j~1
. In the quantitative genetic interaction dataset of

St Onge et al. [10], which was used in the following results, w is a

26-dimensional column vector and W is a 26626-dimensional

symmetric matrix. Under the multiplicative null model, Eq. 1

takes the form:

W~w6wzE, ð2Þ

where w6w is the tensor product (or outer-product) of the vector

w with itself, and E is the n6n-matrix comprising the eij values as

its elements for each gene pair i, j = 1,2,…,n. In the ideal case,

when there are no measurement inaccuracies, the approximation

problem of Eq. 2 could easily be solved using the well-established

machinery of linear algebra. More precisely, using the spectral

decomposition theorem, one can represent any symmetric real

matrix as W ~ le6e z E, where l is the largest eigenvalue of W
and e is the corresponding eigenvector [15]. Under the unrealistic

assumption that there are no genetic interactions among any of the

gene pairs, the approximation would in fact be exact, that is, the

residual error E equals zero. However, as the genetic interaction

screens are bound to present with experimental variation, missing

data, and hopefully also with significant genetic interactions, the

estimation problem must in practice be solved by numerical

means.

In the present work, we developed a sequential matrix

approximation procedure, which uses increasingly larger subsets

of mutation pairs in W to provide a series of estimates for w as

solutions of the weighted least squares problem [16]. During the

first rounds, the procedure solves the approximation problem of

Eq. 2 using only those mutation pairs that best fit the multiplicative

model, and then gradually extends the subset to also include pairs

with larger residual errors (see Methods for details). Already when

using all but the diagonal and missing entries of the double-mutant

fitness matrix in the dataset of St Onge et al. [10], we obtained an

estimate relatively close to the actual measured single-mutant

fitness vector, as compared to the conventional median estimate

(Figure 1A). The estimation accuracy could be markedly improved

by excluding those pairs with the largest residual errors from the

approximation subset. The pairs having the greatest impact on the

approximation error, in fact, corresponded to the five confirmed

synthetic lethal pairs (Figure 1B). When the sequential procedure

omitted those pairs from the approximation process, an accurate

estimate was obtained for each of the single-mutant fitness

measurements (see Figure S1). As will be seen in the following

subsections, however, the subset of mutation pairs which gives the

most accurate estimates of the single-mutant fitness values does not

necessarily lead to the best predictive power when identifying

functionally related genes.

Predicting specific functional relationships
Beyond the dynamic variability in the estimates of the single-

mutant fitness values, the behavior of the approximation

procedure with different subsets of mutation pairs revealed

another interesting observation: the order in which the mutation

pairs were added into the approximation process reflects on

average the relative order of their actual measured deviations,

even if the measurements of single-mutant fitness were not

employed (Figures 1C and D). In fact, the measured deviations eij

and the ranked deviations ~eeij obtained from the approximation

procedure were highly correlated (Pearson correlation equals

0.964, see Figure S2). This led us to investigate whether such

procedure-ranked deviations could be used instead of the

measured deviations when predicting functional links between

the mutations. To this end, we took the same set of gene pairs

which were found to have a highly specific shared function in the

previous study by Mani et al. [14] (see Methods for their

definition). Interestingly, the majority of the mutation pairs

selected towards the end of the approximation procedure shared

a specific function (Figure 2). The rate of the functional

enrichment observed among the 50 pairs with the largest ~eeij

�� ��
values was significantly higher than expected (p,10211), whereas

the functional enrichment was exceptionally low among the 50

pairs with the lowest ~eeij

�� �� values (p = 0.998). These results show

that the sequential matrix approximation procedure gives as its by-

product a ranking of the mutation pairs that is in good agreement

with their likelihood of sharing a specific function.

Exploring Genetic Interactions
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To test more systematically whether the prediction of the

functional relationships could be made to an accuracy similar to

that obtained when using the measured single-mutant fitness

values, we assessed how well the ranking based on ~eeij

�� �� values can

discriminate between gene pairs with or without a specific

functional link. Similarly as in the original study of St Onge et

al. [10], the prediction capability was evaluated using the receiver

operating characteristic (ROC) curves that show the relative trade-

off between the sensitivity and specificity of the predictions at

multiple decision thresholds (Figure 3). Surprisingly, the ranked

deviations gave even a better prediction accuracy than the

measured deviations according to the area under the ROC curve

(AUC) values (AUC = 0.780 vs. AUC = 0.662, p = 0.003). The

prediction capability was improved systematically at each

specificity-level, demonstrating that the procedure could distin-

guish with high accuracy the functionally related gene pairs over

the whole spectrum of the exceptional deviations (Figure 3). The

order in which the mutation pairs were included into the

approximation process further improved the relative classification

power (AUC = 0.789, p = 0.002). The prediction accuracy of the

double-mutant fitness values alone was similar to that of a random

classifier (AUC = 0.506), demonstrating that the normalization by

the measured or estimated single-mutant fitness values can, in any

case, improve the prediction of the functional links. The estimates

achieved using different subsets of mutation pairs can also lead to

different degrees of prediction accuracy (Table 1).

Distribution of the estimated deviations
Finally, we investigated how the estimated deviations bee kð Þ

ij

obtained from the approximation procedure at different subset

sizes, k, are distributed relative to the true deviations eij obtained

when using the measured single-mutant fitness values. When

comparing the different distributions, we used the same interpre-

tation rule as in the earlier comparison by Mani et al. [14]: an

ideal definition of genetic interaction should result in a tight

distribution (indicating low variability) that is centered at zero

(indicating low bias) for the bulk of the measured interactions

(reflecting the background distribution of non-interacting genes).

The subset of mutation pairs being used in the approximation

process had a marked effect on the distribution of the estimated

deviations (Figure 4). Moderate subset sizes generated distributions

with a lower bias and variability than those obtained using smaller

subset sizes or all of the mutations (Table 1). Surprisingly, the cut-

off point, k = 317, which gave the most accurate estimates for the

single-mutant fitness values resulted in a relatively weak prediction

accuracy for the functional links (AUC = 0.679). Although the

Figure 1. Dynamic behavior of the sequential procedure as a
function of mutation pairs. (A) The mean absolute error between
the measured single-mutant fitness vector and its estimate when using
the selected mutation pairs. The dotted horizontal line indicates the
estimation error obtained when using the median over the rows/
columns of the double-mutant fitness matrix (average absolute error
equals 0.0797). In case significant genetic interactions are rare, median
of the colony sizes over all of the double mutants arising from the same
single deletion strain provides an estimate of the effect of the particular
single-mutant on the growth rate [12]. (B) The approximation error
when using the selected mutations pairs to approximate the double-
mutant fitness matrix (see Eq. 3 in Methods). The horizontal dotted line
indicates the point of steepest increase in the approximation error,
k = 317, which also gives on average the most accurate estimates of the
single-mutant fitness values (average absolute error equals 0.0168). In
each panel, the five spots after that line identify the synthetic lethal
mutation pairs with double-mutant fitness value of zero. (C) The ranked
deviations ~eeij

�� �� of the mutation pairs (i, j) defined according to their
residual errors (see Eq. 4 in methods). (D) The measured deviations |eij|
of the selected mutation pairs obtained using the actual measurements
of the single-mutant growth effects.
doi:10.1371/journal.pone.0003284.g001

Figure 2. Relationship between the ranking of the mutation
pairs and their functional links. The proportion of shared specific
functional links among the top mutation pairs, when these pairs were
selected in the increasing (red) or decreasing (blue) order according to
their residual errors during the approximation process. The dotted line
indicates the expected rate of the functional links when selecting
mutation pairs at random (the expected proportion equals 0.108).
doi:10.1371/journal.pone.0003284.g002

Exploring Genetic Interactions
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different measures of location and dispersion gave relatively similar

results, the trimmed mean and interquartile range identified the

distribution with least background bias and variability at k = 136

(Figure 4). The estimated deviations obtained using this particular

subset of mutation pairs were also most successful in predicting the

functional relationships (AUC = 0.810). These results indicate that

the distribution characteristics of the estimated deviations could

serve as a guide to choosing the optimal subset of gene pairs for

defining genetic interactions in a given dataset. Both the optimal

subset size and the overall performance of the method is likely to

depend on the properties of the dataset being analysed, including

the number of gene pairs and and the degree of their functional

homogeneity.

To investigate how the differences in the distributions are visible

in the conventional heat map visualizations, we displayed the

color-coded deviations on a two-dimensional grid spanned by the

individual mutations. Here, a special emphasis was placed on

analyzing the estimated deviations bee 136ð Þ
ij , which provided the most

ideal definition of genetic interactions in terms of both distribution

characteristics and predictive power, relative to the measured

deviations eij (Figure 5). In general, the interaction patterns were

relatively similar between the measured and estimated deviations.

However, the transformation of the double-mutation fitness

measurements through the approximation process seemed to

emphasize the mutation pairs with exceptionally large absolute

deviations (putative genetic interactions), and pointed out

especially those pairs having positive deviations (alleviating

interactions), while it diminished certain subsets of mutation pairs

with negative deviations (synergistic interactions). For instance, a

considerable number of double-deletion strains involving either

hpr5 or sgs1 mutations showed marked evidence for alleviating

interactions in the color map of the estimated deviations

(Figure 5A), while these pairs were not identifiable from the

original map (Figure 5B). At the same time, the approximation

algorithm blotted out certain moderate degree synergistic

interactions in the hpr5 deletion strain, including the effects of

additional mutations of mms4, mph1, or mus81. Although these

and other changes contributed positively to the prediction of

functional relationships in the dataset of St Onge et al., further

evaluation how well these findings can be generalized beyond this

relatively small set of functionally related genes is required on

independent datasets.

Discussion

The growing availability of large-scale genetic interaction

datasets is enabling computational methods to systematically

explore how genes interact to produce phenotypes on a global

network-level. While these datasets yield an unprecedented

insight into the organization and function of complex genetic

networks, their analysis also poses many challenging computa-

Figure 3. Predicting shared functional links using different
measures of genetic interactions. The accuracy of the prediction is
evaluated using the receiver operating characteristic (ROC) curves for
each measure: ranked deviations (red), measured deviations (blue), and
the double-mutant fitness values (black). The true positive rate (TPR, or
sensitivity) is the fraction of gene pairs correctly predicted to have
functional links, and the false positive rate (FPR, or 1 - specificity) is the
fraction of non-functionally linked gene pairs incorrectly predicted to
have functional links. The overall prediction performance is summarized
using the area under the ROC curve (AUC). For an ideal classifier,
TPR = 1, FPR = 0 and AUC = 1, whereas a random classifier has on
average AUC = 0.5 (the dotted diagonal line).
doi:10.1371/journal.pone.0003284.g003

Table 1. Distribution characteristics for the measured and estimated deviations.

Subset size, k Median deviation Trimmed mean
Median absolute
deviation Interquartile range AUC value

Measured 20.0141 20.0152 0.0267 0.0169 0.662

28 (Initial set) 0.0000217 0.00107 0.0209 0.0147 0.772

136 0.000687 0.000388 0.0202 0.00958 0.810

208 0.00134 0.00118 0.0141 0.0108 0.773

317 20.000634 20.000816 0.0173 0.0120 0.679

323 (All pairs) 20.000634 0.00142 0.0236 0.0169 0.730

The rows correspond to distributions of the estimated deviationsbee kð Þ
ij with different sizes of subsets of those gene pairs used in the approximation process (see Figure 4).

The distribution of the measured deviations eij is used as a references value for the different parameters (the first row). As robust measures of location (bias) and
dispersion (variability), we calculated the trimmed mean and interquartile range, respectively, in addition to the median and median absolute deviation that were used
in the previous comparative study [14]. The bold type indicates the subset size which provided the most accurate prediction of the functional links in terms of the area
under the receiver operating characteristic curve (AUC).
doi:10.1371/journal.pone.0003284.t001
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tional problems. Using a high-resolution screen of genetic

interactions in yeast as an example dataset of St Onge et al.

[10], we have demonstrated that the computational approach

based on sequential matrix approximations facilitates extraction

of pertinent information from the background variation. A key

finding of the present work is that the double-mutant fitness

matrix alone carries enough information for accurate estimation

of the single-mutant fitness values and for prediction of functional

relationships among the genes. This makes it possible to avoid

performing the single-mutant growth experiments, without

compromising - if not even improving – the functional prediction

power encoded in the double-mutant measurements. Surprising-

ly, the subset of mutation pairs which gave the most accurate

estimates for the single-mutant fitness values did not lead to the

most accurate predictions of the functional links. This may be due

to experimental variability, such as differences in growth or

screening conditions when measuring the strains carrying either

single or double mutations, which may be beyond the capacity of

the standard data pre-processing but can be normalized by the

sequential approximation procedure. Other possible explanations

for this surprising observation include biases in the definition of

the gene pairs sharing a specific function or in the targeted set of

genes pairs chosen for the particular interaction screen. Further

study is therefore needed to confirm whether similar results can

be obtained also in larger genetic interaction datasets, in which

genes with much wider variety of functional categories are

studied.

Limitations and extensions of the procedure
Perhaps the biggest technical limitation of the present work

concerns the heuristic way in which the subsets of mutation pairs

were selected for the approximation of the double-mutant fitness

matrix. The greedy subset selection scheme was motivated by a

similar approach successfully being used in many feature selection

problems [17]. An adaptive version of such a forward floating

selection method was applied here because of its low computa-

tional complexity and because it was capable of excluding the

most prominent outliers during the sequential approximation

process (Fig. 1). Similarly, despite the weighted least squares

matrix approximation algorithm being based on a rather

straightforward decomposition method, it was able to reduce

some degree of background variation in the data (Fig. 4).

However, more sophisticated search and approximation schemes

based on e.g. genetic algorithms or simulated annealing should

lead to even better estimation and prediction results, or at least

reduce the computational complexity. Additional modifications to

enhance the present framework either in biological and/or

computational terms include using deviations from the expected

fitness as weights in the least squares approximation and using the

sign of the deviations when including or excluding a mutation

pair over the course of the sequential approximation process.

While the present results were based on the rank-one approxi-

mation only, which enabled the partitioning of pairs of genes into

two categories (interacting or non-interacting), utilizing the higher

order ranks could allow us to classify the quantitative measurements

Figure 4. Distributions of the measured and estimated
deviations over all mutation pairs. Two distinct distributions are
shown for the mutation pairs with specific functional links (red) and for
the background pairs not sharing specific functional links (black). The
measured deviations eij generate bimodal distribution for the pairs with
specific functional links (the upper panel). The estimated deviations bee kð Þ

ij

generate background distributions with sharper peaks depending upon
the size k of the subsets of mutations used in the approximation (the
lower panels): k = 28 (initial subset of mutations), k = 136 (good
prediction capability), k = 317 (smallest estimation error), and k = 323
(all mutation pairs). The five smallest deviation values in each
distribution plot correspond to the five synthetic lethal mutation pairs.

Table 1 lists the shape parameters of these distributions calculated over
all of the mutation pairs. The two distributions in each individual plot
are scaled according to their total number of pairs. The non-scaled
versions of the same distributions are provided as Figure S3, which
allows for better visual comparison between the functionally-linked and
the functionally non-linked pairs.
doi:10.1371/journal.pone.0003284.g004
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into several categories, for instance, synergistic and alleviating

interactions, or even more fine-grained classification of interactions

that can occur between genes [18]. This could also help us also to

distinguish those biological modules in which the distribution of

genetic interactions does not follow the ideal tight and zero-centered

distribution that has been used traditionally [9,14].

Future applications and research directions
In spite of the above mentioned technical limitations, the

present results support the feasibility of the approximation

framework for systematic exploration of genetic interaction data,

and warrant its applications to larger-scale datasets, such as those

generated with the E-MAP or GIM screens, to confirm whether

similar findings can be extrapolated to the genetic interactions

data derived from high-throughput technologies. Other quanti-

tative phenotypes or experimental techniques for defining or

measuring genetic interactions could, in principle, also be used,

although certain modifications will be needed to adapt the

procedure to the specific characteristics of each genetic

interaction screen. In the larger-scale screens, the gene pairs

under analysis can be selected more randomly among a wider

range of functions, thus increasing the expected proportion of

non-interacting pairs. Accordingly, the more interactions there

are being measured, the better the assumptions behind the

multiplicative model will be justified, provided that significant

genetic interactions remain relatively rare. The many missing

values typically occurring in the large-scale screens should not

pose a major problem for our approach either, due to its

sequential nature being able to adapt to those subsets of double-

mutant measurements with the best approximation power.

Hence, the approximation approach is likely to yield even better

results with larger and unbiased datasets. Similarly, even if the

assumption of low frequency of significant interactions may

become compromised in more targeted studies, such as the one of

St Onge et al, this should not have a major effect on the results as

the strongest genetic interaction pairs are effectively filtered out in

the sequential estimation process. For such smaller-scale and

more targeted genetic interaction studies, a further increase in the

performance could be obtained by modifying the null model for

non-interacting pairs to take into account the multitude of single-

mutants affecting the particular double-mutant fitness value. This

is one of the modeling challenges which we aim to tackle in the

future.

Integrative analysis together with other data sources
More generally, the computational approach based on the

sequential matrix approximation can provide a principled

framework for exploring and classifying genetic networks and

interactions using a wide spectrum of global data sources,

including the localization, mRNA or protein expression, physical

interaction and functional annotation of the proteins encoded by

the genes [19]. It has previously been demonstrated that physical

protein-protein interactions, in particular, provide useful infor-

mation that is, by and large, complementary to that obtained

from the functional genetic interactions [6,20]. To reveal the

modular structure of the underlying networks and functional

organization the multitude of pathways reflected in such large-

scale data types, various network partitioning methods have been

used to detect either densely- or similarly-connected clusters as

well as significantly-repeated motifs in the individual or

integrated interaction networks [21–24]. However, many open

questions still remain about the integrative analysis strategy of

these datasets and the most meaningful interpretation of their

results. For instance, the extent to which the genetic interaction

could be explained by the other information sources, such as

protein-protein, protein-DNA, metabolic network and protein

structure data [25–28], and how these should be efficiently

employed when scoring genetic interactions using measures such

Figure 5. Estimated pairwise deviations vs. the actual mea-
sured deviations. The color-coded heat map shows the estimated
deviations (A) and the measured deviations (B) on a 26626 grid. The
estimated deviations were obtained at the cut-off point bee 136ð Þ

ij , which
generates the most ideal distribution and provides the best discrim-
ination between the functionally-linked and the non-functionally linked
pairs (see Table 1). While the five confirmed synthetic lethal pairs (sgs1D
mus81D, sgs1Dmms4D, sgs1Dslx4D, sgs1Dhpr5D and rad54Dhpr5D) are
clearly visible in both of the maps, there are marked differences in the
more subtle interaction scores at many places of the matrix between
the estimated deviations and the measured deviations eij. Red color
corresponds to synergistic interaction scores and blue to alleviating
interactions. The grey boxes indicate missing data points.
doi:10.1371/journal.pone.0003284.g005
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as the pairwise deviations, the S- and COP-scores, or the

correlation and congruence between the interaction patterns [9–

12,27–29]. Finally, the success of any computational approach for

constructing genetic interaction networks is likely to be driven by

parallel improvements in the experimental technologies, such as

enabling measurement of phenotypic effects in response to the

mutation of more than two genes in combination.

Materials and Methods

Approximating the double-mutant fitness matrix
For a given subset of mutation pairs, we calculated the matrix

approximation of Eq. 2 using the decomposition algorithm by De

Leeuw [16]. Formally, we solved the following weighted least-

squares optimization problem at each step l of the procedure

ŵw lð Þ~ argmin
x[Rn

Xn

i,j~1

c
lð Þ

ij wij{xixj

� �2
, ð3Þ

where both the given weight matrix C(l) and the double-mutant

fitness matrix W are symmetric of order n. After normalizing for

the subset size, the square-root of the objective function obtained

as the solution of the optimization of Eq. 3 is referred to as

approximation error at phase l. Using this formulation, the solution

ŵ(l) minimizes the sum of the squared residual errors

r
lð Þ

ij

� �2

~ wij{ŵw
lð Þ

i ŵw
lð Þ

j

� �2

ð4Þ

over all of the k gene pairs (i, j) with c
lð Þ

ij ~1 which were involved in

the approximation process at the lth step of the procedure.

Although the general formulation in Eq. 3 allows for an element of

C(l) to be any non-negative number, we used binary weights only;

in particular, we set the diagonal entries c
lð Þ

ii ~0 for all i, and

c
lð Þ

ij ~0 for the missing data points, at each step l. Throughout the

operation of the approximation procedure, we ensured that the

weight matrix remained symmetric.

In the dataset of St Onge et al. [10], there were two missing

values because of genetic linkage between the gene pairs involved

in the double-deletion strains rad57Drad61D and rad55Dshu2D.

Selecting subsets of mutation pairs for estimation
The subset of mutation pairs used at a particular step of the

approximation process was encoded in the binary weight matrix

C(l), that is, c
lð Þ

ij ~1 if and only if the mutation pair (i, j) is used at

step l. To select increasingly large subsets of non-missing and non-

diagonal mutation pairs from the double-mutant fitness matrix W,

we adapted the floating search method of Pudil et al. [17]. The

sequential subset search method is characterized by a dynamically

changing number of features included or eliminated at each step.

In our implementation, the residual errors were used as the

criterion function for adding or deleting mutation pairs. The

operation of the forward-type subset selection scheme was

organized through the following steps:

1. Set lr0 and initialize the weight matrix C(0) (see the next

subsection)

2. Estimate ŵ(l) using the decomposition algorithm (previous

subsection)

3. While there are non-diagonal and non-missing entries with

c
lð Þ

ij ~0

a. select pair (i, j) with c
lð Þ

ij ~0 having the smallest residual error

r
lð Þ

ij (Eq. 4)

b. set c
lð Þ

ij /1, make a new estimate of ŵ(l) and re-calculate the

residuals r
lð Þ

ij

c. if there exists a pair (i, j) with c
lð Þ

ij ~1 and r
lð Þ

ij wt lð Þ, then set

c
lð Þ

ij /0

d. set lrl+1 and repeat step 3

We modified the general subset search method by making the

deletion of pairs an adaptive process over the evolution of the

subset search. More specifically, the threshold t(l) used in the

conditional exclusion step 3c is multiplied by 1.5 each time the

pair selected for deletion is the same as that added in step 3a. This

modification enabled the forward-type algorithm to recover from

poor starting tolerance values (we used t(0) = 261025 in the present

work) or from a poor initialization of the weight matrix (see the

next subsection for details), and it also made it possible to increase

the size k of the subsets up to the maximal size K. Figure 1 shows

the evolution of the subset selection algorithm from the initial

subset configuration to the full set of K = 323 mutation pairs in the

dataset of St Onge et al. [10].

Initialization of the weight matrix from the data
The approximation algorithm requires the weight matrix C(l) to

be non-singular at each stage of the procedure. Therefore, we

cannot start the sequential approximation procedure from the

empty subset of mutation pairs, but instead must adjust the

initialization C(0) = 0 for the dataset under analysis. After

calculating the initial residuals r
Kð Þ

ij from the whole double-mutant

matrix, three types of adjustments were made in the present study:

(i) for each i, we set c
0ð Þ

ij /1 for the pair (i, j) with the smallest

residual r
Kð Þ

ij to make all of the rows in C(0) non-zero; (ii) we made

an additional setting of c
0ð Þ

ij /1 for each identical row pair to

reduce the linear dependence among the rows of C(0); and finally

(iii) we set pairs (i, j) with c
0ð Þ

ij ~0 to 1 in the increasing order of

their residuals until the determinant of C(0) became non-zero.

Every time a pair (i, j) was added in the initialization steps (i)–(iii),

we also set its transpose entry to one, that is, c
0ð Þ

ji /1, to keep the

weight matrix symmetric. In the dataset of St Onge et al. [10], this

resulted in an initial weight matrix C(0) with 28 entries of ones.

Sequential estimation of the pairwise deviations
The measured deviations eij = wij2wiwj were estimated in two

different ways. The sequential approximation procedure gives as

its by-product a surrogate for the deviations in the form of the

residual errors of Eq. 4. More specifically, we defined the ranked

deviation~eeij of a mutation pair (i, j) as its residual error r
lð Þ

ij at the last

step l during which the pair was included into the approximation

subset. In this way, even when there are multiple inclusions and

deletions of a particular pair during the procedure, we obtained an

unambiguous ranking of the pairs according to their ~eeij

�� �� values.

This ranking and the corresponding ranked deviations are shown

in Figure 1 for all gene pairs of the dataset of St Onge et al. [10],

except for the 28 initial mutation pairs.

The second set of estimates was obtained by stopping the

sequential approximation procedure at a given subset size, k, and by

using the estimate of Eq. 3 in place of the measured single-mutant

fitness vector w in the definition of the deviation in Eq. 1. For a

mutation pair (i, j), this resulted in a sequence of estimated deviationsbee kð Þ
ij ~r

lð Þ
ij for step l at which the size of the approximation subset

equals k. Note that since the residual errors in Eq. 4 are updated

each time that a new pair is added, the estimated deviations can

vary considerably as a function of k. These estimates are not
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generally congruent with the ranked deviations. The distributions of

the estimated deviations with different subset sizes k are illustrated in

Figure 4 in the dataset of St Onge et al. [10].

Quantitative genetic interaction measurements
To evaluate the performance of the sequential matrix

approximation procedure in practice, we applied it to a recent

high-resolution genetic interaction study of St Onge et al. [10].

This particular study was chosen because it contains quantitative

growth-rate measurements of both single- and double-mutant cell

populations for a targeted set of 26 genes related to DNA repair in

yeast S. cerevisiae. The detailed time course fitness measurements

were performed in the presence and absence of the DNA-

damaging agent methyl methaneusulfonate (MMS). The results of

the present study were based on the growth measurements in the

absence of MMS. The prediction of functionally related gene pairs

was in fact more challenging in this case than in the data measured

in the presence of MMS. The measured and estimated single-

mutant fitness values and the double-deletion deviations in the

dataset are shown in Figure S1 and Figure 5, respectively.

Defining gene pairs sharing a specific function
Functional links among the 26 genes were defined using the

same approach as in many previous genetic interaction studies

[6,10,14]. Briefly, a term in the Biological Process branch of the

Gene Ontology was considered specific if it was associated with

fewer than 30 yeast genes, and two genes were considered to have

a specific functional relationship if they shared any of those specific

terms [14]. This resulted in the set of 35 specific functional links in

the dataset of St Onge et al. [10].

Statistical evaluation of the predictive power
Statistical enrichment of the specific functional links among a set

of mutation pairs selected by the sequential approximation

procedure was assessed using the standard hypergeometric test.

Briefly, if t is the number of top mutation pairs selected according

to their residual errors, and M is the total number of the

functionally-related links, then the probability of obtaining at least

m functionally-related pairs when selecting pairs at random from

the set of K mutation pairs can be calculated using the cumulative

distribution function:

pm~
Xmin t,Mð Þ

s~m

M

s

� �
K{M

t{s

� �
K

t

� � :

The enrichment for the M = 35 functionally-linked pairs among

the t = 50 mutation pairs selected on the basis of either small (m = 1)

or large (m = 22) residual errors is shown in Figure 2. The dotted line

shows the expected rate of the functional links when selecting

mutation pairs at random, that is, M/K = 35/323 = 0.108.

The predictive power of the measured and estimated deviations

was assessed using the receiver operating characteristic (ROC)

curves that characterize the relative trade-off between the true

positive rate (sensitivity) and the false positive rate (1 - specificity).

The overall predictive performance was summarized using the

area under the ROC curve (AUC). The statistical significance of

the difference in the AUC values between two genetic interaction

measures was assessed using a custom written algorithm based on

the method of DeLong et al. [30]. This nonparametric method

uses the theory of generalized U-statistics to calculate an estimated

covariance matrix and hence it can also take into account the

correlated nature of the data. The ROC curves and the

corresponding AUC values for the prediction of the 35 functional

links in the dataset of St Onge et al. [10] are shown in Figure 3.

Supporting Information

Figure S1 Estimated vs. measured single-mutant fitness values.

The comparison is shown both as histogram and scatter-plot. The

two fitness values were highly correlated (Pearson correlation

equals 0.952 and the offset and slope of the best fit line are 0.0429

and 0.960, respectively). The estimated values were calculated at

the cut-off point k = 317, in which the approximation procedure

used all but the diagonal and missing entries of the double-mutant

fitness matrix and also omitted those six pairs with the most

extreme residual errors (the five synthetic lethal mutations and one

plausible synergistic mutation pairs). This point can approximately

be identified from the sharp increase in the trace of approximation

error (Figure 1B, the vertical dotted line).

Found at: doi:10.1371/journal.pone.0003284.s001 (0.01 MB PDF)

Figure S2 Scatter-plot between the measured and ranked

deviations. The ranked deviations were highly correlated with the

true measured deviations over all of the mutation pairs (Pearson

correlation equals 0.964). The inset shows the five synthetic lethal

mutation pairs. The dotted diagonal line corresponds to the one-to-

one correspondence between the two deviations.

Found at: doi:10.1371/journal.pone.0003284.s002 (0.01 MB PDF)

Figure S3 Distributions of the measured and estimated devia-

tions. The non-scaled version of the Figure 4, which can better

show the discrimination between the distributions of functionally-

linked (red) and functionally non-linked pairs (black).

Found at: doi:10.1371/journal.pone.0003284.s003 (0.02 MB PDF)
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