
Snake Cathelicidin from Bungarus fasciatus Is a Potent
Peptide Antibiotics
Yipeng Wang1,4., Jing Hong2,4., Xiuhong Liu3., Hailong Yang1,4, Rui Liu3, Jing Wu1,4, Aili Wang3,

Donghai Lin2*, Ren Lai1,3*

1 Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan,

China, 2 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 3 Key Laboratory of Microbiological Engineering of Agricultural

Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China, 4 Graduate School of the Chinese Academy of

Sciences, Beijing, China

Abstract

Background: Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate
immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and
fishes. No cathelicidins from other non-mammalian vertebrates have been reported.

Principal Findings: In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the
snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence
of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus
and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-
like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors.
Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin.
The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic
solvent TFE is an amphipathic a-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin
BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species
including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria.
Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was
observed at the dose of up to 400 mg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours.

Conclusion: Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on
the evolution of cathelicidins. Potent, broad spectrum, salt-independent antimicrobial activities make cathelicidin-BF an
excellent candidate for clinical or agricultural antibiotics.
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Introduction

Innate immunity uses gene-encoded antimicrobial peptides to

form a first line of host defense against noxious microorganisms

[1,2]. A large amount of antimicrobial peptides have been

identified from animals, plants and microorganisms. Several

families of antimicrobial peptides including cathelicidin, liver-

expressed antimicrobial peptide (LEAP) or hepcidin, histatin, and

defensin have been identified from mammalians [3–7]. Defensins

and hepcidins are characterized by the presence of multiple

disulfide bridges, whereas histatins and most of cathelicidins are

linear molecules without disulfide bridges.

After the first discovery of cathelicidin (Bac5) from bovine

neutrophils, a large amount of cathelicidins have been identified

from other mammalians [8–13]. As other antimicrobial peptide

families, structurally divergent cathelicidins have been found, even

in a single mammalian species. For example, there are at least

seven cathelicidins in cattle, horse, pig, sheep, and goat [8]. Some

exceptions are in human, rhesus monkey, mouse, rat, and guinea

pig, only a single cathelicidin was found [8,14–18].

Cathelicidin antimicrobial peptides are released from their

corresponding inactive precursors by proteolytic cleavage [8]. The

cathilicidin family of proteins is characterized by the presence of a

highly conserved anionic cathelin domain [3,8,19]. Cathelin is an

inhibitor of the cysteine proteinase cathepsin L [20]. In the

precursors of cathelicidins, the highly conserved cathelin domains

composed of about 100 amino acid residues is flanked by a signal

peptide fragment (approximately 30 residues long) on its N-

terminus, and by a structurally divergent cationic antimicrobial

peptide region on its C-terminus [8]. Upon activation, most of

cathelicidin precursors proteolytically cleaved to release the

cathelin domain and the C-terminal mature antimicrobial
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peptides. Some intact cathelicidin precursors are also found in the

biological fluids where cathelicidin expressed [3,21]. Elastase

seems to be the most common peptidase to release mature

cathelicidins [22,23]. In human hCAP18, however, protease-3

cleaves the proprotein [24]. Mature cathelicidins can be further

degraded by some serine proteases because multiple cationic

amino acid residues (Arg or Lys) are in the sequences of

cathelicidins [25]. In addition, hCAP18 could be degraded by

aspartyl protease (gastricsin) at vaginal pH. Some hydrolytic

fragments of cathelicidin were found to possess increased

antimicrobial abilities [26].

Recently, several cathelicidins have been identified from some

non-mammalian vertebrates including hagfish [27], rainbow trout

[28,29], atlantic salmon [29], and chicken [30,31]. As the oldest

jawless craniates, hagfish lacks adaptive immunity [8,32]. The

presence of cathelicidins in hagfish may indicate that cathelicidin

genes appeared early in phylogenesis [8]. Cathelicidins have been

found from most of vertebrates including fish, bird, mammalian,

whereas no cathelicidins have been found from amphibians and

reptiles. In this wok, a cathelicidin from snake was identified and

characterized.

Materials and Methods

Materials
B. fasciatus crude venom and venomous glands were collected

from Guang Xi Province, China. The SMARTTM PCR cDNA

synthesis kit was purchased from Clontech, USA. Chromatogra-

phy media Sephadex G-50 and CM-Sephadex C-25 were

obtained from Amersham Bioscience, Sweden. Trifluoroacetic

acid (TFA, HPLC grade) was from Perkin-Elmer. Acetonitrile

(ACN, HPLC grade) was bought from Fisher Chemicals. 2,2,2-

trifluroethanol-d3 98% (TFE-d3), sodium dodecyl-d25 sulfate

(SDS-d25) 98.7%, trimethylsilyl-2,2,3,3-tetradeuteropropionic ac-

id (TSP)-d4 98% and D2O 99% were purchased from Cambridge

Isotope Laboratories. Reverse Phase High Performance Liquid

Chromatography (RP-HPLC) C4 column (30 cm60.46 cm) was

from Agilent. The pMD18-T vector was from Takara, Dalian,

China. All other reagents were of analytical or sequencing grade.

The animals used for the experiments were treated according to

the protocols evaluated and approved by the ethical committee of

Kunming Institute of Zoology.

Isolation of cathelicidin-BF
The purification procedure was according to our previously

report [33,34]. 0.4 g B. fasciatus crude venom was first fractionated

using gel filtration chromatography Sephadex G-50 column

(26 cm6100 cm), equilibrated with 50 mM Tris–HCl, 50 mM

NaCl (pH 7.8). The elution was performed with the same buffer

and monitored at UV absorption of 280 nm. The peak having

antimicrobial activity was collected and further dialyzed against

PBS (pH 6.0). The dialyzed product was next subjected to the

cation-exchange CM-Sephadex C-25 column (1.6 cm630 cm).

The elution was achieved with a linear NaCl gradient, at a flow

rate of 1 ml/min. The peak with antimicrobial activity was

collected and finally purified by reverse phase high performance

liquid chromatography (C4), equilibrated with 0.1% (v/v) TFA/

water. The elution was performed with a liner gradient of

acetonitrile at a flow rate of 0.7 ml/min.

Primary structural analysis
The amino acid sequence of the N-terminus was determined by

the automated Edman degradation using an Applied Biosystems

pulsed liquid-phase sequencer, model 491. Electrospray ionization

mass spectrometry (ESI-MS) was used to determine the molecular

weight by a Finnigan LCQ ion trap mass spectrometer (Thermo-

Finnigan, San Jose, CA, USA) in positive-ion mode. The sample

solutions (50%H2O/50%ACN) were infused into the mass

spectrometer via a Harvard syringe pump (Holliston, MA,

USA). The spray voltage was set to +4.5 kV. Spectra were

acquired by summing 30 scans.

CD and NMR spectroscopy
Circular dichroism (CD) spectra were recorded at 298 K on a

JASCO J-810 spectrometer (Jasco, Japan). Samples were prepared

by dissolving the peptide powder to a concentration of 90 mM in

TFE/H2O mixtures or in SDS micelles of different concentrations.

The spectra were measured between 190 and 250 nm using 0.1 cm

path-length cell with 1 nm bandwidth, 1 sec response time, and a

scan speed of 100 nm/min. Three consecutive scans per sample

were performed, added and averaged followed by subtraction of the

signal of the solvent. The secondary structure elements of the

peptides were estimated according to the Yang formula [35].

Samples for nuclear magnetic resonance (NMR) measurements

contained 4 mM cantheicidin-BF in TFE-d3/H2O (9:1, v/v) at

pH 6.5, or in 300 mM SDS-d25 at pH 6.5. All NMR spectra were

recorded at 298 K on a Varian Unity INOVA 600 MHz

spectrometer equipped with three RF channels and a triple

resonance z-axis pulsed-field gradient probe. The 2D 1H-1H

TOCSY spectra were acquired with a mixing time of 75 ms, while
1H-1H NOESY spectra were acquired with mixing times of 200

and 300 ms. The watergate approach was employed for water

suppression. Data were collected with 256 and 1024 complex data

points in t1 and t2 dimensions, respectively. Signals were averaged

over 64 transients. All NMR spectra were processed and analyzed

using the NMRPipe/NMRDraw software and the Sparky

program [36,37]. Linear prediction in the t1 dimension was used

before the Fourier transformation. Assignments of the proton

resonances were achieved using both TOCSY and NOESY

spectra. The 1H chemical shifts were referenced to TSP. The

secondary structure was predicted using the Ha Chemical Shift

Index approach [38].

SMART cDNA synthesis
Total RNA was extracted using TRIzol (Life Technologies, Ltd.)

from the venomous glands of B. fasciatus. cDNA was synthesized by

SMARTTM techniques by using a SMARTTM PCR cDNA synthesis

kit (Clontech, Palo Alto, CA). The first strand was synthesized by

using cDNA 39 SMART CDS Primer II A, 59-AAGCAGTGG-

TATCAACGCAGAGTACT (30) N-1N-39 (N = A, C, G or T; N-

1 = A, G or C), and SMART II An oligonucleotide, 59-

AAGCAGTGGTATCAACGCAGAGTACGCGGG-39. The sec-

ond strand was amplified using Advantage polymerase by 59 PCR

primer II A, 59-AAGCAGTGGTATCAACGCAGAGT- 39.

Screening of cDNA encoding cathelicidin-BF
The cDNA synthesized by SMARTTM techniques was used as

template for PCR to screen the cDNAs encoding serine protease

inhibitor. Two oligonucleotide primers, BFS1 59-AA(A/G)TT(T/

C)TT(T/C)AG(A/G)AA(A/G)(C/T)T(A/T/C/G)AA(A/G)AA (A/

G)-39, in the reverse direction, a specific primer designed according to

the amino acid sequence determined by Edman degradation and

primer II A as mentioned in ‘‘SMART cDNA synthesis’’ in the sense

direction were used in PCR reactions. The DNA polymerase was

Advantage polymerase from Clontech (Palo Alto, CA) The PCR

conditions were: 2 min at 94uC, followed by 30 cycles of 10 sec at

92uC, 30 sec at 50uC, 40 sec at 72uC. Finally, the PCR products

were cloned into pGEMH-T Easy vector (Promega, Madison, WI).

Reptile Cathelicidin
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DNA sequencing was performed on an Applied Biosystems DNA

sequencer, model ABI PRISM 377.

Expression profile of tissues
Reverse transcription-polymerase chain reaction (RT-PCR) was

carried out to analyze gene expression of cathelicidin-BF in B.

fasciatus. Total RNA extraction from different tissues and first-strand

cDNA synthesis were the same as described above. The primers were,

forward primer, 59-cathelicidin: 59-ATGGAAGGGTTCTT-

CTGGA AGACC-39, and reverse primer, 39-cathelicidin: 59-

CAAATTAGAAGGGGATGGAG ACC-39. PCR conditions were:

95uC (3 min), and 30 cycles of 95uC (30 s), 56uC (30 s), 72uC (3 min)

followed by a 15 min extension period at 72uC. The control PCR was

performed using the specific primers (forward primer, actin-s 59-

GGGTGTGATGGT TGGCATGG-39, and reverse primer, actin-

as 59-TGGCTGGAAGAGGGCTTCTG-39) for snake actin, using

the same conditions as above.

Alignment and phyogenetic comparison of cathelicidins
Cathelicidin sequences were obtained from the protein database

at the National Center for Biotechnology Information. The

phylogenetic tree is constructed by neighbor-joining analysis,

using the ClustalW program (version 1.8).

Antimicrobial testing
Antimicrobial activities of cathelicidin-BF and cathelicidin-

BF15 (VKRFKKFFRKLKKSV) were tested according to our

previous methods [39–42]. Ampicillin, benzylpenicillin (Amresco)

and Imipenem and Cilastatin Sodium for Injection (ICS, Merck)

were used as positive controls. The details were provided in the

Materials and Methods S1.

Bacteria killing kinetics
In vitro bacteria killing kinetics of cathelicidin-BF, ICS (its

minimal inhibitory concentration (MIC) for Escherichia coli 08A866

is 0.15 mg/ml), and HDW (an antimicrobial peptide from the frog

of Rana nigrovittata, with a amino acid sequence of FIGPVLKIAT-

SILPTAICKIFKKC, its MIC for E. coli 08A866 is 18.7 mg/ml),

respectively, were determined according to the methods described

by Mygind et al [43]. The details were provided in the Materials

and Methods S1.

Hemolysis, cytotoxicity, serum stability
Hemolytic activity was checked by incubating the tested samples

with human red blood cells to determine hemoglobin releasing

ability by measuring the absorbance at 540 nm, using 1% Triton

X-100 as a positive control. Cytotoxicity and serum stability were

Figure 1. The cDNA sequence encoding cathelicidin-BF and the predicted precursor amino acid sequence. The amino sequence of
purified cathelicidin-BF is boxed. The stop codon is indicated by a star (*). The potential polyadentlation signal (AATAAA) is underlined.
doi:10.1371/journal.pone.0003217.g001
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measured according the methods described by Mygind et al [43].

The details were provided in the Materials and Methods S1.

Synthetic Peptides
All of the peptides used for the bioactivity assays and NMR

analysis in this paper were synthesized by the peptide synthesizer

(433A, Applied Biosystems) in AC SCIENTIFIC (Xi An) INC. (Xi

An, China) and analyzed by HPLC and MALDI-TOF mass

spectrometry to confirm that the purity was higher than 95%. All

peptides were dissolved in water.

Results

Isolation of cathelicidin-BF from the snake venoms of B.
fasciatus

The crude snake venom was separated into four fractions by

Sephadex G-50 gel filtration as our previous report (Figure S1a)

(Fig. S1a) [33,34]. The fraction III, containing antimicrobial

activity was further subject to CM-Sephadex C-25 cation-

exchange column, and nine sub-fractions were collected (Figure

S1b). The fraction VI with both trypsin-inhibitory and antimicro-

bial activities was further purified using RP-HPLC. The peak with

antimicrobial activity is marked with an arrow in Figure S1c. The

purified antimicrobial peptide was named cathelicidin-BF. The

molecular mass and purity of purified cathelicidin-BF was further

analyzed by a ESI mass spectrometry, giving a [M+7H]7+,

[M+7H]6+, [M+7H]5+and [M+7H]4+of 521.1, 607.6, 729.1 and

991.5 (Figure S2), indicating that purified cathelicidin-BF has a

molecular weight of 3637.5–3638.5.

Structure characterization of cathelicidin-BF
Purified cathelicidin-BF was subjected to amino acid sequence

analysis using automated Edman degradation. Its amino acid

sequence is KFFRKLKKSVKKRAKEFFKKPRVIGVSIPF. Ca-

thelicidin-BF is composed of 30 amino acid residues including 12

basic residues (9 Lys and 2 Arg), 5 phenylalanines, and only one

acidic amino acid residue (Glu). It is a lysine-rich and

phenylalanine-rich peptide. Analysis using the ExPASy MW/pI

tool (http://www.expasy.ch/tools/pi_tool.html) showed that ca-

thelicidin-BF had the predicted pI (isoelectric point) of 11.79 and a

predicted molecular weight of 3637.5 that matched well with the

observed mass by ESI mass spectrometry (Figure S2). By BLAST

search, no similar sequence was found in GenBank.

Several positive clones, which contained an insert of 750 bp

were identified and isolated from B. fasciatus venomous gland

cDNA library. The complete nucleotide sequence of cDNA

(GenBank accession EU753183) and deduced amino acid

sequence of cathelicidin-BF precursor are shown in Figure 1.

Unexpectedly, the cathelicidin-BF precursor displays the maximal

similarity (47%) with predicted myeloid cathelicidin 3 from

Ornithorhynchus anatinus (GenBank accession XP_001512130) by

BLAST search. The protein precursor is composed of 191 amino

acid (aa) residues, including a predicted signal peptide, a conserved

cathelin domain and a mature cathelicidin-BF. Noticeably, four

cysteines that are conserved in the cathelin domain of all

mammalian cathelicidins are also invariantly spaced in cathelici-

din-BF precursor, suggesting that the snake cathelicidin-BF

precursor is a real mammalian cathelicidin.

The amino acid sequence of cathelicidin-BF determined by

Edman degradation is identical with the amino acid sequence

deduced from the cDNA sequence. There is a possible cleavage

site (Valine157) for elastase at the N-terminus of the mature

cathelicidin-BF (Figure 1). Based on the possible cleavage site, a

34-aa peptide should be released from the precursor, but the

purified cathelicidin-BF is only composed of 30 aa. Different from

other cathelicidins, there is an acidic doman between the cathelin

doman and the antimicrobial peptide in the cathelicidin-BF

precursor (Figure 2).

Figure 2. Multiple sequence alignment of snake cathelicidin with other representative cathelicidins. Cathelicidin-BF precursor is aligned
with porcine, bovine, human, chicken and hagfish cathelicdins. Dashes are inserted to optimize the alignment, and conserved residues are shaded.
Two intramolecular disulfide bonds in the cathelin pro-sequence are shown. Mature cathelicinds are underlined, and their net charge (in parenthesis)
and length are also indicated. The acidic fragment insertion in cathelicidin-BF is boxed.
doi:10.1371/journal.pone.0003217.g002
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Evolution analysis revealed that all vertebrate cathelicidins

formed three distinct clusters with fish cathelicidins located in a

separated clade from others. Supported by a bootstrap value of

77%, cathelicidin-BF was clustered with platypus CATH-3

(Figure 3). Although platypus is a mammal, it also has reptilian

features, For instance, it lays eggs and it is venomous [44]. The

close evolution relationship of cathelicidin-BF found in the venoms

of B. fasciatus with platypus cathelicidins may provide further proof

for platypus’s reptilian features.

Secondary structures detected by CD and NMR
The secondary structure elements in different solvent environ-

ments were detected by CD spectroscopy (Figure S3, Table S1). In

H2O, the CD spectrum of cathelicidin-BF showed a strong

negative band at 200 nm, indicative of a random-coil conforma-

tion. Interestingly, in TFE/H2O mixtures, the CD spectra showed

double minima at 208 and 222 nm, indicating a highly a-helical

conformation. The signals at 208 and 222 nm were intensified

gradually by increasing concentrations of TFE, which indicated

that the helicity of the peptide was increased in more hydrophobic

or membrane-mimetic environments. The CD spectra of the

peptide in SDS micelles also showed a typical a-helix pattern and

the content of the a-helix structure increased with the increasing

SDS concentration.

NMR spectra recorded on the peptide in SDS micelles were of

low quality and can not be used for structural analysis, might due

to aggregation of the peptide in negative charged SDS micelles.

Therefore, the helical structure of the peptide in TFE/H2O

mixture was investigated using NMR spectroscopy. Table S2 lists

the nearly complete assignments of the proton chemical shifts of

cantheicidin-BF in TFE/H2O mixture (9:1, v/v). Comparison of

the HN-HN region of NOESY spectrum recorded on cantheici-

din-BF in H2O with that in TFE/H2O (9:1, v/v) illustrates that,

the peptide adopts a stable secondary structure in TFE/H2O

mixture (Figure S4). The Ha CSI prediction is indicative of a

helical structure in the N-terminal region comprising residues F2–

F18 (Figure S5), although a well-defined three-dimensional

structure of the peptide in TFE/H2O mixture has not been

obtained yet, mainly due to the deficiency of enough unambiguous

conformational restraints for the exact structural analysis.

The amphipathic helical conformation is well known to be a

crucial factor for many antimicrobial peptides to interact with

membranes [45,46]. On basis of the rough structural analysis

described above, it is indicated that the N-terminal region of

cantheicidin-BF adopts a typical amphipathic a-helical conforma-

tion (Figure S6) as many other cantheicidins.

Expression profile of tissues
Using actin as control, expression pattern of cathelicidin-BF was

investigated by RT-PCR. Tissue distribution of cathelicidin-BF

expression in snake tissues were illustrated in Fig. 4. All the

selected tissues including stomach, trachea, skin, muscle, heart,

kidney, lung, brain, intestine, spleen, liver, ovary and venomous

gland can express this protein.

Antimicrobial activities
As listed in Table 1, cathelicidin-BF and its analogue,

cathelicidin-BF15 showed strong antimicrobial activities against

tested microorganisms. Of the 40 tested microorganism strains,

cathelicidin-BF exerted potent antimicrobial ability against most of

Gram-negative bacteria (either standard strains or clinically

isolated drug-resistance strains). For most of E. coli, the MICs

are lower than 2.3 mg/ml, while ampicillin, benzylpenicillin and

ICS are effective only to standard strain with a MIC of 18.7, 37.5

and 0.15 mg/ml respectively. The lowest MIC for K. pneumoniae is

0.3 mg/ml, while ampicillin, benzylpenicillin and ICS are effective

only to standard strain with a MIC of 150, 18.7 and 9.4 mg/ml

respectively. In contrast, most of S. aureus are not so sensitive for

cathelicidin-BF, only one strain could be killed by cathelicidin-BF

Figure 3. Phylogenetic analysis of cathelicidins. Phylogenetic
dendrogram obtained by neighbour-joining analysis based on the
proportion difference (p-distance) of aligned amino acid sites of the full-
length peptide sequences. Only bootstrap values .50% (expressed as
percentages of 1000 resamplings) are shown at branching points. Snake
cathelicidin-BF is boxed.
doi:10.1371/journal.pone.0003217.g003

Reptile Cathelicidin

PLoS ONE | www.plosone.org 5 September 2008 | Volume 3 | Issue 9 | e3217



with a low MIC (4.7 mg/ml). Another Gram-positive bacteria

genus, Bacillus also seems to be sensitive for cathelicidin-BF and

cathelicidin-BF15. A dangerous clinically isolated strain, Salmonella

typhi could also be killed by cathelicidin-BF and cathelicidin-BF15

with a low MIC (1.2 mg/ml). Cathelicidin-BF and cathelicidin-

BF15 are the same effective to some fungi as bacteria, for example,

C. albicans ATCC2002 (with a MIC of 4.7 mg/ml).and P. pastoris

(with a MIC of 0.3 mg/ml). Cathelicidin-BF exerted obvious

antimicrobial activity against some saprophytic fungus such as A.

terreus GIM3.34 (with a MIC of 18.7 mg/ml), A. niculans (with a

MIC of 4.7 mg/ml), and C. globosum (with a MIC of 37.5 mg/ml).

All the tested classic antibiotics including Ampicillin, Benzylpen-

icillin and ICS had no effect on these funguses. Several other

cathelicidin-BF analogues, KF1–11 (KFFRKLKKSVK), KF12–

19 (KRAKEFFK) and KF20–30 (KPRVIGVSIPF) had no any

antimicrobial activity.

The antimicrobial activity of cathelicidin-BF in different

solutions was also investigated as listed in Table 2. In 150 mM

phosphate buffer solution (PBS) and 150 mM NaCl solution,

cathelicidin-BF had stronger antimicrobial activities that in water.

It suggested that salts could increase cathelicidin-BF’s antimicro-

bial ability.

Bacteria killing kinetics
Using the antibiotics ICS as a positive control, antibacterial

properties of the snake cathelicidin-BF were tested by the colony

counting assay. As listed in Table 3 and Table 4, cathelicidin-BF

could rapidly exert its antibacterial activities. It just took less than

1 minute to kill all the E. coli at the concentration of 1, 5 or 10

times of MIC. The antibacterial activity was proved to be lethal for

E. coli. E. coli was not capable of resuming growth on agar plates

after a 6-h treatment with concentrations above the corresponding

MICs. In contrast, the antibiotics, ICS could not clean the bacteria

within 6 h at the concentration of 1 or 5 times of MIC. Only 10

times MIC of ICS could clean all the E. coli within 6 h.

Furthermore, E. coli treated by 1 time MIC of ICS was capable

of resuming growth during 6 h.

In order to compare properties with other antimicrobial

peptide, the frog antimicrobial peptide HDW was used as a

control. Their bacteria killing kinetics during 30 min was listed in

Table 4. Although HDW had a rapid bacteria killing ability,

cathelicidin-BF is faster to clean E. coli than HDW. Cathelicidin-

BF just took less than 1 minute to clean E. coli, while HDW took

several minutes.

Hemolysis, cytotoxicity, serum stability
Cathelicidin-BF had little hemolytic activity on human red

blood cells even with peptide concentrations up to 400 mg/ml. At

the same concentration, cathelicidin-BF was neither cytotoxic for

mouse macrophage (RAW264.7) nor for human liver tumor cell

(HepG2) (data not shown). Thus, it showed considerable selectivity

for microorganisms over mammalian cells in vitro.

Serum stability was checked by incubating 100 mg/ml cathe-

licidin-BF and cathelicidin-BF15 with 90% fresh normal human

serum at 37uC for 0, 1, 2, 3, 6, 10 and 24 hours. For cathelicidin-

BF, antimicrobial activities against E. coli 08A866 could not be

detected after 3 h-incubation, while cathelicidin-BF15 could keep

its antimicrobial activity up to 10 h in 90% fresh normal human

serum. Cathelicidin-BF15 seems to be more stable than cathe-

licidin-BF in serum.

Discussion

Antimicrobial peptides (AMPs) and their precursor molecules

form a central part of biological immunity. For the species which

lack adaptive immunity, AMPs play a key role to defense

microorganism infection. For their capacity to rapidly inactive

infectious agents and to probably inhibit the emergence of drug

resistance, AMPs have attracted considerable attention, especially

for the treatment of antibiotic-resistant pathogens. The most two

important AMP families, defensin and cathelicidin have been

found in mammalians, birds and fish. Coincidently, both defensin

and cathelicidin have not been found in both reptiles and

amphibians although a beta-defensin-like protein with unusual

disulfide connectivity (C1–C6/C2–C5/C3–C4), which is different

Figure 4. RT-PCR analysis of cathelicidin gene expression pattern in various snake tissues using gene-specific primers with actin as
a control.
doi:10.1371/journal.pone.0003217.g004
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from other the vertebrate beta-defensins, has been identified from

a marine turtle [47,48]. Several hundreds of gene-encoded AMPs

have been found from amphibians [12,39–42,49]. Only a few

peptides or proteins from reptiles have been found to exert

Table 2. Antimicrobial activity of cathelicidin BF in different
solutions.

Microorganism MIC

Water 150 mM NaCl 150 mM PBS

E. coliATCC25922 2.3 2.3 2.3

P. aeruginosa ATCC27853 1.2 0.6 0.6

S. aureus ATCC2592 4.7 2.4 2.4

C. albicans ATCC2002 4.7 2.4 2.4

MIC: minimal inhibitory concentration. These concentrations represent mean
values of three independent experiments performed in duplicates.
doi:10.1371/journal.pone.0003217.t002

Table 1. antimicrobial activity comparison of cathelicidin-BF
with antibiotics.

Microorganism strains MIC(ug/ml)

BF BF-15 Amp Ben ICS HDW

Bacillus subtilis 9.4 75 0.02 0.004 - 2.3

Bacillus pumilus 9.4 - 0.15 0.015 - -

Bacillus cereus 1.2 - 150 150 - -

Pseudomonas aeruginosa
ATCC27853

1.2 4.7 150 18.7 9.4 37.5

P. aeruginosa (IS, DR) 2.3 37.5 ND ND ND -

P.aeruginosa 08031205(IS, DR) 9.4 18.7 ND ND ND -

P.aeruginosa 08031014(IS, DR) 18.7 75 ND ND ND -

Escherichia coliATCC25922 2.3 18.7 18.7 37.5 0.15 18.7

E. coli 08A852 (IS, DR) 1.2 18.7 ND ND ND -

E. coli 08A866(IS, DR) 0.6 18.7 ND ND ND 18.7

E. coli 08031017 (IS, DR) 2.3 37.5 ND ND ND -

E. coli 08032813 (IS, DR) 2.3 .100 ND ND ND -

E. coli 08040726 (IS, DR) 0.6 .100 ND ND ND -

E. coli 08040722 (IS, DR) 0.6 9.4 ND ND ND -

Staphylococcus aureus ATCC2592 4.7 75 0.15 0.03 - 1.2

S. aureus ATCC25923 .400 ND - - - -

S. aureus 08A865 (IS, DR) .400 .200 ND ND ND -

S. aureus 08A875 (IS, DR) 75 .200 ND ND ND -

S. aureus 08031002 (IS, DR) .100 .200 ND ND ND -

S. aureus 08031013 (IS, DR) .100 .200 ND ND ND -

S. aureus 08032706 (IS, DR) .100 - ND ND ND -

S. aureus 08032712 (IS, DR) .100 - ND ND ND -

S. aureus 08032810 (IS, DR) .100 - ND ND ND -

Acinetobacter calcoaceticus 2.3 - 75 37.5 - -

Sphingobacterium siyangense 9.4 .200 - - - -

Sacharibacillus kuerlensis 4.7 4.7 - - - -

Serratia marcescens SA .400 .200 - - - -

Serratia marcescens MA .400 .200 - - - -

Pseudomonas luteola 1.2 .200 - - - -

Salmonella typhi (IS, DR) 1.2 1.2 - - - -

Klebsiella pneumoniae (IS, DR) 4.7 - - - - -

K. pneumoniae 08031012 (IS, DR) 9.4 .200 ND ND ND -

K. pneumoniae 08040202 (IS, DR) 0.6 75 ND ND ND -

K. pneumoniae 08040724 (IS, DR) 0.3 .100 - - - -

Enterococcus faecium (IS, DR) 150 - - - - -

Aspergillus terreus GIM3.34 18.7 ND ND ND ND -

Aspergillus niculans 18.7 ND ND ND ND -

Chaetomium globosum 37.5 ND ND ND ND -

Candida albicans ATCC2002 4.7 18.7 0.3 0.03 - 2.3

Pichia pastoris 0.3 9.4 - - - -

MIC: minimal inhibitory concentration. These concentrations represent mean
values of three independent experiments performed in duplicates. BF:
cathlicidin-BF, BF-15: cathlicidin-BF15, Amp: ampicillin, Ben: benzylpenicillin,
ICS: Imipenem and Cilastatin Sodium for Injection, ND: no detectable activity, -:
no assay, IS: clinically isolated strain, DR: drug resistance for ampicillin and
benzylpenicillin.
doi:10.1371/journal.pone.0003217.t001

Table 3. Bacterial killing kinetics of cathelicidin-BF against E.
coli.

Amount of bacteria co-cultured with different samples for different
time (CFU)

Time (h) 0 0.1 1 3 6

Samples

BFx1 50 0 0 0 0

BFx5 50 0 0 0 0

BFx10 50 0 0 0 0

ICSx1 50 36 12 224 1082

ICSx5 50 35 0.3 0.7 7

ICSx5 50 19 0.3 0.7 0

0.9% salt water 50 45 234 2341 14109

BF: cathlicidin-BF, CFU: colony forming unit, ICS: Imipenem and Cilastatin
Sodium for Injection, 61, 65 and 610: 1, 5 and 10 times
doi:10.1371/journal.pone.0003217.t003

Table 4. Bacterial killing kinetics of cathelicidin-BF and HDW
against E. coli.

Amount of bacteria co-cultured with different samples for different
time (CFU)

Time (min) 0 0.1 1 10 30

Samples

BFx1 50 32 0 0 0

BFx5 50 20 0 0 0

BFx10 50 10 0 0 0

HDWx1 50 49 14.7 0 0

HDWx10 50 38 3.7 0 0

0.9% salt water 50 69 56 66.7 68.7

BF: cathlicidin-BF, CFU: colony forming unit, 61, 65 and 610: 1, 5 and 10 times,
HDW: A amphibian antimicrobial peptide from Rana nigrovittata.
doi:10.1371/journal.pone.0003217.t004
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antimicrobial activities, and most of them are phospholipases A2 or

its derivatives [34,50–52], and L-amino acid oxidase [53].

In the attempt to find AMPs from the snake venoms of B.

fasciatus, which is a rich source of biological peptides or proteins

with therapeutic potential, an AMP, cathelicidin-BF has been

isolated and characterized. By screening the cDNA, cathelicidin-

BF was unexpectedly found to be a C-terminus of a cathelicidin.

The cathelicidin-BF precursor is composed of 191 amino acid

residues with conserved cathelin domain that was flanked by signal

peptide and by mature cathelicidin-BF. A conserved cleavage site

(Valine157) for elastase in the processing and maturation of bovine,

porcine and chicken cathelicidins [30] is also existed in the

cathelicidin-BF precursor, suggesting that the snake cathelicidin is

possibly processed by elastase-like proteases. Based on the

hypothesis, cathelicidin-BF precursor should release a 34-aa

peptide fragment (KRFKKFFRKLKKSVKKRAKEFFKKPR-

VIGVSIPF), which has a 4-aa (KRFK) extension at the N-

terminus of the 30-aa cathelicidin-BF (KFFRKLKKSVKKRA-

KEFFKKPRVIGVSIPF). Two reasons may explain the length

difference between the predicted 34-aa C-terminal peptide and the

purified 30-aa cathelicidin-BF in this case: 1, the predicted

cleavage site is right, and the purified 30-aa cathelicidin-BF is from

the further processing of the 34-aa peptide; 2, Valine157 in the

cathelicidin-BF precursor is not the exact protease cleavage site. In

fact, some cathelicidins is not cleaved by elastase to release C-

terminal active peptide fragments as mentioned in this ‘‘introduc-

tion’’. An obvious feather of cathelicidin-BF is that there is a high

density (40%) of basic amino acid residues in its sequence. As some

other cathelicidins [30], there are multiple aromatic amino acid

residues in cathelicidin-BF’s sequence (5 Phenylalanines). An

atypical feature of cathelicidin-BF precursor is that an acidic

domain insertion (EEGEQKQEEGNEEEKEVEEEEQEED

EKD) is located between the cathelin domain and the mature

cathelicidin-BF. This region potentially could affect preproprotein

net charge, stability, activity or processing. The similar acidic

regions are also found in amphibian antimicrobial precursors,

which are located between the signal peptide domains and the

mature antimicrobial domains [39–42]. Amphibian acidic regions

act as a role to neutralize the positive charge of the mature

antimicrobial domains and to avoid possible toxicity of the

precursor proteins.

The data of antimicrobial testing indicated that cathelicidin-BF

is clearly among the most potent cathlicidins discovered to date.

Among the 40 strains of tested microorganisms, 15 strains could be

killed by cathelicidin-BF at ,0.6 mM. For a variety of microor-

ganisms, cathelicidin-BF had better antimicrobial ability than

ampicillin, benzylpenicillin and ICS. Cathelicidin-BF’s obvious

ability to kill some saprophytic fungus such as A. terreus, A. niculans

and C. globosum is also very interesting. It may be used as

agricultural antibiotics against plant or food pathogenic microor-

ganisms. To our knowledge, this is the first report of cathelicidin’s

antimicrobial activities against saprophytic fungus. In addition,

cathelicidin-BF had very rapid microbe-killing efficacy. Cathe-

licidin-BF could kill E. coli within one minute at the dose of one

time MIC. All the results suggest that cathelicidin-BF is an

excellent candidate for clinical or agricultural antibiotics.

Supporting Information

Materials and Methods S1 Detail materials and methods

Found at: doi:10.1371/journal.pone.0003217.s001 (0.03 MB

DOC)

Figure S1 Purification of the cathelicidin from snake venom. (a)

Gel filtration chromatography. Sephadex G-50 column

(2.6 cm6100 cm), equilibrated and developed with 50 mM Tris-

HCl plus 50 mM NaCl (pH 7.8) at a flow rate of 0.3 ml/min,

fractions were collected. (b) Cation-exchange chromatography.

CM-Sephadex C-25 column (16 cm640 cm) elution was achieved

with a liner NaCl gradient, at a flow rate of 1 ml/min. (c) RP-

HPLC chromatography. C4 reverse phase column, equilibrated

with 0.1% (v/v) TFA/water, elution was performed with an

acetonitrile liner gradient at a flow rate of 0.7 ml/min. The

purified peptide with antimicrobial activity is indicated by an

arrow.

Found at: doi:10.1371/journal.pone.0003217.s002 (0.17 MB TIF)

Figure S2 Electrospray ionization mass spectrometry analysis of

the RP-HPLC peak containing antimicrobial activity.

Found at: doi:10.1371/journal.pone.0003217.s003 (0.11 MB TIF)

Figure S3 Circular dichroism spectra recorded on cathelicidin-

BF in different solvent environments. (A) a,e : in SDS micelles of

0, 30, 60, 90, 120 mM; (B) a,e: in TFE/H2O mixtures of 1:9, 3:7,

5:5, 7:3, 9:1 (v/v).

Found at: doi:10.1371/journal.pone.0003217.s004 (0.13 MB TIF)

Figure S4 HN-HN regions of 2D 1H-1H NOESY spectra

recorded on cathelicidin-BF in H2O (left) and in TFE/H2O

mixture (9:1, v/v) (right).

Found at: doi:10.1371/journal.pone.0003217.s005 (0.12 MB TIF)

Figure S5 Ha CSI prediction for the cathelicidin-BF peptide in

TFE/H2O mixture (9:1, v/v). h: helix; c: coil.

Found at: doi:10.1371/journal.pone.0003217.s006 (0.16 MB TIF)

Figure S6 The opposing position of the hydrophilic and

hydrophobic side chains can be seen in this end-on representation

of the a-helix in the N-terminal region of cathelicidin-BF.

Found at: doi:10.1371/journal.pone.0003217.s007 (0.18 MB TIF)

Table S1 Contents of helical structures of cathelicidin in TFE/

H2O mixtures or in SDS micelles measured by CD.

Found at: doi:10.1371/journal.pone.0003217.s008 (0.03 MB

DOC)

Table S2 1H chemical shifts of cathelicidin-BF in TFE/H2O

mixture (9:1, v/v) at 298 K

Found at: doi:10.1371/journal.pone.0003217.s009 (0.07 MB

DOC)
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