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Abstract

Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to
physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood
using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into
mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-
based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe
dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key
transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30
chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol
and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the
compartmentalized energy controller ratios ATP/ADP and NADH/NAD+. The unknown transport and reaction parameters in
the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on
muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a
robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the
model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with
muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and
mitochondrial compartments, some that can be measured and others that can not be measured with the current
experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular
metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.
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Introduction

Skeletal muscle plays a major role in the regulation of whole-

body substrates and energy metabolism, especially under changing

physiological conditions such as ischemia (reduced blood flow),

hypoxia (reduced oxygen supply), and exercise (increased energy

demand). Current experimental techniques provide relatively little

in vivo data on dynamic responses of muscle metabolite

concentrations and metabolic fluxes to such physiological stimuli,

especially in subcellular domains, such as mitochondria. To

quantitatively analyze available in vivo experimental data and

predict nonmeasurable dynamic responses, we developed a

physiologically-based, multi-scale computational model of skeletal

muscle cellular metabolism and energetics. The model is

developed here from our previous model of cellular metabolism

and energetics in skeletal muscle [1] and incorporates inter-

domain transport processes and compartmentalized metabolic

reactions of many key chemical species in both cytosol and

mitochondria.

Developing a mechanistic computational model of substrates

and energy metabolism in complex, multi-scale metabolic systems,

such as skeletal muscle, using a detailed, bottom-up systems
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approach with sparse in vivo experimental data—with an objective

of achieving a quantitative understanding of the system to

physiological perturbations—is a challenging task. Such a

modeling approach requires information about the general

structural features and catalytic mechanisms of the associated

transporters and enzymes, subcellular metabolic pathways and

fluxes and their control mechanisms, and tissue/organ specific

metabolic characteristics. Such a modeling approach also requires

mechanistic models for key functional components of the system

(e.g., inter-domain transport processes, glycolysis, TCA cycle,

oxidative phosphorylation, fatty acid b-oxidation) to be first

individually developed and validated and then integrated to

emulate the systems behavior at the molecular, subcellular,

cellular, and tissue/organ levels. To avoid this complex approach

and facilitate analysis of available sparse in vivo experimental data

to understand dynamic responses of the system to physiological

stresses, approximations are often made to obtain a simplified

model of the system that includes key functional components

regulating cellular metabolic processes at the desired level of

complexity.

A top-down systems approach is an alternative approach which

has been previously applied to determine and integrate a

representative set of lumped biochemical reactions in vivo

metabolic systems that incorporate primary substrates and key

intermediate metabolites with coupled metabolic energy control-

lers ATP-ADP and NADH-NAD+ [1–8]. This approach is similar

to the top-down systems approach in metabolic control analysis

proposed by Brand and co-workers [9,10] and is intended to

provide an essential or minimal set of stoichiometrically balanced

lumped biochemical reactions participating in ATP synthesis

within mitochondria from the metabolism of nutrients (e.g.,

glucose, fatty acids, amino acids). Even with such simplifications, a

large number of phenomenological kinetic parameters are

introduced in the governing model equations, which must be

estimated from available sparse in vivo experimental data. To

estimate these unknown parameters, constraint-based, robust

nonlinear optimization methods are needed, as established in

our previous work [1].

To date, no physiologically-based, whole-organ level model of

skeletal muscle cellular metabolism and energetics has been

developed that can be applied to analyze available in vivo

experimental data and predict dynamic metabolic responses to

physiological stimuli in subcellular compartments, such as

mitochondria. Previous models have incorporated some aspects

of glycolysis, TCA cycle, oxidative phosphorylation, and fatty acid

b-oxidation [3–5,11–21]. None of them, however, include

sufficient key substrates/metabolites and/or integrate metabolic

pathways/reactions that are essential in the regulation of cellular

metabolic processes in skeletal muscle in vivo at whole-organ level.

While our recently developed models of skeletal muscle cellular

metabolism and energetics [1] have incorporated key metabolic

pathways and reactions, the intracellular cytosolic and mitochon-

drial compartments were not distinguished. The energy controller

pairs ATP-ADP and NADH-NAD+ that modulate several key

metabolic reactions in the cytosol and mitochondria have different

concentrations in these two subcellular domains [6–8]. As a

consequence, the model may not accurately predict the dynamics

of several metabolite concentrations and metabolic fluxes that are

critical in the regulation of fuel (carbohydrate, fat, and lactate)

metabolism and cellular respiration during physiological stresses

such as ischemia, hypoxia, and exercise.

In this paper, a physiologically-based, whole-organ level model

of skeletal muscle cellular metabolism and energetics is developed

and applied to study dynamic cellular metabolic responses to

reduced blood flow and oxygen supply to mitochondria (muscle

ischemia). The model, which is extended from our previous model

[1], is based on a multi-scale, top-down systems approach [1–8],

accounts for subcellular compartmentalization, and includes

primary substrates (carbohydrates and fats) and key intermediate

metabolites and metabolic reactions specific to skeletal muscle

metabolic system. The model equations are based on dynamic

mass balances of chemical species in capillary blood and tissue cells

(cytosol and mitochondria) domains. The model also distinguishes

the free and bound forms of O2 and CO2 transport in the blood

and cells. The inter-domain species transport processes are

considered either by passive diffusion or by carrier-mediated

(facilitated) transport. The metabolic reaction fluxes in the

cytosolic and mitochondrial domains are represented by a general

phenomenological Michaelis-Menten equation involving the

compartmentalized ATP/ADP and NADH/NAD+ energy con-

troller ratios. The phenomenological kinetic parameters of the

model are estimated by using our recently developed constraint-

based, robust nonlinear optimization approach [1]. In this

estimation process, we fit the model output to sparse in vivo

dynamic data on glycolytic and energetic metabolite concentra-

tions from experiments in humans with muscle ischemia previously

published [22]. With the estimated optimal parameter values, the

model is able to simulate dynamic responses of key chemical

species and reaction fluxes to reduced blood flow and oxygen

supply to mitochondria associated with the muscle ischemia.

Materials and Methods

Model Development
The first step in our development of a multi-scale, top-down

computational model of cellular metabolism and energetics in

skeletal muscle was to identify the key intermediate metabolites

and regulatory enzymes in the cellular metabolic pathways of

skeletal muscle. We then integrated available information on

cellular metabolic pathways and fluxes, cellular metabolic control

mechanisms, catalytic enzyme kinetic mechanisms, subcellular

compartmentation and metabolites volumes of distributions, inter-

domain transport mechanisms, and skeletal muscle tissue-specific

metabolic characteristics. A simplified map of the compartmen-

talized cellular metabolic pathways in skeletal muscle is shown in

Figure 1. The lumped biochemical reactions in the metabolic

pathways are generated by stoichiometrically coupling several

sequential elementary reactions. These reactions include the

compartmentalized metabolic energy controller pairs ATP-ADP

and NADH-NAD+ whose ratios are known to modulate (fine tune)

the reaction fluxes [2,23] in the subcellular compartments. Many

of these lumped reactions are considered irreversible for which the

resting Gibbs free energy (DG) is high and negative in favor of

product formation [24]. As a part of a general formalism for

modeling in vivo metabolic systems (nonequilibrium open systems),

the reversible reactions like lactate dehydrogenase (LDH), creatine

kinase (CK), and adenylate kinase (AK) were decomposed into two

separate irreversible reactions with distinct kinetics [1].

Dynamic mass balance equations
The dynamic mass balance equations are based on a multi-

domain model structure for skeletal muscle consisting of a

spatially-lumped capillary blood domain which exchanges nutri-

ents and metabolic waste products with a spatially-lumped domain

of tissue cells (Figure 2). Although these two domains are separated

by the interstitial fluid (ISF) space, we assume phase-equilibrium of

chemical species between the blood and ISF domains, and

consider them together as the ‘‘blood’’ domain. Furthermore, the

Muscle Metabolic Dynamics
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Figure 1. Schematic diagram of biochemical pathways depicting various chemical reactions and species involved in the cellular
metabolism of skeletal muscle. The pathways involve 26 lumped reactions among 30 species out of which 8 species (GLC, LAC, PYR, ALA, FFA,
GLR, CO2 and O2) undergo blood-tissue cells exchange. The exchange arrows show the direction of net tissue cells uptake-release rates at normal,
resting conditions. The lumped reactions are further compartmentalized into the cytosolic and mitochondrial reactions. These two subcellular
domains are assumed to be in rapid equilibrium state (the barrier is shown schematically by double dotted lines), so that the species that are
common to both these domains can have the similar dynamics, i.e., Cmit,j(t) = sj.Ccyt,j(t), where sj is the partition coefficient of the species j between
cytosol and mitochondria. In this case, the net transport flux of a species j across the cytosol-mitochondria barrier can quickly become negligible at
the onset of a physiological perturbation (the transport fluxes are shown by double dotted arrows); 10 species (PYR, FAC, CoA, NADH, NAD+, ATP,
ADP, PI, CO2 and O2) exist in both the cytosolic and mitochondrial domains. GLC: glucose, GLY: glycogen, G6P: glucose-6-phosphate, GA3P:
glyceraldehyde-3-phosphate, 13BPG: 1,3-biphosphate-glycerate, PYR: pyruvate, LAC: lactate, ALA: alanine, TGL: triglycerides, GLR: glycerol, FFA: free
fatty acid, FAC: fatty acyl-CoA, ACoA: acetyl-CoA, CIT: citrate, AKG: a-ketogluterate, SCoA: succinyl-CoA, SUC: succinate, MAL: malate, OXA:
oxaloacetate, CoA: coenzyme-A (free), PCR: phosphocreatine, CR: creatine, PI: inorganic phosphate, CO2: carbon dioxide, O2: oxygen, NADH: reduced
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tissue cells domain is compartmentalized into the cytosolic and

mitochondrial domains. The chemical species are assumed to be

distributed in these two subcellular domains as per their mass

fractions and volumes of distributions (Table 1). Here, the mass

fraction of a species in a particular domain is defined as the

fractional amount of the species in that domain in comparison to

the total amount of the species in the whole muscle tissue cells.

The volume of distribution of a species in a particular domain is

defined as the anatomical volume of the domain plus the binding

space of the domain for the species. In addition, the species that

are common to both of these domains are assumed to have the

similar dynamics in these two domains, because the species

transport processes between these two domains can be sufficiently

fast [5]. Consequently, a change in the species concentration in

one domain will be proportional to the change in the species

concentration in the other domain: Cmit,j(t) = sj.Ccyt,j(t), where sj is

the equilibrium concentration ratio (or partition coefficient) of

species j between mitochondria and cytosol. In the present model,

a total of 10 chemical species (pyruvate, fatty acyl-CoA, CoA,

ATP, ADP, inorganic phosphate, NADH, NAD+, O2, and CO2)

are considered to exist in both the cytosolic and mitochondrial

compartments with negligible transport flux between the com-

partments.

The dynamic mass balance of a chemical species j in the

spatially-lumped blood domain has the following general form:

Vbl,jzVisf ,j

� �
dCbl,j

�
dt~Q Cart,j{Cbl,j

� �
{Jbl<cyt,j ð1Þ

where Cart,j is the arterial species concentration; Cbl,j is the capillary

blood species concentration (equal to the venous species

concentration Cven,j); Vbl,j and Visf,j are the volumes of distribution

of species j in blood and ISF, and Q is the regional blood flow;

Jbl«cyt,j is the net transport flux (mass per unit time) across the

blood-cytosol exchange barrier (consisting of capillary membrane,

ISF, and tissue cell membrane).

The dynamic mass balance of the chemical species j in the

spatially-lumped tissue cells domain (cytosol and/or mitochondria)

has the following general forms:

Vcyt,jdCcyt,j

�
dt~Jbl<cyt,jzPcyt,j{Ucyt,j ; if j[cyt

and j6[mit
ð2aÞ

Vmit,jdCmit,j

�
dt~Pmit,j{Umit,j ; if j6[cyt and j[mit ð2bÞ

Vcyt,jzsjVmit,j

� �
dCcyt,j

�
dt~Jbl<cyt,jzPcyt,j{Ucyt,j

zPmit,j{Umit,j ;

dCmit,j

�
dt~sjdCcyt,j

�
dt; if j[cyt and j[mit

ð2cÞ

where

Px,j~
X

p

bx,j,pwx,p and Ux,j~
X

u

bx,j,uwx,u;

x~ cyt,mitð Þ
ð2dÞ

Here Cx,j is the species concentration in domain x (cytosol/

mitochondria); Vx,j is the volume of distribution of species j in

domain x; Px,j and Ux,j are the production and utilization of species

Figure 2. Schematic diagram of the structure of the model for blood-tissue cells exchange and cellular metabolism in skeletal
muscle. The compartments are assumed to be perfectly mixed, and the capillary blood and tissue ISF regions are assumed to be in phase-
equilibrium with each other, so that Cisf,j = Cbl,j = Cven,j for any chemical species j. The tissue cells domain is further compartmentalized into the
cytosolic and mitochondrial domains with the chemical species having the similar dynamics in these two subcellular domains, so that
Cmit,j(t) = sjCcyt,j(t), where sj is the partition coefficient of the species j between cytosol and mitochondria. The model accounts for 30 chemical species
in the tissue cells. A total of 8 species (GLC, LAC, PYR, ALA, FFA, GLR, CO2 and O2) undergo blood-tissue cells exchange; 10 species (PYR, FAC, CoA,
NADH, NAD+, ATP, ADP, PI, CO2 and O2) exist in both the cytosolic and mitochondrial domains with a negligible transport flux (Jcyt«mit,j<0). For
details, see the caption of Figure 1.
doi:10.1371/journal.pone.0003168.g002

nicotinamide adenine dinucleotide, NAD+: oxidized nicotinamide adenine dinucleotide, ATP: adenosine triphosphate, ADP: adenosine diphosphate,
AMP: adenosine monophosphate.
doi:10.1371/journal.pone.0003168.g001
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j in domain x; wx,p and wx,u are the reaction fluxes of the reactions

processes that produce and utilize species j in domain x; bx,j,p and

bx,j,u are the corresponding stoichiometric coefficients. For

chemical species which are in the tissue cells (cytosol and/or

mitochondria) but not in the capillary blood, the transport flux

Jbl«cyt,j is zero.

The dynamic mass balance equations for all the chemical

species in blood, cytosol and mitochondrial domains can be

rewritten from our previous model of skeletal muscle metabolism

[1] by accounting for the species compartmentalized volumes of

distributions as laid out in Eqs. (1) and (2a–2c). The dynamic mass

balance equations for O2 and CO2 in these domains are developed

by considering their distinct transport and binding mechanisms

[25,26]. The detailed mass balance equations of the chemical

species, including O2 and CO2, are provided in Materials S1.

Transport and reaction flux equations
The reversible transport flux Jbl«cyt,j (mass per unit time) of the

species j across the blood-cytosol exchange barrier is related to the

concentrations Cbl,j and Ccyt,j by

Table 1. Average species concentrations in the muscle tissue cells [1] and their compartmentalization (distribution) into cytosol
and mitochondria at normal, resting steady-state conditions.*

Species Tissue Cells (100%) Cytosol (90%) Mitochondria (10%)

Concentration (mmol/kg
cell ww) References Mass# (%)

Concentration (mmol/kg
cyto ww) Mass# (%)

Concentration (mmol/kg
mito ww)

GLC 0.5 [22,33,38,39,46–50] 100 0.5556 0 0

GLY 95.0 [33,38,46,47,49,51–53] 100 105.56 0 0

G6P 0.25 [22,33,46–50] 100 0.2778 0 0

GA3P 0.08 [33,46,48] 100 0.08889 0 0

13BPG 0.08 [33,46,48] 100 0.08889 0 0

PYR 0.05 [22,38,39,46–48,50] 95 0.0528 5 0.025

LAC 0.78 [22,33,38,39,46,48,50] 100 0.8667 0 0

ALA 1.3 [38,53–55] 100 1.4444 0 0

TGL 15.0 [48,51,52] 100 16.667 0 0

GLR 0.065 [33,47,49,52,56] 100 0.07222 0 0

FFA 0.45 [33,47,49,52,56] 100 0.50 0 0

FAC 0.0035 [49,57] 95 0.003694 5 0.00175

ACoA 0.002 [33,47,55] 0 0 100 0.02

CIT 0.095 [38,39,48,53] 0 0 100 0.95

AKG 0.0125 [38,39] 0 0 100 0.125

SCoA 0.125 [38,39,48,53] 0 0 100 1.25

SUC 0.095 [38,39,48,53] 0 0 100 0.95

MAL 0.095 [38,39,48,53] 0 0 100 0.95

OXA 0.003 [38,39,48,53] 0 0 100 0.03

CoA 0.02 [33,47,55] 80 0.01778 20 0.04

CO2 (F) 1.40 (46 mmHg) [26] 90 1.40 (46 mmHg) 10 1.40 (46 mmHg)

CO2 (T) 15.427 [26] 90 15.427 10 15.427

O2 (F) 0.0338 (25 mmHg) [26] 90 0.0338 (25 mmHg) 10 0.0338 (25 mmHg)

O2 (T) 0.49 [26] 90 0.49 10 0.49

PCR 21.0 [33,38,42,46,48,50,53,58] 100 23.333 0 0

CR 10.5 [33,38,42,46,48,50,53,58] 100 11.667 0 0

PI 2.75 [42,46,48] 90 2.75 10 2.75

NADH 0.05 [46,48,50,53] 0.5 0.2778E-3 99.5 0.4975

NAD+ 0.45 [46,48,50,53] 30 0.15 70 3.15

ATP (T) 6.2 [22,33,46–48,50,53,58] 86 5.924 14 8.68

ADP (T) 0.8 [22,46,48,50,53,58] 2 0.01778 98 7.84

AMP (T) 0.04 [22,46,48,50,53,58] 100 0.04444 0 0

*The species concentrations (mM or mmol/kg tissue cells ww) are converted from the experimental data (mmol/kg tissue cells dw) in the literature by multiplying a
factor 0.25 kg tissue cells dw/kg tissue cells ww [33]; for unit density, kg ww = L and mmol/kg ww = mmol/L = mM. The cytosolic and mitochondrial species
concentrations are calculated from the species concentrations in the muscle tissue cells according to their approximate volumes of distributions and mass fractions;
species nomenclature is adopted from Ref. [1] (also see the caption to Figure 1); dw denotes dry weight, ww denotes wet weight.

#The mass fractions are set to have reasonable compartmentalized species concentrations and mass action ratios consistent with available information from the
literature: Ccyt,LAC/Ccyt,PYR = 16.4, Ccyt,NAD+/Ccyt,NADH = 540, Cmit,NAD+/Cmit,NADH = 6.3, Ccyt,PCR/Ccyt,CR = 2, Ccyt,ATP/Ccyt,ADP = 333.2, Cmit,ATP/Cmit,ADP = 1.11, KLDH = (Ccyt,LAC/
Ccyt,PYR)* (Ccyt,NAD+/Ccyt,NADH) = 8856, KCK = (Ccyt,CR/Ccyt,PCR)*(Ccyt,ATP/Ccyt,ADP) = 166.6, and KAK = (Ccyt,ADP)2/(Ccyt,ATPCcyt,AMP) = 1.2E-3. The cytosolic and mitochondrial PI
concentrations are set at equal value with the assumption of a negligible pH gradient across the mitochondrial membrane.

doi:10.1371/journal.pone.0003168.t001
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Jbl<cyt,j~

J
p
bl<cyt,j~lbl<cyt,j Cbl,j{Ccyt,j

� �
, if passive

J
f
bl<cyt,j~Tbl<cyt,j

Cbl,j

Mbl<cyt,jzCbl,j

�

{
Ccyt,j

Mbl<cyt,jzCcyt,j

�
, if facilitated

8>>>>>><
>>>>>>:

ð3Þ

where lbl«cyt,j is the effective permeability surface area product for

diffusive mass transport across the barrier (for passive transport);

Tbl«cyt,j is the maximal transport flux across the barrier (Tmax) and

Mbl«cyt,j is the corresponding Michaelis-Menten (M-M) constant

(Mm) (for facilitated transport). The flux expressions (3) satisfy the

thermodynamic equilibrium conditions across the barrier.

The species involved in the blood-cytosol exchange are glucose,

lactate, pyruvate, alanine, glycerol, free fatty acid, CO2, and O2

(Table 2). The transport processes may be passive or carrier-mediated

(facilitated) (Eq. 3). The transport of glucose, pyruvate/lactate, and

free fatty acid across the sarcolemma of skeletal muscle is facilitated

via the GLUT4 [27], MCT1 or MCT4 [28,29], and FABP or FAT/

CD36 [30] proteins, respectively. The sarcolemmal transport of the

remaining species (alanine, glycerol, CO2, and O2) is considered to be

passive. For the 10 species that exist in both cytosol and

mitochondria, the inter-domain transport flux Jcyt«mit,j is zero.

The lumped metabolic reactions of skeletal muscle cellular

metabolism and energetics can be considered as special cases of a

general, irreversible, multi-reactant multi-product enzymatic

reaction coupled with the metabolic energy controller pairs:

where P1 and P2 are ATP and ADP or vice-versa (PS6:

phosphorylation state); R1 and R2 are NADH and NAD+ and

vice-versa (RS6: redox state). The corresponding coupled

phosphorylation and redox reactions are ATPRADP (PS+)

and/or NADHRNAD+ (RS+) or vice-versa (PS- and RS-).

Assuming a phenomenological, single-step enzyme kinetic mech-

anism [31], the flux expression for the lumped metabolic reaction

can be written as (see Ref. [1] for detailed description):

w~Vmax
CP1

=CP2

KPS+
m zCP1

=CP2

� �
CR1

=CR2

KRS+
m zCR1

=CR2

� �

PNs

i~1CSi

KmzPNs

i~1CSi

" # ð5Þ

where Vmax and Km are the phenomenological maximal/limiting

velocity and M-M parameter of the reaction; KPS+
m and KRS+

m

are the phenomenological M-M parameters for the coupled

phosphorylation and redox reactions; CP1/CP2 is the phosphor-

ylation ratio: CATP/CADP (PS+) or CADP/CATP (PS-), and CR1/

CR2 is the redox ratio: CNADH/CNAD+ (RS+) or CNAD+/CNADH

(RS-). So the reaction fluxes are explicitly regulated by the coupled

energy controller ratios CP1/CP2 and/or CR1/CR2 (if coupled).

The flux expressions for all the lumped metabolic reactions in

the subcellular compartments of cytosol and mitochondria can be

rewritten from our previous model of skeletal muscle metabolism

[1] in terms of the compartmentalized metabolites concentrations

and energy controller ratios ATP/ADP and NADH/NAD+. The

details are provided in Materials S2.

In summary, in this mathematical model of skeletal muscle

cellular metabolism and energetics, the number of chemical

species (primary substrates, intermediate metabolites, and energy

controllers) in the tissue cells domain (cytosol and mitochondria) is

30, which participate in 26 metabolic reactions. The number of

chemical species that exist in both blood and cells is 8, and that in

both cytosol and mitochondria is 10. Accordingly, the model

includes 8 Jbl«cyt,j transport fluxes characterized by 4 l, 4 Tmax

and 4 Mm parameters, and 26 w reaction fluxes characterized by

26 Vmax, 27 Km (1 Km for G6P inhibition of the hexokinase

Table 2. Average muscle tissue cells uptake-release rates (mmol/min) and blood species concentrations (mM) at normal, resting
steady-state conditions from the literature.*

Species Arterial Concentrations, Cart Venous Concentrations, Cven UR rates, Q(Cart2Cven) References

GLC 5.0 4.7833 0.195 [33,38,52,54,57,59]

PYR 0.075 0.0617 0.012 [33,38,52,54,57,59]

LAC 0.5 0.6111 20.10 [33,38,52,54,57,59]

ALA 0.25 0.3333 20.075 [38,39,54,59]

GLR 0.04 0.0483 20.0075 [33,49,52,56,57,59]

FFA 0.7 0.6167 0.075 [33,49,52,56,57,59]

CO2 (T) 23.405 25.47 21.86# (241.66 ml/min) [38,52,54,57,59]

CO2 (F) 1.22 (40 mmHg) 1.33 (43.55 mmHg) NA [25,26]

O2 (T) 9.235 6.556 2.41# (54.0 ml/min) [38,52,54,57,59]

O2 (F) 0.135 (100 mmHg) 0.0491 (36.37 mmHg) NA [25,26]

#Physiological constrains:

URCO2~{ 6:URGLCz3:URPYRz3:URLACz3:URALAz3:URGLRz16:URFFAð Þ
URO2~6:URGLCz2:5:URPYRz3:URLACz2:5:URALAz3:5:URGLRz23:URFFA

, RQ~{
URCO2

URO2

~0:77

.
*A resting blood flow of 0.9 L/min corresponding to the two-leg quadriceps femoris muscle is used to calculate the muscle tissue cells uptake-release (UR) rates from the
arterio-venous (AV) differences. The venous species concentrations and uptake-release rates are tuned further to satisfy the physiological constrains# stated above, just
below the table. (These well-compiled data are adapted from Table 2, Ref. [1].)

doi:10.1371/journal.pone.0003168.t002

Muscle Metabolic Dynamics

PLoS ONE | www.plosone.org 6 September 2008 | Volume 3 | Issue 9 | e3168



reaction; see Reaction 1, Materials S2), 13KPS+
m and 11KRS+

m

parameters (as in our previous model [1]). Besides, there are 10

partition coefficients s for the chemical species that exists in both

cytosol and mitochondria (since the 10 Jcyt«mit,j transport fluxes are

considered negligible). Therefore, the present model is character-

ized by a total of 99 unknown parameters that need to be

estimated to fit the model outputs to the available in vivo

experimental data. For convenience, the transport and reaction

fluxes are written here in vector form: ~JJ~~JJ ~CC;~ll,~TTmax,~MMm

� 	
and

~ww~~ww ~CC; ~VVmax,~KKm,~KKPS+
m ,~KKRS+

m

� 	
, where the parameter vector

for these transport and reaction fluxes is denoted by
~hh~ ~ll,~TTmax,~MMm,~ss,~VVmax,~KKm,~KKPS+

m ,~KKRS+
m

� 	
; ~CC is the concentra-

tion vector. Note that the 12 transport parameters (4 l, 4 Tmax and

4 Mm) can be estimated here uniquely from the resting, steady-

state transport flux-concentration relationships (Table 3) [1]. The

10 partition coefficients (10 s) can be estimated uniquely from the

resting, steady-state species concentration ratios between the

mitochondria and cytosol (sj = Cmit,j/Ccyt,j) (Table 3).

Model simulation
With specified parameter values, the mathematical model is

solved numerically to simulate dynamic responses of the system to

ischemia produced by reducing muscle blood flow. Typically, the

initial conditions: Cbl,j tƒ0ð Þ~C0
bl,j , Ccyt,j tƒ0ð Þ~C0

cyt,j , and
Cmit,j tƒ0ð Þ~C0

mit,j are assumed to be at a normal, resting

steady-state. These are fixed based on average resting species

concentrations gathered from various literature sources on skeletal

muscle cellular metabolism that are consistent with the resting,

steady-state flux-concentration relationships (Tables 1 and 2). The

species mass fractions and volumes of distributions in the

subcellular cytosolic and mitochondrial domains are set to have

appropriate phosphorylation and redox potentials in the cytosol

and mitochondria. For numerical solution of this stiff initial-value

problem, a robust implicit integrator DLSODES (https://

computation.llnl.gov/casc/odepack/odepack_home.html; http://

www.netlib.org/odepack; [32]) is used. Specifically, the Gear’s

implicit integration method based on backward difference formula

(BDF) is most suitable for this problem. An absolute and relative

error of tolerance of 10210 guarantees high accuracy and

convergence of the iterative solutions of the ODEs. The

DLSODES solver is usually very fast; a typical simulation of this

problem using the DLSODES solver in a standard desktop

computer (Intel Xeon or Core 2 Duo CPU 5160 @ 3 GHz) takes

only about 5 seconds of the CPU time. As a check, the numerical

solutions of the initial value problem were also obtained using the

ODE15S solver in MATLAB (http://www.mathworks.com) with

Table 3. Optimal model parameter values for the inter-domain transport fluxes determined from the steady-state parameter
estimation process.

I. Blood-cytosol passive or carrier-mediated (facilitated) transport fluxes (mmol/min) and parameters:

J
p
bl<cyt,j~lbl<cyt,j Cbl,j{Ccyt,j

� �
or J

f
bl<cyt,j~Tbl<cyt,j

Cbl,j

Mbl<cyt,j zCbl,j
{

Ccyt,j

Mbl<cyt,j zCcyt,j

� 	

Species lbl«cyt (ml/min) Tbl«cyt (mmol/min) Mbl«cyt (mmol/L) Jbl«cyt (mmol/min)

GLC N/A 0.4106 2.5 [27] 0.195

PYR N/A 1.5127 1.0 [28,29] 0.012

LAC N/A 2.5769 5.0 [28,29] 20.10

ALA 0.0675 N/A N/A 20.075

GLR 0.3142 N/A N/A 20.0075

FFA N/A 1.5589 1.0 0.075

CO2 24.926 N/A N/A 21.86

O2 157.1 N/A N/A 2.41

II. Cytosol-mitochondrial species partition coefficients (unitless): scyt«mit,j = Cmit,j/Ccyt,j

Species PYR FAC CoA PI ATP ADP NADH NAD+ O2 CO2

scyt«mit,j 0.4737 0.4737 2.25 1.0 1.465 441.0 1791.0 21.0 1.0 1.0

III. Anatomical volumes and muscle blood flow

Parameter Definition Value and Unit Reference

Vmus Total volume of the active muscle 4.0 kg wet weight (L) estimated

(Vbl,Visf, Vcyt, Vmit) Volumes of blood, ISF, cytosol and mitochondria (0.07Vm, 0.13Vm, 0.72Vm, 0.08Vm) calculated

Q Muscle blood flow at rest for two legs 0.9 L/min [33,57,59]

Qisch Muscle blood flow during ischemia 0.216 L/min estimated

The table also includes the anatomical volumes and muscle blood flow at rest (fixed) and during muscle ischemia (estimated).*
*The blood-cytosol transport fluxes satisfies Jbl«cyt,j = URj = Q(Cart,j2Cven,j) at resting, steady-state (the UR rates column in Table 2). The subcellular cytosolic and
mitochondrial domains are assumed to be in rapid equilibrium state so that the cytosol-mitochondria transport fluxes are considered negligible and the metabolites
common to both of these domains are considered to have the similar dynamics (i.e., Cmit,j(t) = sj.Ccyt,j(t)). Thus the cytosol-mitochondria metabolites partition
coefficients sj are calculated based on the resting, steady-state metabolite concentrations in these two subcellular domains. The estimates of the transport flux
parameters differ from those obtained in our previous work [1] because of the re-estimation of these parameters due to subcellular compartmentalization.

doi:10.1371/journal.pone.0003168.t003
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the similar tolerance levels. These solutions were of comparable

accuracy with that obtained using the DLSODES solver.

Parameter Estimation
The large number of unknown parameters of this model are

estimated by comparing model outputs to in vivo experimental data

of Katz [22] with the optimization procedure described previously

[1]. The data consist of key metabolites concentration dynamics

measured during circulatory occlusion and recovery (reperfusion)

in human skeletal muscle at the whole tissue-organ level [22].

Specifically, the data is based on the biopsy measurements of

glucose and glycolytic/glycogenolytic intermediates (i.e., glucose 6-

phosphate, pyruvate, and lactate) and creatine and high-energy

phosphates (i.e., phosphocreatine, inorganic phosphate, ATP,

ADP, and AMP) in quadriceps femoris muscle tissue at rest, after

30 minutes of ischemia, and after 15 minutes of reperfusion. The

tissue metabolite contents or concentrations were measured in the

units of mmol/kg dry weight. For our analysis, these concentra-

tions are converted to the units of mmol/kg wet weight (mmol/L

or mM) by multiplying a conversion factor of 0.25 kg dry weight/

kg wet weight, corresponding to the muscle tissue [33]. Consistent

with the experimental measurements of Katz [22], the following

ischemia protocol is used for model simulations and parameter

estimation: the muscle blood flow is reduced from Q = 0.9 L/min

at rest (t,0 min) to Q = Qisch (unknown) at the onset of ischemia

(0#t#30 min), and then increased to the starting level at the onset

of recovery (t.30 min). The active muscle volume (Vmus) and

ischemic muscle blood flow (Qisch) responsible for the predicted

metabolic dynamics in skeletal muscle during ischemia and

recovery were not known from the experimental study of Katz

[22]. Therefore, Vmus and Qisch are also included as the unknown

parameters for estimation, making the total number of unknown

parameters in the model to 101. This is an increase of 10 unknown

parameters (10 s) from our previous model [1].

With this relatively sparse data and large number of unknown

parameters, the parameter estimation problem is ill-conditioned

and under-determined. Nevertheless, an efficient estimation

method is devised based on our earlier work [1] to obtain

physiologically reasonable parameter values that minimize the

sum of squared differences between the available experimental

data and corresponding model outputs. The estimation procedure

proceeds in two main stages. In the first stage, the published

normal, resting species concentration data (Tables 1 and 2) are

used to evaluate the resting transport and reaction fluxes from a

steady-state flux balance analysis (Tables 2, 3 and 4). From the

resting flux-concentration relationships: Eqs. (3) and (5), the

preliminary estimates of the transport and reaction parameters are

obtained. The preliminary estimates of the 10 partition coefficients

are obtained from the resting, steady-state species concentration

ratios between mitochondria and cytosol (sj = Cmit,j/Ccyt,j) (Table 3).

In the second stage, the dynamic species concentration data [22]

together with the resting, steady-state flux balance equations as

equality constraints are used to obtain the optimal parameter

estimates (Tables 3 and 4).

A detailed description of this robust estimation approach for

obtaining optimal parameter estimates from species concentration

dynamics during muscle ischemia and recovery is presented in

Ref. [1]. This method has been established powerful in the analysis

of large-scale in vivo metabolic systems. The efficiency and

robustness of this parameter estimation approach was tested with

parameter sensitivity analysis as well as with repeated parameter

estimation with various initial parameter estimates (initial guesses).

Various estimates of the more sensitive model parameters spanned

in a small neighborhood of the optimal parameter estimates (see

Ref. [1] for details). Since the preliminary estimates of the 12

transport parameters and 10 partition coefficients based on the

resting species concentrations and transport fluxes were accurate

enough, these 22 parameters were not re-estimated from the

dynamic species concentration data. Therefore, as in our previous

paper [1], a total of 101–22 = 79 parameters (77 reaction

parameters+Vmus+Qisch) are effectively estimated from the dynamic

data.

Results

Comparison of model simulations with experimental
data

The optimal estimates of the transport parameters (l,Tmax,Mm),

partition coefficients (s), active muscle volume and ischemic

muscle blood flow (Vmus, Qisch), and reaction parameters

Vmax, Km, KPS+
m , KRS+

m

� �
for the model are shown in Tables 3

and 4. These parameter estimates yield the best fit of the model

outputs to the published experimental data [22] with minimal

residual errors and minimal objective function. The optimal

estimates of Vmus and Qisch corresponding to the experimental data

were ,4.0 L (,16% of normal two-legs muscle volume of ,25 L)

and ,0.216 L/min (,76% reduction from normal, resting two-

legs muscle blood flow of Q = 0.9 L/min). These optimal

parameter values were used for model simulations during the

resting, ischemia and recovery periods. The blood flow reduction

levels of Qisch = 0.18, 0.27 and 0.36 L/min (80%, 70% and 60%)

were used for simulating severe to moderate to mild ischemic

conditions.

The correspondence of model simulations and experimental

data is demonstrated through Figures 3 and 4. Specifically, shown

are the concentration dynamics of 4 glycolytic metabolites (GLC,

G6P, LAC, PYR) and 6 energy metabolites (PCR, CR, PI, ATP,

ADP, AMP) in the muscle tissue cells (i.e., weighted volume

averages of concentrations in cytosol and mitochondria) for which

experimental data were available [22] for four different blood flow

reduction levels Qisch = 0.18, 0.216, 0.27 and 0.36 L/min. Figure 3

also includes the concentration dynamics of NADH and NAD+ in

the muscle tissue cells. The dynamics of compartmentalized

cytosolic and mitochondrial phosphorylation and redox potentials

(i.e., [ATP]/[ADP] and [NAD+]/[NADH] ratios) and cytosolic

[LAC]/[PYR] and [PCR]/[CR] ratios are shown in Figure 5.

The level Qisch = 0.216 L/min corresponds to the experimental

data of Katz [22] and the corresponding model simulations match

to the data reasonably well within the experimental noise (Table 5).

The experimental data are normalized here with respect to the

resting metabolites concentrations (control). Furthermore, the

individual metabolites responses are shown in separate plots in

order to distinguish metabolite responses to different levels of

blood flow reductions.

The model simulations of cellular glucose (GLC), glucose-6-

phosphate (G6P), pyruvate (PYR), and lactate (LAC) concentra-

tions at the end of 76% ischemia and reperfusion are in close

agreement with the experimental data (Fig. 3(A–D), Table 5).

Cellular [G6P] increased quickly (exponentially) by ,60% during

ischemia and returned rapidly to its resting level at the onset of

reperfusion. In contrast, the cellular [GLC] increased slowly

(almost linearly) by ,35% during ischemia and remained at an

elevated level even after 30 minutes of reperfusion. Blood [GLC],

however, decreased rapidly, but only by ,10%, during ischemia

and returned quickly to its baseline value during reperfusion (not

shown). Furthermore, the model-predicted changes in the cellular

[G6P] and [GLC] during the mild 60% and 70% blood flow
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reduction levels were not significant when compared to the

changes during the high 76% and above (i.e., 80%) blood flow

reduction levels.

Both cellular [LAC] and [PYR] increased by ,125% during

76% ischemia and almost returned to the resting levels after

30 minutes of reperfusion. However, the dynamic response of

[PYR] was different from that of [LAC]. During ischemia, [PYR]

first decreased and then increased, but during reperfusion, [PYR]

first sharply increased and then rapidly decreased to the resting

level. On the other hand, [LAC] slowly (almost linearly) increased

during ischemia and slowly (almost linearly) decreased during

reperfusion. Blood [LAC] had the similar dynamics as that of

cellular [LAC] (not shown). These differential dynamics of cellular

[LAC] and [PYR] characterize the dynamics of cellular or

cytosolic [LAC]/[PYR] ratio. The dynamics of cytosolic [LAC]/

[PYR] ratio and cytosolic and mitochondrial redox states

([NADH] and [NAD+]) and redox potentials ([NAD+]/[NADH]

ratios) were all similar having biphasic behaviors during the

ischemia and reperfusion periods (Figs. 3(E,F) and 5(A–C)). This is

in contrast to our previous model (in which the cytosolic and

mitochondrial compartments were lumped into a single tissue cells

compartment [1]) predictions that the dynamic responses of

cellular [LAC]/[PYR] and [NAD+]/[NADH] ratios to ischemia

and reperfusion are distinct. Thus the present compartmentalized

model is able to correctly simulate the dynamic responses of

cytosolic and cellular [LAC]/[PYR] ratios as well as cytosolic and

mitochondrial [NAD+]/[NADH] ratios. The cytosolic [LAC]/

[PYR] ratio rapidly increased from a resting level of ,16.4 to

,26.8 at the onset of 76% ischemia, then quickly decreased

almost to the baseline value (,17.22) as ischemia progressed, in

agreement with the data (Table 5). In contrast, the cytosolic

[NAD+]/[NADH] ratio decreased quickly from a resting level of

,540 to ,265 at the onset of 76% ischemia, then increased and

reached a new steady state value of ,332 as ischemia progressed.

The LDH mass action ratio ([LAC][NAD+])/([PYR][NADH])

decreased considerably from a resting level of ,8856 to ,5585

during 76% ischemia. At different levels of blood flow reductions,

the model-predicted changes were not proportional. The changes

were negligible below 70% blood flow reduction levels and

significant above 76% blood flow reduction levels.

Table 4. Resting, steady-state metabolic reaction flux rates and corresponding optimal estimates of the Vmax, Km, KPS+
m and

KRS+
m parameters that govern the metabolic reaction flux rates.*

Metabolic Reactions Flux rates (mmol/min) Vmax (mmol/min) Km (mmol/L)n K PS6
m (unitless) K RS6

m (unitless)

1. Glucose Utilization 0.195 1.1171 6.9E-2, 0.224## 334.13 (+) 0

2. Glycogen Synthesis 0.25# 0.8006 0.1641 337.69 (+) 0

3. Glycogen Utilization 0.25# 50.371 307.178 0.7473 (2) 0

4. G6P Breakdown 0.195 39.615 27.778 337.055 (+) 0

5. GA3P Breakdown 0.3825 43.331 14.354 0 540.233(2)

6. Pyruvate Production 0.3825 959.85 2.1199 0.3002 (2) 0

7. Pyruvate Reduction 25# 101.707 0.1575 0 3.904E-05(+)

8. Lactate Oxidation 24.9# 3494.12 59.988 0 539.170 (2)

9. Alanine Production 0.075 7.5752 5.2779 0 0

10. TGL Synthesis 0.0075 5.7349 3.214E-2 0 1.25E-2 (+)

11. Lipolysis 0.0075 1.516E-2 17.029 0 0

12. FFA Activation 0.0975 19.705 0.8896 333.08 (+) 0

13. ATP Hydrolysis 15.217 35.961 15.967 333.14 (+) 0

14. PCR Breakdown 100# 19822.6 22.091 0.3025 (2) 0

15. PCR Synthesis 100# 202.01 0.1142 333.425 (+) 0

16. AMP Utilization 50# 254.64 6.872E-02 333.297 (+) 0

17. AMP Production 50# 2064.73 1.214E-02 7.063E-2 (2) 0

18. Pyruvate Oxidation 0.2195 0.5043 1.441E-04 0 6.383 (2)

19. FAC Oxidation 0.075 25.995 1.197E-2 0 6.430 (2)

20. Citrate Production 0.8195 83.932 6.085E-2 0 0

21. AKG Production 0.8195 3.7097 1.273 0 5.917 (2)

22. SCoA Production 0.8195 161.242 0.5007 0 5.987 (2)

23. Succinate Production 0.8195 3.1152 2.5616 0.4755 (2) 0

24. Malate Production 0.8195 1.6616 2.024E-02 0 6.238 (2)

25. Oxaloacetate Production 0.8195 1.9415 7.964E-02 0 7.509 (2)

26. Oxygen Utilization 2.41125 258.154 7.696E-04 5.1083 (2) 2.341(+)

*The metabolic reaction flux rates are calculated based on resting, steady-state flux balance analysis (see Table 3, Ref. [1], for details). The flux rates with ‘‘#’’ can not
be determined uniquely, and hence are set at values consistent with the other flux values (e.g., set a large value for the fast equilibrium reversible reactions like CK,
AK and LDH). For K PS6

m and K RS6
m parameters, ‘‘+’’ indicates that the energy controller ratio is CATP/CADP or CATP/CAMP or CNADH/CNAD+, ‘‘2’’ indicates that the energy

controller ratio is CADP/CATP or CAMP/CATP or CNAD+/CNADH, and ‘‘0’’ indicates that no controller ratio appears in the flux expression; ## denotes the estimated Km value
KG6P

GLC?G6P

� �
for the inhibition of hexokinase reaction by G6P.

doi:10.1371/journal.pone.0003168.t004
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The model simulations of muscle phosphocreatine (PCR), creatine

(CR), and inorganic phosphate (PI) concentrations at the end of 76%

ischemia and recovery are in good agreement with the experimental

data (Fig. 4(A–C)). After 30 minutes, 76% ischemia resulted in

,17.5% decrease in muscle PCR content, which was fully

resynthesized after 30 minutes of recovery. Muscle CR and PI

contents increased by ,35% and ,130%, respectively, at the end of

76% ischemia and returned to their resting levels at the end of

recovery. The dynamics of [PCR] drop during ischemia and rise

during recovery were exponential, but faster during the recovery

period. The dynamics of both [CR] and [PI] show the opposite

trends (both are mirror images of [PCR] having the similar time

constants). The cytosolic [PCR]/[CR] ratio decreased substantially

from a resting value of ,2 to ,1.2 during ischemia (Fig. 5D, Table 5).

The model-predicted muscle [PCR], [CR], [PI] and [PCR]/[CR]

ratio during the mild 60% and 70% blood flow reduction levels did

not change appreciably from their baseline, resting levels.

The model-simulated muscle [ATP] decreased slightly during

ischemia which resulted in appropriate increases in muscle [ADP]

and [AMP] (Fig. 4(D–F)). A 76% blood flow reduction resulted in
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Figure 3. Model-predicted dynamic responses of glycolytic metabolite concentrations and redox states in the muscle tissue cells
during the resting, ischemia and recovery periods with varying levels of blood flow reduction and their comparison to the
experimental data of Katz [22]. The responses were computed using the estimated optimal parameter values with the ischemia protocol of 25 to
0 min of resting, 0 to 30 min of ischemia, and 30 to 60 min of recovery. The muscle blood flow Q is reduced as a step from 0.9 L/min at rest to
Qisch = 0.36, 0.27, 0.216, 0.18 L/min at the onset of ischemia and returned to 0.9 L/min at the onset of recovery. The lines represent the model
simulation results with the symbols representing the experimental data points (mean6SD) corresponding to Qisch = 0.216 L/min (,76% blood flow
reduction). The metabolites concentrations are shown in normalized form, normalized with respect to the resting metabolites concentrations. The
concentrations in the tissue cells are calculated based on the formula: Ccl = (VcytCcyt+VmitCmit)/Vcl.
doi:10.1371/journal.pone.0003168.g003
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,5% and ,25% increases in [ADP] and [AMP], respectively, in

accordance with the data. The cytosolic and mitochondrial

phosphorylation potentials ([ATP]/[ADP] ratios) had the similar

dynamics as of the cytosolic [PCR]/[CR] ratio (Fig. 5(D–F)).

However, the magnitude of [ATP]/[ADP] decrease (,6%) during

ischemia was negligible in comparison to the magnitude of

[PCR]/[CR] decrease (,40%). The CK mass action ratio

([CR][ATP])/([PCR][ADP]) increased from a resting value of

,166 to ,260 during the peak ischemia. The total adenylate

nucleotide pool (TAN = [ATP]+[ADP]+[AMP]) was maintained

at a constant level of ,7.0 mM in accordance with the data

(Table 5). The model-predicted changes in muscle [ATP], [ADP],

[AMP], and [ATP]/[ADP] ratio during the mild 60% and 70%

blood flow reduction conditions were negligible. Thus, in contrast

to our previous model [1], the present compartmentalized model is

able to simulate the dynamic responses of cytosolic and cellular

[PCR]/[CR] ratios as well as cytosolic and mitochondrial [ATP]/

[ADP] ratios appropriately.

Simulated dynamics of mitochondrial metabolites
The model-simulated dynamic responses of mitochondrial FAC,

ACoA, CIT, AKG, SCoA, SUC, MAL and OXA during the
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Figure 4. Model-predicted dynamic responses of energy metabolite concentrations in the muscle tissue cells during the resting,
ischemia and recovery periods with varying levels of blood flow reductions and their comparison to the experimental data of Katz
[22]. The lines represent the model simulation results with the symbols representing the experimental data points (mean6SD) corresponding to
Qisch = 0.216 L/min (,76% blood flow reduction). The simulation strategy, ischemia protocol, and blood flow reduction levels are exactly the same as
those described in the caption of Figure 3. The metabolites concentrations are shown in normalized form, normalized with respect to the resting
metabolites concentrations. The concentrations in the tissue cells were calculated based on the formula: Ccl = (VcytCcyt+VmitCmit)/Vcl.
doi:10.1371/journal.pone.0003168.g004
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ischemia and recovery periods with blood flow reduction levels of

80%, 76%, 70% and 60% (Qisch = 0.18, 0.216, 0.27 and 0.36 L/

min) are shown in Figure 6. Experimental data were not available

for these key mitochondrial and TCA cycle intermediate

metabolites. In fact, due to the limitations in the available

experimental techniques, most of these subcellular metabolites can

not be measured conveniently in skeletal muscle tissue cells in vivo

at the whole tissue-organ level. However, the present compart-

mentalized model is able to simulate the dynamic responses of

these subcellular metabolites to physiological stresses such as

muscle ischemia. Model simulations show that the changes in these

metabolites concentrations during muscle ischemia are not simply

proportional to the extent of blood flow reduction. The changes

are negligible during the mild 60% and moderate 70% blood flow

reduction levels, but significant above the severe 76% blood flow

reduction level.

The model-simulated dynamic responses of mitochondrial and

TCA cycle intermediate metabolites to muscle ischemia differ

from each other (Figure 6). During ischemia, the mitochondrial

[ACoA], [SUC] and [MAL] were increased, while [CIT], [AKG]

and [SCoA] were decreased. Furthermore, the accumulation of

ACoA was very significant (,45 fold increase in [ACoA] with

76% blood flow reduction), in spite of a large decrease in

mitochondrial redox ratio [NAD+]/[NADH]. The accumulation

of ACoA is primarily attributed to a biphasic increase in free

[CoA] and a sharp 80-fold decrease in [OXA] (Fig. 6H) resulting
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Figure 5. Model-predicted dynamic responses of cytosolic [LAC]/[PYR] and [PCR]/[CR] ratios and cytosolic and mitochondrial [ATP]/
[ADP] and [NAD+]/[NADH] ratios during the resting, ischemia and recovery periods with varying levels of blood flow reductions.
The simulation strategy, ischemia protocol, and blood flow reduction levels are exactly the same as those described in the caption of Figure 3.
doi:10.1371/journal.pone.0003168.g005
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in a mismatch in the reaction fluxes producing and consuming

ACoA in the mitochondria. The decreases in [SCoA] and

increases in [SUC] are in accordance with the increases in

mitochondrial phosphorylation ratio [ADP]/[ATP]. However, the

decreases in [CIT] and [AKG] and increases in [MAL] were not

consistent with the increases in mitochondrial redox ratio

[NAD+]/[NADH]. The TCA cycle reaction fluxes decreased

from a resting level of ,0.82 to ,0.62 mmol/min (,25%) with a

76% blood flow reduction (not shown).

Simulated dynamics of fluxes of exchangeable substrates
The model-simulated dynamic responses of transport and

reaction rates associated with the blood-tissue cells exchangeable

substrates (i.e., glucose, lactate, pyruvate, free fatty acid, CO2, and

O2) during the resting steady-state (t,0 min), ischemia

(0#t#30 min), and recovery (t.30 min) periods with a blood

flow reduction level of 76% (Qisch = 0.216 L/min) are shown in

Figure 7. The corresponding capillary blood (venous blood) and

tissue cells levels of O2 and CO2 are shown in Figure 8. The

transport rates include the species net uptake/release rates

(URj = Q(Cart,j2Cven,j)) and net blood-tissue cells exchange rates

Jbl<cyt,j~J
p
bl<cyt,j or J

f
bl<cyt,j

� 	
. The reaction rates include the

species net production/utilization rates (Rcl,j = Pcl,j2Ucl,j) in the

tissue cells (cytosol and/or mitochondria). Most of these model

predictions are similar to those from our previous model [1] which

do not account for the intracellular compartmentalization. The

magnitudes of changes with the present compartmentalized

model, however, are lower and consistent with the lower estimate

of the blood flow reduction level during muscle ischemia (present

Qisch = 0.216 vs. previous Qisch = 0.135).

Figure 7A shows that the net muscle glucose uptake (URGLC)

changes sharply (decreases/increases) at the onset of ischemia/

recovery due to a step change (decrease/increase) in muscle blood

flow, while the net glucose uptake by muscle tissue cells (Jbl«cyt,GLC)

remains fairly constant during ischemia and recovery. This results

in a fast adjustment (decrease/increase) in the venous glucose

concentration and glucose A–V difference and a rapid recovery in

muscle net glucose uptake. The net glucose utilization

(Ucl,GLC2Pcl,GLC) through the hexokinase reaction decreases/

increases quickly during ischemia/recovery due to the increase/

decrease of [G6P] and G6P inhibition of hexokinase reaction. This

is reflected in the predicted elevated cellular [GLC] during

recovery (Fig. 3A). Several inhibition mechanisms of hexokinase

reaction by G6P were tested. A general uncompetitive inhibition

mechanism, which effectively modifies the Km as well as Vmax of the

reaction [23,31], was found to be the most suitable for the model

to fit to the data.

The net pyruvate UR and Jbl«cyt rates are closely matched

where both decrease/increase during ischemia/recovery, except at

the onset of recovery, where URPYR and Jbl«cyt,PYR rates first

sharply decrease and then exponentially increase to the baseline

level (Fig. 7B, dashed and dotted lines). The pyruvate metabolism

switches from a net utilization to a net production and a net uptake

to a net release during ischemia and vice-versa during recovery (as

depicted through the solid line in Fig. 7B). Similar to pyruvate, the

net UR and Jbl«cyt rates of lactate were approximately matched,

through the 2Jbl«cyt,LAC rate was slightly higher than the 2URLAC

rate during ischemia and vice-versa during recovery (Fig. 7C,

dashed and dotted lines). However, the net lactate release

(2URLAC and 2Jbl«cyt,LAC) first decreases when muscle blood flow

is reduced and then increases steadily (linearly) slightly above the

baseline value during the remaining ischemic period. During

recovery, the opposite, but more pronounced, trend occurs. The

net lactate production (Pcl,LAC2Ucl,LAC) increased quickly at the

onset of ischemia and reached a new steady-state level within the

first 10 minutes of ischemia. At the onset of recovery, the net

lactate production decreased quickly to the baseline value (solid

line, Fig. 7C).

Figure 7D shows that the net UR and Jbl«cyt rates of free fatty

acid (FFA) decreased quickly at the onset of ischemia and then

Table 5. Model simulation results compared with the experimental data of Katz [22] on muscle ischemia.*

Species or
Species Ratio

Concentration Data
(mM) (t = 0 min)
(mean6SD)

Concentration
Model (mM)
(t = 0 min)

Concentration Data
(mM) (t = 30 min)
(mean6SD)

Concentration
Model (mM)
(t = 30 min)

Concentration Data
(mM) (t = 45 min)
(mean6SD)

Concentration
Model (mM)
(t = 45 min)

GLC 0.48560.0575 0.485 0.65760.0925 0.676 0.65360.0925 0.630

G6P 0.2460.04 0.24 0.37560.06 0.379 0.28560.037 0.252

PYR 0.042560.006 0.0425 0.092560.0075 0.0918 0.052560.0075 0.057

LAC 0.68860.12 0.688 1.53560.38 1.545 0.9460.12 0.850

LAC/PYR# 16.262.9 16.2 16.664.1 16.8 17.962.2 14.9

PCR 20.160.65 20.1 16.5561.175 16.55 20.22560.6 19.94

CR 10.4560.7 10.45 14.061.1 14.12 10.32560.7 10.62

PCR/CR# 1.9760.12 1.97 1.3560.13 1.17 2.0360.15 1.88

Pi 2.70 2.7 6.2560.8 6.2 2.660.3 2.845

ATP 6.1560.175 6.15 6.22560.15 6.092 6.260.175 6.148

ADP 0.8260.025 0.82 0.88560.04 0.869 0.85560.035 0.822

AMP 0.0460.005 0.04 0.0560.007 0.0494 0.04260.006 0.0403

TAN 7.060.175 7.01 7.0560.125 7.01 7.160.175 7.01

*The model simulation are based on the ischemia protocol of Katz [22]: if (t,0 min | t.30 min) Q = 0.9 L/min, else Q = Qisch = 0.216 L/min. The species concentrations
(mM or mmol/kg ww) are converted from the experimental data (mmol/kg dw) by multiplying a factor 0.25 kg dw/kg ww [33]. For unit density, kg ww = L and mmol/kg
ww = mmol/L = mM. The species concentrations are based on 100% muscle tissue cells, i.e., the volume averages of species concentrations in the cytosol and
mitochondria, Ccl = (VcytCcyt+VmitCmit)/Vcl. The species concentrations in the model are scaled with the resting (t = 0) species concentrations in the data (i.e.,
Cmodel

j tið Þ:Cdata
rest,j

.
Cmodel

rest,j ) for comparison purpose; ‘‘dw’’ means dry weight and ‘‘ww’’ means wet weight.
#Concentration ratios [LAC]/[PYR] and [PCR]/[CR] are unitless.
doi:10.1371/journal.pone.0003168.t005
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increased rapidly towards the baseline value during ischemia

(biphasic behavior); the opposite trend occurred during the

recovery period. The net utilization of FFA (Ucl,FFA2Pcl,FFA) had

exactly the opposite behavior of URFFA and Jbl«cyt,FFA rates. The

dynamics of CO2 release and FFA uptake were similar (dashed

and dotted lines, Fig. 7(D,E)). However, the CO2 production was

closely correlated to the O2 consumption (solid lines, Fig. 7(E,F)).

The muscle O2 uptake, cellular O2 uptake, and cellular O2

consumption were all reduced during the ischemia period and

were closely matched (all reduced by ,22% during 76%

ischemia), except at the onset of ischemia and recovery, where

the muscle O2 uptake decreased/increased sharply with the step

change (decrease/increase) in muscle blood flow and returned to

the new steady state levels as ischemia progressed (Fig. 7F). The

O2 partial pressure (PO2) in the muscle tissue cells decreased from

25 mmHg to ,0.5 mmHg (i.e., about the Km value for O2

consumption), while the corresponding CO2 partial pressure

(PCO2) increased from 46 mmHg to ,52 mmHg during the 76%

ischemia period (Fig. 8(B,D)). Accordingly, the total O2 content in

the capillary blood (venous blood) decreased from ,6.6 mM
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Figure 6. Model-predicted dynamic responses of FAC, ACoA, and TCA cycle intermediate concentrations in the muscle tissue cells
mitochondria during the resting, ischemia and recovery periods with varying levels of blood flow reduction. The simulation strategy,
ischemia protocol, and blood flow reduction levels are exactly the same as those described in the caption of Figure 3. The metabolites concentrations
are shown in normalized form, normalized with respect to the resting metabolites concentrations. The concentrations in the tissue cells were
calculated based on the formula: Ccl = (VcytCcyt+VmitCmit)/Vcl.
doi:10.1371/journal.pone.0003168.g006
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(,36 mmHg) to ,0.4 mM (,8 mmHg) and the total CO2

content in the blood increased from ,25.5 mM (,43.6 mmHg)

to ,29.6 mM (,51 mmHg) (Fig. 8(A,C)). These model simula-

tions indicate that the muscle tissue cells were hypoxic during the

76% ischemia period; the reduced O2 consumption was

maintained by the reduced O2 supply during ischemia.

Simulated dynamics of fluxes associated with ACoA and
ATP

The model-simulated dynamic responses of metabolic fluxes

associated with the production and utilization of ACoA and ATP

during the resting steady-state (t,0 min), ischemia (0#t#30 min)

and recovery (t.30 min) periods with a blood flow reduction level

of 76% (Qisch = 0.216 L/min) are shown in Figure 9. Specifically,

Figures 9A and 9B show the relative contributions from

carbohydrates (PYR) and fats (FAC) to the production of ACoA

in mitochondria, and the dynamics of ACoA utilization to CIT

production in the mitochondrial TCA cycle. Figures 9C and 9D

depict the utilization rate of ATP through ATP hydrolysis in

cytosol and production rate of ATP through oxidative phosphor-

ylation (O2 consumption) in mitochondria and creatine kinase

buffer reaction in cytosol.

Figure 7. Model-predicted dynamic responses of transport and metabolic fluxes of glucose, pyruvate, lactate, free fatty acid,
oxygen, and carbon dioxide during the resting, ischemia and recovery periods with a blood flow reduction of about 76%. The
responses were computed using the estimated optimal parameter values with the ischemia protocol of 25 to 0 min of resting, 0 to 30 min of
ischemia, and 30 to 60 min of recovery. The muscle blood flow Q is reduced as a step from 0.9 L/min at rest to Qisch = 0.216 L/min at the onset of
ischemia and returned to 0.9 L/min at the onset of recovery. Q(Ca–Cv): uptake-release rates, Jb«c: blood-tissue cells transport rates, Pc–Uc: tissue cells
production-utilization rates.
doi:10.1371/journal.pone.0003168.g007
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The production of mitochondrial ACoA from PYR decreased

rapidly at the onset of ischemia and then increased relatively

slowly to reach a new steady-state level as ischemia progressed

(biphasic behavior). During recovery, the trend was opposite

(Fig. 9A, dashed line). The production of mitochondrial ACoA

from FAC varied relatively little during the entire ischemic and

recovery periods (Fig. 9B, dotted line). An increase in total

production of ACoA from PYR and FAC occurred at the beginning

of ischemia due to a transient increase in the mitochondrial fatty

acid b-oxidation. However, as ischemia progressed, ACoA

production decreased and reached a new steady-state level

significantly below its baseline value (Fig. 9B, solid line). In contrast,

the utilization of ACoA to produce CIT decreased at the onset of

ischemia and then increased to match the total ACoA production

from PYR and FAC (Fig. 9B, dashed-dotted line). A mismatch

between the total production and utilization of ACoA at the onset of

ischemia is reflected in the predicted mitochondrial accumulation of

ACoA during ischemia (Fig. 6B).

The rate of ATP utilization in cytosol through ATP hydrolysis

slowly decreased (exponentially) by about 20% during 76%

ischemia and returned to its baseline level during the recovery

period (Fig. 9C, dashed line). However, the rate of ATP synthesis

in mitochondria through oxidative phosphorylation (O2 utiliza-

tion) rapidly decreased (as a step) by about 22% during 76%

ischemia (Fig. 9C, dotted line) due to a rapid reduction in O2

delivery to mitochondria by capillary blood flow (Fig. 8B), in spite

of sufficient increases in the mitochondrial redox potential

[NADH]/[NAD+] (Fig. 5B) and phosphorylation potential

[ADP]/[ATP] (Fig. 5F) (the activators of the lumped oxidative

phosphorylation reaction). This transient deficit in ATP (Fig. 9D

solid line) was mostly matched by the ATP production from the

creatine kinase ATP buffer reaction (Fig. 9D, dashed-dotted line).

The ATP supply from glycolysis/glycogenolysis (ATP deficit –

ATP supply from creatine kinase reaction) during ischemia and

recovery was almost constant, indicating that glycolysis/glycogen-

olysis is not a major source of ATP supply during partial ischemia.

The time to reach new steady states (response time) for the ATP

hydrolysis and creatine kinase reactions were about 15 minutes,

while that for the ATP synthesis (or O2 consumption) reaction was

about 5 minutes. Thus, in contrast to our previous model [1], the

present compartmentalized model is able to correctly simulate the

dynamic responses of cytosolic and mitochondrial metabolic

reaction fluxes that are responsible in the production and

utilization of ACoA and ATP. Furthermore, the model is able to

link substrate metabolism (carbohydrates vs. fat) to energy

metabolism in skeletal muscle during physiological perturbations

such as muscle ischemia.

Discussion

Modeling framework for analysis of sparse in vivo
experimental data

Analysis of dynamic changes in cellular metabolism and

energetics in skeletal muscle in vivo in response to reduced blood
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Figure 8. Model-predicted dynamic responses of O2 and CO2 (total contents and partial pressures) in the capillary blood (or venous
blood) and tissue cells during the resting, ischemia and recovery periods with a blood flow reduction of about 76%. The responses
were computed using the estimated optimal parameter values with the ischemia protocol: if (t,0 min | t.30 min) Q = 0.9 L/min, else
Q = Qisch = 0.216 L/min. The total O2 and CO2 contents are based on various forms of O2 and CO2 transports in the capillary blood and tissue cells (see
Materials S1).
doi:10.1371/journal.pone.0003168.g008
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flow and oxygen supply to mitochondria (ischemia) is limited by

available in vivo experimental data. Relatively few in vivo

measurements can be obtained of metabolite concentrations and

metabolic fluxes in subcellular compartments, such as mitochon-

dria. As a complementary approach to experimental measure-

ments and as a framework for quantitatively analyzing available in

vivo data, a physiologically-based, whole-organ level model of

skeletal muscle cellular metabolism and energetics is developed.

This model emphasizes a multi-scale, top-down systems approach

[1–8] for quantitative understanding of metabolic processes at the

molecular, subcellular and cellular levels in relation to the tissue-

organ responses. For this purpose, integration of information was

required from cellular metabolic pathways and fluxes of substrate

and energy metabolism in cytosol and mitochondria, cellular

metabolic control mechanisms, catalytic enzyme kinetic mecha-

nisms, subcellular compartmentation and metabolites volumes of

distribution, inter-domain transport mechanisms, and tissue-

specific skeletal muscle metabolic characteristics. Since the extent

to which enzyme activities and kinetic (Michaelis-Menten)

constants determined from in vitro experimental studies are

applicable to in vivo conditions is uncertain, our multi-scale, top-

down modeling approach provides a unified, systematic frame-

work for modeling and analysis of in vivo complex metabolic

systems. A major improvement of the present model over our

previous model [1] is the incorporation of distinct intracellular

cytosolic and mitochondrial compartments. The present model

distinguishes the cytosolic and mitochondrial [ATP]/[ADP] and

[NADH]/[NAD+] ratios (major modulators of several key

metabolic reactions in cytosol and mitochondria) and incorporates

metabolic reactions and transport processes of key chemical

species, including glucose, lactate, pyruvate, free fatty acid, oxygen

and carbon dioxide (Fig. 1).

The governing model equations are based on dynamic mass

balances of chemical species in spatially-lumped, capillary blood-

interstitial fluid domain and two distinct intracellular cytosolic and

mitochondrial domains (Fig. 2). These include the dynamic mass

balances of O2 and CO2 which are developed by accounting for

their distinct transport and binding mechanisms (hemoglobin and

myoglobin-mediated) in these three domains [25,26]. However,

since not much information is available regarding the blood flow
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doi:10.1371/journal.pone.0003168.g009
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heterogeneity and fiber type distributions in skeletal muscle, these

metabolic characteristics were not considered in the present study.

Instead, different fiber types were lumped together to an effective

active muscle volume with an effective blood flow supplying

oxygen and other nutrients to the lumped muscle volume, which is

sufficient to investigate the dynamic metabolic responses to muscle

ischemia (also see discussions in Section 4.4). Furthermore, since

the phenomenon of muscle acidification/alkalization (i.e., proton

handling) under physiological stresses, such as muscle ischemia, is

highly complex [17,21], this was not accounted for in the present

model.

In this model, the compartmentalized lumped biochemical

reactions along the cellular metabolic pathways are the stoichio-

metrically coupled sequential elementary reactions, which include

the compartmentalized metabolic energy controller pairs ATP-

ADP and NADH-NAD+ whose ratios (phosphorylation and redox

potentials) modulate (or fine tune) the reaction fluxes in the

subcellular domains [2,23]. The lumped reactions for which the

resting Gibbs free energy (DG) is large and negative in favor of

product formation are considered irreversible [24]. The reversible

reactions like lactate dehydrogenase (LDH), creatine kinase (CK),

and adenylate kinase (AK) are decomposed into two separate

irreversible reactions with distinct kinetics. This can be justifiable

based on the fact that the in vivo metabolic systems are

nonequilibrium open systems and the biochemical reactions

usually operate far from true equilibrium under physiological

stimuli (also see discussions in Section 4.3). Besides, the

consideration of the law of microscopic reversibility (thermody-

namics) requires a detailed knowledge of proton handling in

cytosol and mitochondria [17,21], which is not considered in this

phenomenological modeling study. The metabolic reaction fluxes

in the subcellular cytosolic and mitochondrial domains are

expressed in terms of a general phenomenological Michaelis-

Menten equation with the coupled controller factors involving the

compartmentalized [ATP]/[ADP] and [NADH]/[NAD+] energy

controller ratios. These flux expressions characterize the behavior

of saturable enzyme kinetics and in vivo control mechanisms

observed experimentally [23,31]. In comparison to the previous

models in the literature [3–5,11–21], the present model is a self-

consistent, physiologically-based, multi-scale computational model

dealing with cellular metabolism and energetics in skeletal muscle

in vivo at the whole-organ level.

Optimal parameter estimation for the large-scale
metabolic model

A major challenge of this work was to evaluate a large number

of unknown model parameters (precisely a total of 101) with

relatively sparse experimental data from in vivo studies on muscle

ischemia [22]. To deal with this under-determined, ill-conditioned

problem, we had to devise a special optimization strategy (see Ref.

[1] for details). Briefly, preliminary estimates of the model

parameters were obtained based on resting, steady-state flux

balance analysis together with the information on resting, steady-

state metabolites blood and tissue cells (cytosol and mitochondria)

concentrations, metabolites uptake-release (UR) rates or arterio-

venous (AV) differences, and metabolic reaction flux rates

gathered from various literature sources on skeletal muscle cellular

metabolism in normal human subjects (Tables 1 and 2). With these

preliminary parameter estimates, the model could not simulate the

dynamic cellular metabolic responses to muscle ischemia.

However, these estimates provided a good starting point in an

iterative process of optimization to obtain the optimal parameter

estimates (Tables 3 and 4) that yield the best least-squares fit of the

model to the data [22] (Figs. 3 and 4). A good starting point is

essential for optimization of large-scale problems with gradient-

types of optimization algorithms, such as the generalized reduced

gradient algorithm (GRG2) [34], used in the present study. The

first step of obtaining the preliminary parameter estimates

provided accurate optimal estimates of the 12 transport param-

eters (4 l, 4 Tmax and 4 Mm) and 10 partition coefficients (10 s),

resulting in a reduction of 22 kinetic parameters for estimation

from the dynamic experimental data from muscle ischemia.

The key to success of our parameter estimation approach for

obtaining the remaining 79 kinetic parameters (second step) was

the incorporation of constraint information to the maximum

extent in the GRG2 optimization algorithm [34]. These include (1)

the bound constraints on kinetic parameters from experimental

studies, (2) the nonlinear equality (physiological) constraints

relating fluxes and concentrations at resting, steady-state, and (3)

the nonlinear inequality (thermodynamic) constraints relating

fluxes and Gibbs free energy for reversible reactions: wnet.DG#0

[35–37]. Also, the bounded estimation of active muscle volume

(Vmus) and ischemic blood flow (Qisch) (not known from the

experimental protocol of Katz [22]) provided additional degrees of

freedom for fitting the model to the data. Use of such constraints

reduced the number of unknown model parameters for simulta-

neous estimation (e.g., the 26 Vmax parameters could be explicitly

estimated from the flux-concentration relationships at resting,

steady-state). Such constraints also reduced uncertainty and

enhanced accuracy in the estimated parameter values.

Since the available experimental data [22] were relatively sparse

in comparison to the number of unknown model parameters, the

parameter estimates for this under-determined, ill-conditioned

problem were expected to be non-unique. The efficiency and

robustness of this parameter estimation approach was tested

previously [1] in detailed with repeated parameter estimations

with various initial parameter estimates (guesses) and with

parameter sensitivity analysis. Various parameter estimates of

the more sensitivity model parameters spanned in a small

neighborhood of the accepted optimal parameter estimates. Re-

estimation of the model parameters for the present extended

compartmentalized model with the same parameter estimation

approach and the quality of the model fitting to the experimental

data (Figs 3 and 4) further testifies the robustness of the parameter

estimation approach.

Model predictions related to muscle ischemia
This physiologically-based, multi-scale computational model of

skeletal muscle cellular metabolism and energetics can simulate

dynamic metabolic changes in cellular and subcellular compart-

ments and provide quantitative analysis of the mechanisms of

metabolic regulation during physiological stresses (e.g., reduced

blood flow and oxygen supply to mitochondria associated with

muscle ischemia). Model simulations based on the estimated

optimal parameter values correspond well to the experimental

data on muscle ischemia of Katz [22] (Figs. 3 and 4). The optimal

estimates of active muscle volume Vmus<4 L and ischemic muscle

blood flow Qisch<0.216 L/min (Table 3) indicate that only ,16%

of whole muscle volume (,25 L) was actively participating in

cellular metabolism during reduced oxygen delivery to mitochon-

dria induced by a blood flow reduction of ,76% from the resting

level of 0.9 L/min. Though these estimates are slightly different

from those estimated previously [1] (Vmus<5 L and

Qisch<0.135 L/min), when scaled to one leg with a resting blood

flow of 0.45 L/min, the estimated Vmus value becomes ,2 L

which lies well within the experimental range of 1.5–3 L for one

leg quadriceps femoris muscle [38–41]. The experimental data

[22] used in this computational study were also based on
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measurements from similar muscle types. This indicates that the

whole muscle is not uniformly perfused and that only a fraction of

the muscle mass, in accord with metabolic demand, participates in

cellular metabolic processes.

The model simulations of cellular [GLC], [G6P], [LAC],

[PYR], and [LAC]/[PYR] with ,76% ischemia corresponded

well with the experimental data (Fig. 3). To simulate [GLC] and

[G6P] dynamics, and to some extent [LAC] and [PYR] dynamics

in response to muscle ischemia, the model had to account for the

inhibition of hexokinase reaction by [G6P] and activation of

glycogen phosphorylase reaction by [AMP]/[ATP]. [G6P]

increased during ischemia due to the increased [AMP]/[ATP]

ratio and increased glycogenolysis flux. The increased [G6P]

decreases the flux of hexokinase and glucose utilization. As a

result, the glucose taken up by the muscle tissue cells is

accumulated during ischemia.

The model-simulated muscle [PCR], [CR], [PCR]/[CR], [PI],

[ATP], [ADP], [ATP]/[ADP], and [AMP] with ,76% ischemia

were in close agreement with the experimental data (Fig. 4). One

of the key aspects in achieving these successful model simulations

and good fittings was to model each of the reversible reactions like

creatine kinase (CK) and adenylate kinase (AK) as two separate

irreversible reactions with distinct kinetics. The forward and

reversible reaction fluxes were considered regulated by the

phosphorylation potentials [ATP]/[ADP] or [ADP]/[ATP] in

the cytosol (Materials S2). Without considering such control

mechanisms, it was not possible to simulate the experimental data

on these high-energy metabolites during muscle ischemia and

reperfusion.

We tested fitting the model to the data using alternative flux

expressions for the CK and AK (also LDH) reversible reactions

satisfying the Haldane relationship and thermodynamic equilibri-

um conditions. However, we were unable to achieve good fittings

for the high-energy metabolites. This may be due to the limitations

in the present model, or may be the fact that the data do not

support thermodynamic equilibrium of the CK reaction during

ischemia/recovery. It is evident from the data of Katz [22] that the

changes in muscle [PCR]/[CR] and [ATP]/[ADP] ratios during

ischemia are not proportional. The muscle [PCR]/[CR] ratio

decreased substantially from a resting level of ,2.0 to ,1.2

(,40%) during ischemia (Fig. 5D), while the muscle [ATP]/

[ADP] ratio decreased only little from a resting level of ,7.5 to

,7.0 (,7%). However, the dynamics of cytosolic [ATP]/[ADP]

ratio was not available from the experimental study, which

determines the thermodynamic equilibrium for the CK reaction.

With our assumption of a constant cytosolic to mitochondrial ratio

of [ATP] and [ADP] (and other common chemical species) during

ischemia/recovery, the model predicted a comparable 7%

decrease in cytosolic [ATP]/[ADP] ratio from a resting level of

,332 to ,310 during the ischemia period (Fig. 5E). As a

consequence, the CK mass action ratio ([CR][ATP])/

([PCR][ADP]) increased from a resting value of ,166 to ,260

during ischemia, instead of being a constant (,166) (the CK

apparent equilibrium constant at pH = 7) [17].

This issue may be resolved by including the dynamics and

buffering of cytosolic and mitochondrial pH [17,21] and, to some

extent, by distinguishing the dynamics of common metabolites

within the subcellular cytosolic and mitochondrial compartments.

The later will necessitate incorporation of transport mechanisms of

common metabolites across the mitochondrial inner membrane,

e.g., proton pumps, ATP/ADP translocase, PI/H+ cotransporter,

and exchange of TCA cycle substrates/intermediates [18,21].

Since ,98% of ADP is in mitochondria and only ,2% of ADP is

in cytosol at normal, resting steady-state conditions, a small

relative change in whole cell [ADP] may correspond to a huge

relative change in cytosolic [ADP], and hence a huge relative

change in cytosolic [ATP]/[ADP] ratio. This can lead to the

displacement of thermodynamic equilibrium of ATP/ADP

translocase without displacing the thermodynamic equilibrium of

CK reaction. Note that the cytosolic [ATP]/[ADP] ratio needs to

decrease proportionally to the cytosolic [PCR][H+]/[CR] ratio for

maintaining the thermodynamic equilibrium of the CK reaction.

This information will be the mechanistic basis for the extension of

the current model which can be used to analyze the data on high-

energy phosphate metabolites.

With the estimated optimal parameter values, the present model

is able to correctly simulate the dynamic metabolic responses of

compartmentalized cytosolic and mitochondrial phosphorylation

and redox potentials (Fig. 5), key mitochondrial and TCA cycle

metabolite concentrations (Fig. 6), and other key metabolite

concentrations and metabolic fluxes (Figs. 7–9) in skeletal muscle

during ischemia and reperfusion for which no experimental data

are available. Some of these simulations may be questionable

without further validation, such as the predictions of cytosolic and

mitochondrial phosphorylation and redox potentials (Fig. 5).

However, these predictions are consistent with the dynamic

responses of cellular or cytosolic [PCR]/[CR] and [LAC]/[PYR]

ratios. Some of these simulations could not be obtained accurately

with our previous model [1].

Our compartmentalized model simulations show that the

metabolic changes were negligible with respect to the extent of

blood flow reduction up to ,70%, beyond which a profound

derangement in substrate and energy metabolism occurred due to

reduced supply of oxygen to mitochondria. The metabolic changes

during severe ischemia (,76% and beyond) include (1) a switch

from a net pyruvate uptake and utilization to a net pyruvate

production and release (Figs. 3C and 7B); (2) an increase in the

redox potential [NADH]/[NAD+] (Figs. 3(E,F) and 5(A,B))

accompanied by a net formation and accumulation of cytosolic

LAC and PYR (Fig. 3(C,D)) and mitochondrial ACoA (Figs. 6B

and 9(A,B)); (3) an increase in the glycolytic and creatine kinase

contributions to ATP formation (Fig. 9(C,D)) accompanied by a

net depletion of cytosolic PCR (ATP stores) (Fig. 4A). In general,

these predictions are in agreement with experimental results from

studies under similar conditions [42–44]. However, since our

model does not differentiate between FADH2 and NADH, the less

efficient fuel (i.e., fats) –from the oxygen consumption point of

view– is considered to have the same oxygen cost as carbohydrates

for ATP production.

Limitations of the model
In this multi-scale, multi-compartmental, top-down integrated

model of cellular metabolism and energetics in skeletal muscle, the

substrate and cation transport mechanisms between cytosol and

mitochondria are not incorporated. Instead, these two domains

are assumed to be in fast equilibrium with each other with the

common metabolites having the similar dynamics (i.e., Cmit,j = sj.C-

cyt,j, with the partition coefficients sj constant). This is projected in

the model-simulated dynamic responses of cytosolic and mito-

chondrial phosphorylation and redox potentials (i.e., [ATP]/

[ADP] and [NADH]/[NAD+] ratios) (Fig. 5). This assumption

may be reasonable as a first approximation, since not much

information is available regarding the dynamic responses of

common metabolites to physiological stimuli (e.g., muscle

ischemia) in these two subcellular domains (cytosol and mitochon-

dria). This assumption may also be reasonable as long as the

common metabolite concentrations do not vary appreciably within

these two subcellular domains during physiological stresses.
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However, this assumption may not be valid for the [ATP]/[ADP]

and [NADH]/[NAD+] ratios during ischemia/recovery, which

are major modulators of several key metabolic reactions in cytosol

and mitochondria. Therefore, the model may not accurately

predict the dynamics of metabolite concentrations and metabolic

fluxes that are critical in the regulation of fuel (carbohydrate, fat,

and lactate) metabolism and cellular respiration during physiolog-

ical perturbations, such as ischemia, hypoxia, and exercise.

Furthermore, the inclusion of FADH2 as a reducing equivalent

(produced through oxidation of fatty acids) is essential when

investigating the relative contribution of carbohydrate and fat

oxidations in the synthesis of ATP in mitochondria.

Another limitation in the present model is that the model does not

account for blood flow heterogeneity and fiber type distributions

associated with skeletal muscle cellular metabolism. Specifically, the

capillary blood domain is considered spatially-lumped and the

advective-diffusive transport of chemical species in capillary blood is

ignored. Such compartmental modeling may not account for

situations where important gradients of chemical species exist (e.g.,

due to distinct metabolic characteristics associated with different fiber

types). In skeletal muscle, where the blood flow is highly

heterogeneous due to complex capillarization and fiber type

distributions, more than 70% of arterial oxygen is extracted from

the blood before it leaves the microcirculation [45]. High extraction

results in large intracellular and intravascular gradients of oxygen and

other nutrients. Therefore, the well-mixed assumption may not be

valid and compartmental modeling may not account for the

heterogeneity of oxygen transport and consumption in different fiber

types. These issues can be addressed through spatially-distributed

modeling of oxygen transport and consumption, coupled with other

substrates and CO2 [19,26].

Finally, in the present model most of the lumped biochemical

reactions in the cellular metabolic pathways are considered

irreversible in the direction of product formation. Although the flux

in the reverse direction is almost one order of magnitude smaller than

the flux in the forward direction under normal, resting steady-state

conditions, their magnitudes may change during physiological

perturbations such as ischemia, hypoxia or exercise. Therefore, it

would be advantageous to consider all the biochemical reactions to be

reversible and their fluxes to satisfy the thermodynamic equilibrium

constraints [37], including the dynamics and buffering of pH [17,21],

which can affect the apparent equilibrium constants and standard

Gibbs free energy of the reactions.

Future model developments and potential applications
Including the substrate and cation transport mechanisms between

cytosol and mitochondria and distinguishing common metabolites

dynamics within these subcellular domains would be important in the

analysis of dynamic cellular metabolic responses to high intensity

exercise. The subcellular compartmentalization could account for

distinct volumes of metabolites distribution, for example, metabolic

channeling for glycolysis [6–8]. This is a way to recognize that the key

glycolytic enzymes are bound together to form a multi-enzyme

complex near the sarcolemma and sarcoplasmic reticulum. To

investigate the effects of spatial locality due to blood flow heterogeneity

and fiber type distributions on metabolic responses to muscle ischemia,

hypoxia or exercise, one will require spatially-distributed models

involving parallally-arranged capillaries representing different muscle

fiber types. Furthermore, the use of alternative kinetic flux expressions

based on a Michaelis-Menten formalism for reversible enzymatic

reactions would satisfy the thermodynamic equilibrium conditions and

would provide additional thermodynamic constraints for kinetic

parameter estimation [37]. As in our previous paper [1], a formal

dynamic parameter sensitivity analysis can be carried out to

understand the relative importance of the model parameters on the

measured outputs. This information can be used to improve

confidence in the estimates of key model parameters by fixing the

values of the least sensitive parameters (parameter space reduction

approach).

With these enhancements and with additional metabolic

pathways similar to those of the models of cellular metabolism

and energetics in cardiac muscle [6–8], such as the inclusion of

FADH2 as a reducing equivalent, the advanced model of cellular

metabolism and energetics in skeletal muscle can be used to

analyze physiological responses to exercise (increased energy

demand). Specifically, the model can assist in providing insight

into long-standing or paradoxical questions, such as the extent of

control that mitochondrial oxygen concentration and redox state

exert over the rate of lactate production in the cytosol during

heavy intensity exercise. In general, a multi-scale computational

model of cellular metabolism and energetics in tissue/organ

systems within the body that incorporate sufficient mechanistic

processes can be used to (1) analyze and interpret in vivo

experimental data; (2) provide new hypotheses as well as suggest

how to test a given hypothesis; (3) design critical experiments; (4)

quantify and predict dynamic responses to physiological stimuli

that can not be directly measured; (5) evaluate relative importance

of metabolic pathways and fluxes and their regulatory mechanisms

under both normal and pathological conditions; and (6) provide

the mechanistic basis for simulating integrated effects of altering

enzyme activities and substrate concentrations through pharma-

cological agents and/or dietary inputs.
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