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Abstract

To enhance understanding of how Streptococcus agalactiae (group B streptococcus, GBS) adapts during invasive infection,
we performed a whole-genome transcriptome analysis after incubation with whole human blood. Global changes occurred
in the GBS transcriptome rapidly in response to blood contact following shift from growth in a rich laboratory medium. Most
(83%) of the significantly altered transcripts were down-regulated after 30 minutes of incubation in blood, and all functional
categories of genes were abundantly represented. We observed complex dynamic changes in the expression of
transcriptional regulators and stress response genes that allow GBS to rapidly adapt to blood. The transcripts of relatively
few proven virulence genes were up-regulated during the first 90 minutes. However, a key discovery was that genes
encoding proteins involved in interaction with the host coagulation/fibrinolysis system and bacterial-host interactions were
rapidly up-regulated. Extensive transcript changes also occurred for genes involved in carbohydrate metabolism, including
multi-functional proteins and regulators putatively involved in pathogenesis. Finally, we discovered that an incubation
temperature closer to that occurring in patients with severe infection and high fever (40uC) induced additional differences in
the GBS transcriptome relative to normal body temperature (37uC). Taken together, the data provide extensive new
information about transcriptional adaptation of GBS exposed to human blood, a crucial step during GBS pathogenesis in
invasive diseases, and identify many new leads for molecular pathogenesis research.
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Introduction

Streptococcus agalactiae, also known as group B streptococcus

(GBS), is a commensal inhabitant of the human gastrointestinal

and genitourinary tract. Pregnant women who carry GBS

asymptomatically can transmit the bacterium to their newborns,

sometimes resulting in devastating neonatal infection. Although

adherence to recommendations designed to prevent perinatal GBS

disease has greatly decreased the frequency of early-onset

infections [1], the bacterium remains a major cause of late-onset

neonatal infections such as bacteremia and meningitis. In addition,

GBS has emerged in the last two decades as an important cause of

serious infections in elderly patients [1,2]. Thus, whether

considering neonatal or adult infections, in most cases transient

passage or prolonged exposure of the bacterium to blood is a

crucial step in pathogenesis.

Despite its importance in disease, relatively little is known about

how GBS adapts to permit survival and growth in human blood.

Many proven or putative GBS virulence factors have been

identified, including such well-studied molecules as polysaccharide

capsule and extracellular hemolysin. Proven virulence factors also

include surface-exposed or secreted proteins such as the Alp

protein family, C5a peptidase, Lmb protein, fibrinogen-binding

protein FbsA, CspA protein, hyaluronate lyase, and pilins (for

extensive review on virulence factors see references [3,4,5,6,7].

More recently, other proteins involved in adherence, metabolism,

or regulation have been shown to contribute to GBS virulence and

survival in blood [8,9,10]. It is important to stress that GBS

pathogenesis is a complex process that likely involves whole-

transcriptome remodeling, not simply up-regulation of a few

virulence genes [11]. Many factors that allow the bacterium to

persist and thrive in humans remain to be identified. Thus, studies

performed under conditions that approximate human physiolog-

ical parameters may contribute new information about pathogen-

esis [12].

To enhance our understanding of the capacity of GBS to

adaptively respond to contact with human blood, we conducted a

whole-genome transcriptome analysis during GBS incubation with

blood obtained from healthy volunteers. The study was modeled

on analyses conducted with group A streptococcus (GAS) grown ex

vivo in human saliva and blood [13,14], and GBS grown in human

amniotic fluid [15]. In the present study, blood samples were

mixed with GBS and incubated at 37uC, the physiological

temperature of the human body, and 40uC, a temperature closer

to that occurring in patients with severe infection and high fever.

Bacterial transcriptome analysis was performed before mixing

bacteria with blood, and after 30 and 90 minutes of incubation.

We observed extensive remodeling of the GBS transcriptome
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during adaptive culture in human blood. A very large number of

genes was down-regulated, whereas transcription was enhanced of

genes encoding proteins important for successful adaptation and

establishment of the bacterium in the blood.

Results

Global expression microarray analysis
Blood obtained from each of the seven donors was manipulated

and processed separately. We confirmed by CFU counting that

there was no significant difference in the number of GBS

inoculated into each blood sample (data not shown). We also

documented that there was no significant difference between

donors in the change in number of bacteria during the 90-minute

incubation in blood (Fig. 1).

For each blood sample, five different transcript data sets were

obtained at the following points: immediately after mixing GBS

with blood (time 0), after 30 min (time 1) of incubation with blood

at 37uC and 40uC, and after 90 min (time 2) of incubation with

blood at 37uC and 40uC. Principal component analysis (PCA)

showed extensive clustering of the transcriptome data among the

seven samples at time 0, and 30 min and 90 min incubation

(Fig. 2). Not unexpectedly, there was a slight difference in the

transcriptome clustering at 90 min between samples incubated at

37uC and those incubated at 40uC, suggesting an influence on the

transcriptome of the temperature of incubation after a longer

period of contact with blood (Fig. 2, and see text below). Taken

together, these results indicated that the transcriptome profile data

were of sufficient quality to permit robust statistical analysis and

interpretation.

Using data obtained from the seven donors, we calculated the

average transcript level for each gene at each time point for the

1,995 ORFs present on the chip. Differences in gene transcripts

were determined by comparing the average values from each time

point or temperature to average values obtained at another time

point or temperature (extensive results for all ORFs are presented

as supplementary table S1).

Changes in the GBS transcriptome induced by human
blood

The data revealed extensive remodelling of the GBS tran-

scriptome after the shift from THY broth into human blood. For

example, more genes were expressed in THY (at time 0) than in

blood, regardless of the time or temperature of incubation

considered. After 30 min at 37uC, 134 transcripts were up-

regulated and 658 were down-regulated compared to time 0,

whereas 119 transcripts were up-regulated and 715 were down-

regulated at 40uC compared to time 0 (Table 1 and Fig. 3).

Similarly, 115 transcripts were up-regulated and 518 were down-

regulated after 90 min at 37uC compared to time 0, and 135

transcripts were up-regulated and 456 were down-regulated at

40uC compared to time 0 (Table 1 and Fig. 3).

Most of the transcript differences observed between 37uC and

40uC were due either to a ratio between levels of expression

slightly above 0.5 or below 2, or to a P value slightly above 0.05

(Table S1). Thus, there was extensive overlap of the GBS

transcriptome at the two temperatures studied. Consequently, all

the results presented subsequently are based on comparison with

the transcript data obtained at 37uC, except the last paragraph of

the Results section which describes key substantive differences

between the 40uC and 37uC data.

We identified drastic down-regulation of the genes of most of the

functional subcategories (83% of the genes whose expression was

modified were down-regulated at 30 min relative to time 0) (Fig. 3).

In contrast, genes encoding proteins involved in transcriptional

regulation, carbohydrate and purine/pyrimidine metabolism, and

in contact with the host cells were up-regulated (Fig. 3).

Stress response of GBS during incubation with blood
Inasmuch as the shift from rich THY medium to blood involves

a considerable change in the environment, we anticipated that

GBS would experience a substantial stress response. However, this

was not the case. For example, after the first 30 min of incubation

with human blood there was no up-regulation of the GBS genes

involved in heat/cold stress conditions. The most notable changes

concerned the transcripts for gbs1721, encoding a universal stress

protein, and gbs0808 (sodA), a gene that confers protection against

oxidative stress and is required for maintaining a high level of

bacteremia in mice after experimental inoculation [16]. Gbs1721

and gbs0808 were 8.4- and 2.4-fold up-regulated, respectively, at

30 min post-inoculation into blood. After 90 min, additional stress

response genes were up-regulated (from 2.3- to 9-fold), including

genes encoding several stress proteins (gbs1202, gbs1204,

gbs1721), a chaperone (gbs0625), ClpL protease (gbs 1376), and

a stress response regulator (gbs0756) (Table S1). Interestingly,

gbs1202 and gbs1204 are homologs of the enterococcal general

stress protein Gls24 implicated in the stress response and

Enterococcus faecalis virulence [17].

The switch from growth in THY to blood resulted in a large

decrease in the number of transcripts of genes in all functional

categories, especially genes involved in cell division and cell

envelope processes. Indeed, we observed down-regulation of most

of the genes involved in cell wall metabolism (Fig. 3) after 30 min

in blood (ranging from 2- to 10-fold reduction). In addition, the

entire polysaccharide capsule (gbs1233–1247) and group B antigen

(gbs1480–1494) clusters were down-regulated (Table S1). Con-

versely, gbs0182 and gbs0183, genes encoding two proteins similar

to Staphylococcus aureus LrgAB, were 17.8- and 15.3-fold up-

regulated, respectively, at 90 min relative to 30 min. Interestingly,

LrgAB in S. aureus function together to inhibit murein hydrolase

activity, and their transcription is responsive to carbohydrate

metabolism [18].

Figure 1. Number of bacterial cells during during incubation
with human blood. The average of the CFU/mL for the seven blood
samples after 90 min of incubation at 37uC and 40uC was not
statistically different from the average of the CFU/mL for the seven
blood samples at time 0.
doi:10.1371/journal.pone.0003143.g001

GBS Transcriptome in Blood
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Many transcriptional regulators are altered when GBS is
grown in human blood

After 30 min of incubation with blood, 18 transcriptional

regulators were down-regulated and 10 were up-regulated (Table

S1). For example, gbs0833, gbs1344, gbs1793, gbs1807 and

gbs1958, which have homology with the Cro/CI or MerR families

of transcriptional regulators, were more than 4-fold up-regulated.

Although little is known about the function of these proteins in GBS,

transcriptional regulators of the MerR family, which usually act as

activators, respond to the presence of essential and toxic metals [19].

Of note, it was recently shown that a MerR-like regulator in

Streptococcus pneumoniae is required for survival in blood [20].

After 90 min of incubation, more complex transcriptome

changes were observed. Some regulators that were up-regulated

Figure 2. Principal component analysis (PCA) plot showing transcriptome differences between expression microarray data of GBS
strain NEM316 strain incubated in human blood at 37uC and 40uC. Samples were analyzed at time 0, and after 30 min and 90 min of
incubation. The PCA plot captures the variance in a dataset in terms of principal components and displays the most significant of these on the x, y,
and z axes. The percentages of the total variation that are accounted for by the 1st, 2nd, and 3rd principal components are shown on the x-, y- and z-
axes labels. Plots are colored by temperature of incubation and shaped by time point. Elipses circled plot each time point.
doi:10.1371/journal.pone.0003143.g002

Table 1. Number (and percentage) of GBS transcripts significantly up- and down-regulated according to the temperature and
duration of incubation in human blood.

37uC 40uC

After 30 minutes (time 1) After 90 minutes (time 2) After 30 minutes (time 1) After 90 minutes (time 2)

Up-regulation 134 (6.7%) 115 (5.7%) 119 (6.0%) 135 (6.8%)

Down-regulation 658 (33.0%) 518 (26.0%) 715 (35.8%) 456 (22.8%)

Total 792 (39.7%) 633 (31.7%) 834 (41.8%) 591 (29.6%)

An ORF was considered to be differentially expressed if there was a ‘‘present’’ signal, if there was a significant (P,0.05, T-test) change in expression greater than 2-fold
at one time point relative to another and if these criteria were met for at least six of the seven donor samples. Up- and down-regulation are expressed relatively to time
0.
Percentage are expressed relative to the 1,995 ORFs present on the chip.
doi:10.1371/journal.pone.0003143.t001
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at 30 min relative to time 0 were down-regulated at 90 min

relative to 30 min, whereas other regulators initially down-

regulated were subsequently up-regulated. Thus, gbs0267, a

putative trans-acting positive regulator with some similarity to

the mga positive regulator of virulence in GAS, was 3-fold down-

regulated after 30 min in blood, but 9.6-fold up-regulated at

90 min relative to 30 min. We observed similar transcript

fluctuations, although of lower magnitude, for gbs1051 (lytR),

gbs1671 (covS), and gbs1719 (codY) which were initially down-

regulated, and subsequently up-regulated. A homologue of LytSR

has been implicated in controlling the rate of autolysis by affecting

the S. aureus murein hydrolase activity [21], and in S. pneumoniae

this two component system (TCS) is important for in vivo

adaptation and pathogenesis [22]. CovS is part of another TCS

extensively studied in GBS that regulates more than 100 genes,

including virulence genes [23,24,25]. Taken together, the

extensive changes we observed in the regulation of GBS

transcriptional regulators illustrate the complex response used by

GBS to adapt to human blood.

Major changes in transcription of genes involved in host-
cell interaction and coagulation/fibrinolysis

Relatively few proven virulence genes were significantly up-

regulated in response to culturing in human blood. Most known

and putative virulence genes were either down-regulated or their

transcript level was not altered, although after 90 min of

incubation in blood the level of many transcripts was increased

(Fig. 4). Importantly, we observed up-regulation of four genes

encoding LPXTG proteins after 30 min of incubation in blood,

including gbs0428, gbs1087 (fbsA) encoding a major receptor for

fibrinogen, gbs1420 (bsp) which encodes a putative choline-binding

protein, and gbs2018 (bibA) which encodes a protein that binds to

human C4-binding protein and contributes to survival in human

blood [10] (Fig. 4A and Table 2). Interestingly, the level of

transcripts of three genes encoding proteins implicated in binding

or activation of plasminogen also were higher in human blood

than in THY, including gbs0608 (eno) encoding enolase, gbs1811

(gapC) encoding glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), and gbs1195 (ska) encoding a secreted protein similar

Figure 3. Differential regulation of transcript expression in GBS strain NEM316 after incubation with human blood. Genes were
classified into 22 main functional categories. Bars indicate the numbers of genes whose expression was modified at one time-point (time 1 at 37uC,
time 1 at 40uC, time 2 at 37uC, or time 2 at 40uC) relative to time 0. On the left, genes that were down-regulated relative to time 0. After 30 min of
incubation, 658 transcripts were down-regulated at 37uC and 715 transcripts were down-regulated at 40uC. After 90 min of incubation, 518
transcripts were down-regulated at 37uC and 456 transcripts were down-regulated at 40uC. On the right, genes that were up-regulated relative to
time 0. After 30 min of incubation, 134 transcripts were up-regulated at 37uC and 119 transcripts were up-regulated at 40uC. After 90 min of
incubation, 115 transcripts were up-regulated at 37uC and 135 transcripts were up-regulated at 40uC. Carbohydrate metabolism genes were the most
numerous up-regulated genes (apart from the hypothetical gene category).
doi:10.1371/journal.pone.0003143.g003
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Figure 4. Differential regulation of virulence gene expression in GBS strain NEM316 during incubation with human blood. The
scatter diagram displays normalized spot intensities of the microarray analysis from proven and putative GBS virulence genes. Genes of interest are in
blue or green; other proven and putative GBS virulence factors are in gray. (a) After 30 min of incubation with blood at 37uC (time 1 relative to time
0). Higher level of transcription is shown for genes encoding proteins with LPXTG motifs: gbs0428, gbs1087 (fbsA), gbs1420 (bsp), and gbs2018 (bibA);
and genes encoding proteins implicated in binding/activation of plasminogen: gbs0608 (eno), gbs1811 (gapC), and gbs1195 (ska). Numerous other
proven and putative virulence genes were either down-regulated or their transcription was not modified. (b) After 90 min of incubation with blood at
37uC (time 2 relative to time 0). Six of the previous seven genes (except gbs1087-fbsA) remained up-regulated after 90 min of incubation with blood.
Levels of transcription of the other proven and putative virulence genes were higher relative to incubation of 30 min.
doi:10.1371/journal.pone.0003143.g004

GBS Transcriptome in Blood
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to streptokinase [26] (Fig. 4A and Table 2). After 90 minutes of

incubation, six of these seven genes (except gbs1087-fbsA)

remained up-regulated relative to time 0 (Fig. 4B and Table 2).

Extensive changes in the transcripts of genes encoding
proteins involved in GBS adaptive metabolism

The expression of a large proportion of genes involved in

various metabolic pathways was influenced by incubation with

human blood, reflecting rapid adjustment of the bacterial cellular

metabolism to nutrients and conditions present in the new

environment. We observed that major changes occurred in genes

involved in carbohydrate metabolism or transport, as transcripts of

55 genes were significantly altered at 30 min or 90 min relative to

time 0. Most of these altered transcripts were up-regulated (Fig. 3

and Table S1). For example, genes encoding phosphoenolpyr-

uvate-dependent phosphotransferase systems (PTS) involved in

transport of 3-keto-L-gulonate, cellobiose, and glucose, were at

least 3-fold up-regulated after 30 min of incubation with blood.

After 90 min, more genes or operons were up-regulated relative to

time 0 (Table S1), sometimes at high levels (for example, see

gbs1936-gbs1939,encoding a mannose/fructose transport system).

Of note, genes involved in complex carbohydrate metabolism also

were up-regulated, including the maltose-maltodextrin region

gbs1507-gbs1508 and gbs1510-gbs1512, gbs1911 (dexB) encoding

a glucan 1,6-alpha-glucosidase, and gbs1912 (msmK) encoding a

multiple sugar transport ATP-binding protein. Interestingly, in

GAS, homologues of all of these genes are controlled by the same

negative regulator (MalR) [27], which is consistent with our

findings of a 2.5-fold down-regulation of malR (gbs1509). We also

found that fba (gbs0125), gapC (gbs1811) and eno (gbs0608),

encoding the fructose-bisphosphate aldolase, GAPDH, and

enolase, respectively, were up-regulated within the first 30 min

of contact with blood. These enzymes are not only involved in

glycolysis, but also in virulence. Such a link between complex

carbohydrate metabolism and virulence was recently documented

in GAS [28], consistent with the fact that we observed up-

regulation of the GBS gene encoding catabolite control protein

CcpA (3-fold up-regulated at 90 min relative to 30 min).

We identified a significant modification in transcripts of genes

encoding proteins involved in purine/pyrimidine metabolism.

One set of genes (gbs0023–gbs0027, gbs0029, gbs0042–gbs0044,

gbs0047), all encoding enzymes involved in the initial steps of

purine metabolism (i.e. transformation of phosphoribosyl pyro-

phosphate to inosine monophosphate), was down-regulated (Fig.

S1). Conversely, the pyrimidine metabolism genes carA/carB and

pyrB/pyrC/pyrE/pyrF (gbs1077–gbs1082), encoding enzymes in-

volved in transformation of glutamine to uracil monophosphate,

were up-regulated during the first 30 min of incubation with

blood, and then down-regulated (Fig. S1).

Genes encoding amino acid metabolism proteins also were

significantly altered, with transcripts of 53 and 60 genes down-

regulated after 30 min and 90 min of contact with blood,

respectively. This group included genes involved in aspartate,

histidine, glutamine, serine, and glycine metabolism. Conversely,

very few genes in this category were up-regulated, exceptions

being gbs2122–gbs2126, encoding arginine catabolic enzymes,

that were up-regulated from 5.5- to 8.6-fold at 90 min relative to

time 0 (Table S1).

Genes or operons involved in transport of various ions were

down-regulated after contact with blood. For example, fhuA and

fhuG (gbs1462 and gbs1465), mtsC and mtsB (gbs1587 and

gbs1588), and another putative operon (gbs1043–gbs1045), all

involved in iron metabolism, were down-regulated from 2.2- to

5.8-fold. Similarly, the genes adcC and adcB (gbs0151 and gbs0152)

involved in zinc uptake, and gbs1679–gbs1680 encoding cobalt

transport proteins, were also down-regulated. However, mts, pts,

and gbs1043–gbs1045 subsequently were up-regulated at 90 min

relative to 30 min.

Differential GBS transcription between contact with
blood at 40uC and 37uC

In an effort to identify gene transcript changes occurring in

conditions that may be especially relevant to human illness, we

compared the bacterial transcriptome at a temperature observed

in severe infections with high fever (40uC) to the physiological

temperature of the human body (37uC). After 30 min of

incubation with blood, the GBS transcriptomes obtained from

cells grown at 40uC and 37uC were very similar. More

transcriptome differences were observed between these two

temperatures after 90 min. However, in most cases, the ratio

between the transcript levels at 40uC and 37uC was less than 2.

Of interest, the analysis identified up-regulation of several

transcripts that may enhance GBS virulence. For example, the

genes in the hemolysin operon cyl (except gbs0645) were all

modestly up-regulated at 40uC relative to 37uC (Table 3). Another

proven virulence gene (gbs2000) which encodes the CAMP factor

(an extracellular cytolytic protein involved in GBS pathogenesis),

and gbs1288 and gbs1420 (bsp), each encoding proteins with

LPXTG motifs, were also up-regulated at 40uC, respectively

(Table 3). Similarly, we observed slightly higher transcript levels of

genes implicated in stress response, including four chaperones or

heat-shock proteins (gbs0095-grpE, gbs0096-dnaK, gbs0097-dnaJ

Table 2. GBS genes involved in virulence significantly up-regulated in human blood.

ORF Gene Function/Characteristic Ratio time 1 vs time 0 Ratio time 2 vs time 0

gbs0428 - LPXTG motif 11.0 6.4

gbs0608 eno enolase 1.9 2.0

gbs1087 fbsA LPXTG motif 2.6 0.9

gbs1195 ska streptokinase-like 4.4 2.1

gbs1420 bsp LPXTG motif 3.4 6.0

gbs1811 gapC GAPDHa 3.1 3.0

gbs2018 bibA LPXTG motif 6.9 2.4

Seven genes involved in cell-to-cell contact, adhesion to fibrinogen, and coagulation/fibrinolysis processes were up-regulated after 30 min of incubation with blood
(time 1 relative to time 0). Six of these genes were also up-regulated after 90 minutes of incubation (time 2 relative to time 0).
aGAPDH: glyceraldehyde 3-phosphate dehydrogenase.
doi:10.1371/journal.pone.0003143.t002
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and gbs0625) and a heat-inducible transcription regulator

(gbs0094-hrcA). Another gene (gbs1376-clpL) encoding another

protein involved in stress response was clearly over-expressed at

40uC (Table 3).

Discussion

Although studies using animal infection models have provided

considerable information about GBS virulence factors and

pathogenesis, some processes observed in animals may not occur

in humans [29] because human strains may express components

that specifically interact with the human host [30]. Ideally, the

most relevant data would be provided by analyzing bacterial gene

expression during the progress of infections in patients, but this

kind of study is extremely difficult to conduct. To circumvent this

limitation, and as a first step to better understand the host-

bacterium interaction in blood that is a crucial step in most GBS

invasive infections, we performed a bacterial transcriptome

analysis during GBS incubation ex vivo with human blood. The

ex vivo culture system we used does not perfectly mimic the highly

complex environment encountered by the bacterium in vivo in

human infections. For example, the putative starvation of some

nutrients and the lack of continuous oxygenation of the blood, a

parameter that contributes to GBS invasiveness and virulence

[31], render the duration of the experiment limited in time. In

addition, the amount of GBS incubated with each blood sample

(,56108 CFU/mL, or ,50 CFU per white blood cell) is higher

than commonly present during bacteremia [32], but necessary to

obtain a sufficient amount of RNA for the arrays. However, our ex

vivo experiments mirror numerous conditions existing within

infected humans, in particular temperature and the presence of

the majority of nutrients and immune system factors. Thus, for the

first time, the present investigation provides new data about how

GBS remodels its transcriptome in response to human blood. Our

data point to strategies implemented by GBS to adapt immediatly

after invading the blood (during the first 30 min), and subse-

quently to establish infection (during the next 60 min) (Fig. 5).

Interestingly, although GAS multiplies rapidly in human blood

[13,33,34], the number of GBS CFUs did not increase or decrease

after 90 min of incubation. The lack of growth could be linked

either to an autoregulation phenomenon (for example by a

quorum sensing system) due to the high number of bacterial cells

already present at time 0 or to an insufficient amount of nutrients

(see below). However, this observation can also suggest that GBS

needs a longer time than GAS to adapt to blood, an idea consistent

with transcriptome data reported from an analogous GAS-blood

contact study [13]. Indeed, we observed that most (83%)

differentially regulated GBS transcripts were down-regulated in

blood (Fig. 3), whereas in striking contrast, in GAS most (62.7%)

transcripts were up-regulated [13]. Moreover, in GAS a large

number of proven virulence factors were up-regulated [13], but in

GBS relatively few virulence genes were up-regulated in blood

(Table 2). One hypothesis to explain these observations is that up-

regulation of virulence genes in GBS may occur later than in GAS,

consistent with the fact that virulence factors are not constitutively

expressed but often are activated in the stationary phase of growth

[14]. Another explanation is that GAS has more efficient virulence

activity in blood (regardless of growth phase), a hypothesis that

could bear on the fact that GAS has a higher mortality rate in

elderly adults than GBS [2,35].

Derangements of coagulation and fibrinolysis are common

features in patients with severe sepsis [36]. One notable finding of

our work was the discovery of up-regulation in human blood of

GBS transcripts for proteins involved in interaction with

hemostasis system molecules. For example, the gene (fbsA)

encoding the major GBS receptor for fibrinogen was significantly

up-regulated in blood. FbsA potentiates thrombin-catalyzed fibrin

clot formation [37]. Notably, a fbsA mutant grows poorly in

human blood and loses its ability to induce platelet aggregation

[38,39]. Importantly, one-fifth of GBS causing human invasive

infections lack the fbsA gene, but it is present in all organisms

belonging to the hyperinvasive neonatal clone MLST-17 [40]. We

also observed up-regulation of three other genes encoding proteins

involved in fibrinolysis in other pathogenic streptococcal species

(ska, eno, and gapC) [41,42,43]. GAS can directly bind plasminogen

through enolase and GAPDH, whereas indirect binding requires

the formation of a complex with streptokinase, fibrinogen, and

plasminogen [44]. Enolase and GAPDH are major GBS outer

surface proteins [45], but to date only GAPDH was been shown to

interact with human plasminogen [46]. Regardless of the route of

activation, plasminogen is converted to plasmin, which in turn,

degrades fibrin resulting in release of fibrin degradation products

and enhanced dissemination of GBS. Of note, plasmin proteolytic

activity cannot be inhibited by a2-antiplasmin, the main

physiological inhibitor of plasmin, suggesting that once this

enzyme is bound to the bacterial surface it is impervious to at

least one normal regulatory mechanism [46]. Thus, our data

provide evidence that on exposure to blood GBS enhances

Table 3. GBS genes of interest that were slightly up-
regulated at 40uC relative to 37uC in human blood.

ORF Gene Function
Ratio 40uC vs
37uC

gbs0644 cylX hypothetical 1.12

gbs0645 cylD fatty acid biosynthesis enzyme 0.95

gbs0646 cylG fatty acid biosynthesis enzyme 1.18

gbs0647 acpC acyl carrier protein homologue 1.26

gbs0648 cylZ fatty acid biosynthesis enzyme 1.20

gbs0649 cylA ABC transporter 1.36

gbs0650 cylB ABC transporter 1.54

gbs0651 cylE putative hemolysin 1.49

gbs0652 cylF putative aminomethyltransferase 1.64

gbs0653 cylI fatty acid biosynthesis enzyme 1.40

gbs0654 cylJ putative glycosyltransferase 1.71

gbs0655 cylK hypothetical 1.75

gbs2000 cfb CAMP factor 1.74

gbs1288 - LPXTG motif 1.40

gbs1420 bsp LPXTG motif 1.57

gbs0094 hrcA heat-inducible transcription
regulator

1.32

gbs0095 grpE heat-shock protein 1.34

gbs0096 dnaK chaperone 1.35

gbs0097 dnaJ chaperone 1.38

gbs0625 - chaperone 1.39

gbs1376 clpL Clp proteinase 4.53

The cyl operon, the cfb gene encoding the CAMP factor, and two genes
encoding proteins with LPXTG motifs may provide advantage to the bacterium
during invasive process. Genes encoding proteins involved in stress response
were also slightly up-regulated at 40uC suggesting that the adaptive stress
response was engaged in GBS.
doi:10.1371/journal.pone.0003143.t003
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transcription of factors that contribute to survival in the blood and

dissemination to other anatomic sites.

The transcriptome analysis revealed a large dynamic metabolic

adaptation of the bacterium, as more than half of the carbohydrate

metabolism genes were up- or down-regulated during incubation

with human blood. Although it can be argued that these significant

transcript changes occur because GBS is glucose-starved in human

blood, which could be the consequence of the high number of

bacterial cells present in the sample, several lines of evidence

support another hypothesis. First, extensive modifications in

carbohydrate gene expression occurred rapidly in the first

30 min of GBS-blood interaction, a time too short to be explained

by significant reduction of the blood glucose concentration.

Second, numerous expression changes in carbohydrate metabo-

lism genes occurred during a similar experiment with GAS and

human blood [13], and also under in vivo conditions in humans

and non-human primates [47,48], when nutrients are maintained

at physiological levels by the host. Thirdly, regulation of

carbohydrate metabolism is crucial during the initial growth and

colonization of the bacterium [48]. Several investigators have

recently reported that carbohydrate metabolism and virulence are

linked in other pathogenic streptococcal species [28,49,50,51].

Thus, we favor the hypothesis that the significant alterations in

carbohydrate metabolism genes we observed occur as a funda-

mental response to the overall host physiologic milieu, rather than

glucose starvation. Additional studies are needed to investigate this

hypothesis.

We found that only a limited number of transcripts were up-

regulated at 40u C relative to 37u C, and most were of a relatively

small magnitude. Most transcripts observed to be up-regulated

were at 90 min rather than 30 min after blood exposure. Six of the

genes up-regulated at 40uC belong either to the chaperone or to

class I or class III heat shock families [52], suggesting that GBS is

undergoing an adaptive response to the increased temperature of

incubation. A homologue of ClpL was the highest up-regulated. In

S. pneumoniae, ClpL is required for survival after heat shock and it

also plays a role in virulence [53,54]. Our results confirmed

previous observations made for GAS that genes implicated in

virulence (such as hemolysin) were up-regulated at 40uC [55].

In summary, our study provides the first genome-wide view of

the early steps of GBS genetic adaptation to human blood, a

crucial step of pathogenesis during invasive disease. We identified

an extensive remodeling of the bacterial transcriptome, notable for

a down-regulation of numerous genes belonging to all functional

categories. It also provides evidence for a rapid and complex

response in expression of stress response genes and transcriptional

regulators, and underscores the extensive carbohydrate metabo-

lism changes and the high expression of genes involved in contact/

activation with coagulation/fibrinolysis networks during blood

invasion. Taken together, the data presented here reveal new leads

Figure 5. Schematic summarizing the transcriptional response of GBS to human blood. Depicted schematically is a proposed model of
GBS gene expression involved in adaptation of the bacterium during ex vivo incubation with human blood at 37uC. ORFs of interest are colored
according to main functional categories. Arrows indicate up-or down-regulation relative to time 0. When opposite transcription occurs during the
first 30 min and the next 60 min, two arrows are shown.
doi:10.1371/journal.pone.0003143.g005
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for future studies designed to understand pathogenesis, and to

identify additional putative targets that would be helpful to

develop new diagnostic and therapeutic strategies.

Materials and Methods

Bacterial strain, human blood and growth conditions
The serotype III GBS reference strain NEM316 isolated from a

fatal case of invasive infection was used in this study. The genome

of strain NEM316 has been sequenced and annotated [52]. Strain

NEM316 was grown in Todd Hewitt broth supplemented with

0.2% yeast extract (THY) in 5% CO2 at 37uC until the OD600

reached 0.75, a value corresponding to mid-logarithmic phase.

The bacteria were harvested by centrifugation for 8 min at

40006g at 37uC, and the cell pellet was suspended in phosphate-

buffered saline (PBS).

Fresh heparinized human blood was donated by seven healthy

volunteers (four males and three females) in accordance with a

protocol approved by the Institutional Review Board of The

Methodist Hospital Research Institute. Bacteria were mixed with

80 mL of blood from each donor (final GBS concentration of

,56108 CFU/mL of blood) and rotated slightly to avoid

sedimentation of blood and bacterial cells. Samples were removed

immediately after adding bacteria, and after 30 and 90 min of

incubation at 37uC and 40uC.

RNA isolation
Each blood-bacteria sample was treated with 2 volumes of

RNAprotect Bacteria Reagent (Qiagen, Valencia, CA) immedi-

ately after collection. The mixture was centrifuged and the pellets

were stored at 280uC until processing. The pellets were incubated

with 5 volumes of the Erythocyte Lysis (EL) buffer (Qiagen) for

20 min on ice, centrifuged, and rinsed with 2 volumes of EL

buffer. RNA was extracted using Lysing Matrix B microtubes

containing 0.1 mm silica spheres (Qbiogene, Carlsbad, CA) and

1 mL Trizol (Invitrogen) with the FastPrep FP120 cell disrupter

(Qbiogene). RNA extraction was completed with the RNeasy Mini

kit (Qiagen) according to the manufacturer’s instructions. Samples

were treated with DNAFree (Ambion, Austin, TX) to remove

trace DNA, and 40 cycles of PCR were performed with RNA

templates to document the absence of contaminating genomic

DNA. A second treatment with DNAFree was performed if

necessary. The RNA concentration was determined by measuring

absorbance at 260 and 280 nm, and RNA quality was evaluated

by electrophoretic analysis with an Agilent 2100 Bioanalyzer

(Agilent Technologies Inc., Palo Alto, CA).

cDNA synthesis, fragmentation and labeling
The methods used for cDNA synthesis, fragmentation, and

labelling have been described extensively elsewhere [56].

Expression microarray hybridization and analysis
Expression microarray analysis was performed with a custom-

made Affymetrix chip formulated based on the genome sequence

of strain NEM316 [52]. The chip contains 1,995 probe sets

corresponding to the annotated opening reading frames (ORFs) in

this genome. Briefly, end-labeled cDNA was hybridized overnight

at 40uC using the Affymetrix hybridization and staining modules

according to the manufacturer’s instructions. Chip hybridization

data were acquired and normalized using Affymetrix GeneChip

Operating Software (GCOS). Hybridization intensity values were

normalized to the mean intensity of all GBS genes present on the

chip using GCOS version 1.0 to permit comparison of data

obtained from multiple experimental conditions. An ORF was

considered to be differentially expressed if there was a ‘‘present’’

signal, if there was a significant (P,0.05, T-test) change in

expression greater than 2-fold at one time point relative to another

and if these criteria were met for at least six of the seven donor

samples.

The microarray data have been deposited in the Gene

Expression Omnibus database (GSE11705).

Bioinformatic analyses
Analyses, statistics, and graphics were performed with Partek

Pro Genomics Suite 6.0 (Partek, St. Louis, MO), ArrayAssist

software v5.5 (Stratagene, La Jolla, CA), and GraphPad Prism v4

(GraphPad Software Inc., San Diego, CA).

Supporting Information

Figure S1 Kinetics of genes involved in purine/pyrimidine

metabolism during incubation with human blood at 37uC. The

‘purine’ genes gbs0023–gbs0027, gbs0029, gbs0042–gbs0044, and

gbs0047 (in blue), encoding all the enzymes involved in the first

steps of purine metabolism (i.e. transformation of the phosphor-

ibosyl pyrophosphate to the inosine monophasphate), were down-

regulated from 2.2- to 7.7-fold. The ‘pyrimidine’ genes gbs1077–

gbs1082 (in red), encoding the enzymes involved in the

transformation of the glutamine to the uracyl-monophosphate,

were up-regulated from 2.2- to 2.5-fold during the first 30 min of

contact with blood, and then down-regulated.

Found at: doi:10.1371/journal.pone.0003143.s001 (2.65 MB TIF)

Table S1 Microarray expression data from GBS strain NEM316

during incubation with human blood at 37uC and 40uC. Up- and

down-regulation after 30 and 90 min of incubation are expressed

relatively to time 0. Ratios greater than 2 and less than 0.5 (with P

value less than 0.05) are highlighted in blue and green,

respectively.

Found at: doi:10.1371/journal.pone.0003143.s002 (0.50 MB

PDF)
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