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Abstract

Artificial olfactory systems have been studied for the last two decades mainly from the point of view of the features of
olfactory neuron receptor fields. Other fundamental olfaction properties have only been episodically considered in artificial
systems. As a result, current artificial olfactory systems are mostly intended as instruments and are of poor benefit for
biologists who may need tools to model and test olfactory models. Herewith, we show how a simple experimental approach
can be used to account for several phenomena observed in olfaction. An artificial epithelium is formed as a disordered
distributed layer of broadly selective color indicators dispersed in a transparent polymer layer. The whole epithelium is
probed with colored light, imaged with a digital camera and the olfactory response upon exposure to an odor is the change
of the multispectral image. The pixels are treated as olfactory receptor neurons, whose optical properties are used to build a
convergence classifier into a number of mathematically defined artificial glomeruli. A non-homogenous exposure of the test
structure to the odours gives rise to a time and spatial dependence of the response of the different glomeruli strikingly
similar to patterns observed in the olfactory bulb. The model seems to mimick both the formation of glomeruli, the zonal
nature of olfactory epithelium, and the spatio-temporal signal patterns at the glomeruli level. This platform is able to
provide a readily available test vehicle for chemists developing optical indicators for chemical sensing purposes and for
biologists to test models of olfactory system organization.
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Introduction

Artificial olfactory systems have fascinated scientists for about

25 years, not least through the paper by Dodd and Persaud in

1982 [1]. They demonstrated that (four) chemical sensors with

overlapping selectivity patterns could be used to discriminate

among different odors. This discovery was based on the evidence

that olfactory receptors are rather unselective; namely each

receptor senses several kinds of odorant molecules and each

odorant molecule is sensed by many receptors. The combinatorial

signals pattern emerging form the ensemble of receptors is the key

for odor classification, identification, and recognition [2]. This

behavior surprisingly coincides with the properties of many solid-

state chemical sensors, and since the eighties almost all the sensor

technologies were used to assemble arrays of sensors with a certain

capability to classify odors. The term electronic nose was coined to

describe such sensor systems coupled with pattern recognition

techniques, underlying in resemblance to human olfaction [3].

Although artificial olfaction was introduced with the purpose to

provide artificial models of olfaction, the technological implemen-

tations of the concept were almost completely dedicated to the

development of instruments rather than to make available a tool to

biologists to test olfactory models. For this reason, progress in

artificial olfaction systems was mainly focused on the development

of artificial receptors. Receptor property is only one of the aspects

of the rich structure of olfaction, while other important olfaction

features, such as the large number of olfactory receptor neurons,

their hierarchical organization, the odor patterns in the olfactory

bulb, and the odor diffusion along the olfactory epithelium have

been far less considered.

Among the possibilities to develop chemical sensors those based

on optically active chemical indicators are extremely interesting

for the possibility to synthesize a large variety of artificial receptor

molecules whose chemical properties are modulated by molecular

recognition events [4]. As an example, work by Suslick et.al. [5],

and by ourselves [6] have shown the potential of ensembles of

porphyrins and related compounds to correctly classify odorant

molecules and odors. We recently demonstrated, using three colors

excitation (a computer screen) and three colors detection (a digital

camera), how optical fingerprints of the interaction between

metalloporphyrins and volatile molecules can be used to identify

and quantify various analytes [7].

In particular, optical sensors offer the possibility to extend the

similarity between natural and artificial olfaction systems. To this

regard Walt et al. have shown that the image formed by a bundle

of optical fibers can easily allow the contemporaneous measure-

ment of a large number of sensors when the tip of each fiber was

properly chemically sensitized [8].

The properties of image sensors may be fully exploited imaging

a chemically sensitive surface coated by a continuous layer of
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chemical indicators. In this situation, an image sensor provides a

segmentation of the whole sensing layer in a number of elementary

units corresponding to the pixel of the image. Eventually, since it is

possible to evaluate the optical properties at the level of the single

pixel, each pixel of the image corresponds to an individual sensor.

To this regard, even low-resolution images may easily result in

thousands of individual and independent sensing units.

This approach offers also the possibility to further develop

artificial olfactory structures introducing a layer of glomeruli. In

biological olfactory systems, both vertebrate and invertebrate, each

olfactory receptor neuron (ORN) expresses only one of the genes

proper of each species, and the signals of all the ORNs expressing

the same gene converge to one glomerulus. Glomeruli are one of

the most important units in the olfactory system where signals

from receptor neurons of the same kind are elaborated for further

coupling to higher levels in the brain [9,10].

A kind of glomeruli layer was proposed by Walt et al. [11] that

used self-encoded associations between individual artificial recep-

tors, corresponding to the area of fiber tips as detected by the

image sensor. In this system the association was determined

according to the similar responses to a test gas and since the

receptors are non selective, changes in the kind of test gas may

result in a different arrangement. This feature mimics the

functional arrangement of natural systems, where olfactory

neurons with the same response properties and expressing the

same receptor protein coalesc onto the same glomeruli [12,13].

In this paper we show that a collection of arbitrarily shaped

regions of color indicators, like porphyrinoids, can be regarded as an

artificial epithelium. Although not ordered, the porphyrin regions

are not overlapping and then each pixel in an electronic image of

the complete layer is characterized by only one porphyrinoid. In

analogy to the fact that one ORN express only one receptor gene,

each pixel of the image may be considered as an artificial receptor

neuron and the output signal from such a neuron is the change in

the optical properties of the pixel caused by the odor. The intrinsic

optical properties of the pixels of the layer image are used to

resemble the genetic manifestation of the membership of olfactory

receptor neurons to different glomeruli, thus resembling the

univocal association between an olfactory neuron and its glomerulus

[12,14]. In figure 1 a comparison between standard sensor arrays

and the platform suggested by us is given. The resemblance of the

proposed artificial olfaction architecture to the standard model of

olfaction is also illustrated in figure 1.

Another important characteristic of natural olfaction is related

to the spatial distribution of ORNs and to the fact that they are

embedded in a diffusive media forming the so-called olfactory

mucosa. When diffusing through the mucosa, odorant molecules

are separated according to a gas-chromatographic principle [15].

To incorporate this property, the sensing molecules are dispersed

in a polymer membrane that is sandwiched between two

transparent sheets. One of the sheets is endowed with a hole

allowing odorant molecules to freely diffuse through the polymer

reaching the different porphyrinoid indicators.

This structure provides an artificial olfactory system character-

ized by a large number of individual ORNs (pixels) convergent to a

layer of glomeruli. ORN-glomerulus association is driven by the

optical characteristics of the particular porphyrinoid characteriz-

ing each pixel. It is important to remark that if each pixel is

characterized by only one porphyrinoid (condition achieved if

overlapping layers are avoided) the mapping of ORNs to the

glomeruli layer is independent from the practical implementation

of the sensing layer.

The diffusion of odorant molecules from one point of the

artificial epithelium through the polymer matrix gives rise to

spatio-temporal behavior of glomeruli signals that imitates the

natural role of olfactory mucosa.

The structure has been tested in a simple experiment showing

the different glomeruli signal patterns occurring as a consequence

of the exposure to pure compounds. How the signals of individual

ORNs are combined together to give rise to the glomerulus signal

is still rather unknown. Single glomerulus signals are also

influenced by intra- and inter- glomerular interactions [16,17].

The platform proposed in our contribution provides a software

model of glomeruli on which it is possible to apply any theoretical

description of the glomeruli layer working principle. In this paper,

this aspect will not be investigated, the simplest glomerulus transfer

function is applied and the glomerulus signal is the instantaneous

sum of the convergent ORNs signals. Even with this simple

assumption, results are to large extent similar to what is found at

the glomerular level in the natural olfactory system. It turns out

that this experimental platform can provide a way to mimic both

the zonal nature of the distribution of olfactory receptor neurons

[18,19] and the spatiotemporal response patterns observed in the

olfactory bulb [17,20].

Results

The test structure was interrogated by a transmission mode

optical arrangement where a standard digital camera recorded the

image of the artificial epithelium illuminated by a computer

screen. The exposure of the epithelium to the three color sequence

creates a three colors optical fingerprint for each pixel of the

image. To avoid errors due to image aberration only the pixels

inside the white circle visible in Fig. 2a have been considered. For

each pixel, the fingerprint depends both on the nature of the

porphyrinoid and on its amount dispersed in the polymer volume

imaged by the pixel. In the epithelium preparation each

porphyrinoid was spotted in more than one place, varying the

indicator as well as the polymeric solvent amounts. In order to

maintain the univocal character of ORNs intermixing between the

different indicator areas was avoided, but diffusion and drying

effects created also zones of different optical densities.

Fig. 3a shows all the collected fingeprints. While in the case of a

perfectly homogeneous chemical indicator distribution only seven

different fingerprints should be visible in Fig. 3a, the obtained

fingerprints form a continuous distribution, evidencing a high level

of non homogeneity in the deposition. The relationship between

non-homogeneity and intrinsic optical properties can be better

studied considering the principal component analysis of the set of

fingerprints. In figure 3b the Principal Component Analysis scores

plot [21] of the fingerprints of all the considered pixels is shown.

The plot illustrates the non-homogeneous distribution of porphyr-

inoids. It is worth to observe that in spite of the evident dispersion

the individual character of indicators is preserved and then the

classification of fingerprints into univocal classes is possible.

In this paper we consider each pixel of the image to be an

individual ORN and its optical fingerprint the manifestation of the

univocal nature of the kind of receptor characterizing the ORN.

Then, the application of a classification algorithm to the set of

fingerprints divides the thousands of pixels or artificial ORNs into

a limited number of classes where ORNs carrying the same type of

receptor converge. This collection of classes is a mathematical

structure playing a role similar to that of the glomeruli layer found

in natural olfaction.

In the simple classification scheme used in the present study, a

k-means classifier [21], the number of glomeruli can actually be

arbitrarily chosen. In this particular case, 12 glomeruli were

chosen. This is the minimum number of glomeruli necessary to
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avoid ORNs misclassification, namely to avoid the convergence to

the same glomerulus of ORNs carrying different kinds of

receptors. It is worth to mention that misclassification, i.e. mixing

in the same glomerulus the response of different receptors, tends to

destroy the global specificity of the olfaction. Indeed, there is a

natural trade off between discriminatory power and sensitivity

(signal to noise ratio). A larger number of glomeruli increase the

discriminatory possibilities whereas increasing the number of

ORNs converging to the same glomerulus means a larger signal to

noise ratio for a detected odour. Also in biological systems, a

glomerulus connected to a large number of ORNs gives a larger

sensitivity [22,23].

Figure 4 shows the membership of the pixels (ORNs) of the

artificial epithelium to 12 different glomeruli. It has been necessary

to use more than seven glomeruli to fulfill the biological paradigm

that one glomerulus receives signals only from one kind of ORNs.

This is due to a non homogenous molecule density among the

pixels carrying the same indicator, which means that not only the

Figure 1. Comparison between standard sensor arrays as implemented in the state-of-the-art electronic noses, the scheme of the
natural olfaction standard model and the architecture proposed in this paper. (A) Standard sensor arrays are formed by spatially
controlled, homogenous, and separated spots of indicators. (B) In Nature, two layers are identified. The sensor level is formed by a spatially
distributed layer of olfactory receptor neurons (ORN). Glomeruli form a second layer where the responses of homogeneous ORNs are evaluated, ORNs
expressing the same receptor are connected to the same glomerulus. The application of the architecture of Nature to a standard sensor array is trivial
and gives rise to coincident ORNs and glomeruli layers, which makes it difficult to mimick phenomena occurring in the olfactory epithelium with a
standard sensor array. (C) In the system illustrated in this paper, ORNs are the pixels of the image of a sensing layer formed by an ensemble of
spatially non-controlled, non-homogenous, and non-mixed indicators. The glomeruli layer is a mathematical object defined by the membership
classes of the optical features of the different pixels. Similar to nature, a pixel (an ORN) belongs univocally to an artificial glomerulus regardless of its
position in the sensing layer (epithelium).
doi:10.1371/journal.pone.0003139.g001
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intrinsic adsorption spectra but also the total concentration of

molecules enters into the classification. As a result, for some

porphyrinods more than one glomerulus was defined. The result of

the classification assigned one single glomerulus each to take care

of the response of the layers of OTiHOMC, ZnTPP, and

FeTPCCl; two glomeruli were assigned to MnTPPCl, RhTPPCl,

and MnEMC, and finally three glomeruli were necessary to

univocally take care of the response of the PdTPP layers. One

fundamental property of a glomerulus is to improve the signal to

noise ratio in comparison to that of a single olfactory neuron. This

property applies also to the processing of optical sensors signals as

elegantly shown by Walt et.al. [8] using optical fiber bundles.

Figure 4 illustrates in a very direct way why our approach is more

biomimicking than just using well defined spots of a number of

given color indicators. The irregular distributions of the pixels

contributing to the signal of one of the artificial glomeruli, which

then serves the purpose of a well defined spot, i.e. the summary of

pixels with similar properties, resemble much better the zonal- and

distributed nature of ORNs in the olfactory epithelium. This

distribution will be of main importance for the details of the spatio-

temporal behavior of an artificial epithelium.

Figure 5 shows color coded results of the changes in the

individual pixels of the artificial epithelium upon exposure to

stimuli of triethylamine (Fig 5b) and butylamine (Fig. 5d). In case

of butylamine the signal of a single pixel is large enough to be seen

above the noise, while in the case of triethylamine the individual

pixel signals do not emerge from the noise. In case of the response

to butylamine it is also possible to appreciate the reversibility of the

interaction.

The artificial glomeruli are modeled by software and any

complex transfer function can be easily implemented both at inter-

and intra- glomeruli level. Since a thorough description of such

properties in the olfactory system is largely unveiled, the glomeruli

are here described as nodes where the signals of all the ORNs

(pixels) convergent to the same glomerulus are instantaneously

summed.

Figure 2. The artificial epithelium. (A) Image of the layer of porphyrinoids illuminated by white light, the (uncompleted) white circle indicates the
region of the image considered in the analysis. The missing segment of the circle identifies the orientation of the artificial epithelium in other
drawings. A schematic sideview of the artificial epithelium is shown to the right of the image. The epithelium is in contact with the odours via a hole
in the upper plastic disc. (B) Experimental setup. (C) Schematic drawing of the measurement system: the artificial epitelium (2) is contained in a
measurement cell (1) endowed with holes for gas inlet (6) and outlet (7). The transparent cell is illuminated, via a mirror (4), by an LCD computer
screen (3) and the image of the artificial epithelium is captured by a standard computer camera (5).
doi:10.1371/journal.pone.0003139.g002
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The behavior of artificial glomeruli signals are illustrated in

Fig. 6, where the time behavior of the responses at the glomeruli

level (sum of the input signals) are shown. Figure 6a illustrates the

individual ORNs (image pixels) whose different colors indicate the

membership to a specific glomerulus (‘‘summary of figure 4’’).

Color-coded time responses for all 12 artificial glomeruli are also

Figure 3. Fingerprints of the different pixels in the artificial epithelium. (A) Fingerprints extracted from the images of the artificial
epithelium obtained in pure nitrogen with the setup in figure 2 Red, Green and Blue on the abscissas denote the intensities observed in the different
camera channels. The lines are drawn just to amplify the visual differences between the optical fingerprints. (B) The fingerprints projected onto the
plane formed by the first two principal components of a principal component analysis (about 84% of total variance represented). The plot illustrates
the relationship between glomeruli and receptors (pixels), and it shows the scattering of the fingerprints due to concentration non-homogeneities of
the color indicators used. As a consequence, the chosen classifier (k-means) requires a number of classes larger than the number of porphyrinoids in
order to fulfill the principle that one glomerulus receives signals only from one kind of receptor (i.e. with similar intrinsic optical properties as defined
by the k-means algorithm). Porphyrin acronyms are the same as used in the text.
doi:10.1371/journal.pone.0003139.g003
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Figure 4. Segmentation of the artificial epithelium into glomeruli convergence areas. The intensities in the red, green and blue channel of
the camera are measured at each illumination to give a fingerprint. Fingerprints are then classified in twelve groups (see figure 3). Due to the
fabrication conditions of the polymeric layers in Figure 2, aggregation of porphyrinoids results in non regular patterns that are anyhow correctly
captured by the procedure used to define the membership to a given artificial glomerulus. Some glomeruli indeed receive signals from defined and
compact regions of the artificial epithelium while in other cases filamentary structures, likely due to diffusion of porphyrins inside the polymer matrix,
are observed. The notation on the different images marks the glomerulus to which the specific area of the artificial epithelium delivers its signals. The
indicator in the specific area is denoted as in the text.
doi:10.1371/journal.pone.0003139.g004

Figure 5. Example of signals from the artificial epithelium. (A) Color coded response image obtained as the difference between the image
taken at the end of the exposure (50th image) to triethylamine and the first frame taken in the reference gas. The square marks a region where some
of the most responding pixels are located. These pixels are related to one of the PdTPP layers. (B) Time evolution of the signals recorded from each
pixel in the square marked in (A). The signals show the difference in optical response obtained, as described in the Materials and Methods section,
upon the introduction and removal of triethylamine into/from the sample cell. Individual signals are immersed in noise and there is no evident
response to the odour (triethylamine). (C) Color coded response image obtained as the difference between the 50th and the first image in case of
exposure to butylamine. The square marks a region where some of the most responding pixels, related to MnTPPCl, are located. (D) Time evolution of
the signals recorded from each pixel in the square marked in (C). The signals show the difference in optical response upon the introduction/ removal
of butylamine into/from the sample cell. The difference was determined as described in the Materials and Method section. Also in case of a large and
evident signal from individual pixels the noise is appreciable.
doi:10.1371/journal.pone.0003139.g005
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shown for three different odours. The spatio-temporal results in

Fig. 6d resemble similar plots for real glomeruli [20], besides the

times involved, which are about 1000 times longer in our

experimental setup. Figures 6b and 6c show the signals of the

two glomeruli obtaining as a part the signals from the pixels

(ORNs) inside the black rectangles in figure 5. As expected, in both

cases, also for triethylamine, the signals at glomeruli level largely

exceed the noise. The response of all glomeruli is detailed in

figure 7. The figure illustrates also the reversibility of the

interactions between odorants and porphyrinoids and the recovery

of all glomeruli pristine signals.

For each gas a different set of glomeruli provides the maximum

response. In case of ethanol, the largest signal is given by the

glomerulus expressing the response of ZnTPP (glom 6) indicators

with a lower contribution from MnTPPCl and some of the PdTPP

glomeruli. In the case of triethylamine, the largest signal is

provided by one of the glomerulus related to the PdTPP layers

(glom 10) with minor responses from glomeruli expressing the

responses of OTiHOMC and MnEMC. Finally for butylamine

large responses from the glomeruli carrying the signals from

MnTPPCl (glom 1 and glom 8) are observed, smaller responses are

then provided by the glomerulus related to ZnTPP and one of the

glomeruli related to PdTPP and RhTPPCl respectively.

Summarizing we find that the artificial epithelium provides a

number of biomimicking features. First, it fulfils the rather self-

evident condition that the added signal from many similar neurons

Figure 6. Receptor (pixel) convergence map on the different glomeruli and examples of the response of two glomeruli to two
different odors. (A) Membership of each pixel to a given glomerulus (summary of figure 4). Different colors indicate the membership to different
glomeruli. (B) Response of one of the glomeruli related to PdTPP during and after exposure to triethylamine. It contains as a part the pixels
considered in Fig. 5b. A signal to noise ratio of 4 is obtained, which should be compared to that of individual pixels, not larger than 1.1. (C) Response
of the glomerulus related to MnTPPCl during and after the exposure to butylamine. It contains as a part the pixels considered in Fig. 5d. The signal to
noise ratio of individual pixels in this region is less than 7 while the glomerulus shows a signal to noise ratio of 90. (D) The responses of the twelve
glomeruli to the three sample odors used (ethanol, triethylamine and butylamine) are shown as intensity coded color maps. Each odor gives rise to a
different combination of glomeruli responses. (Different color scales for the three cases).
doi:10.1371/journal.pone.0003139.g006
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Figure 7. Time evolution of glomeruli signals. Normalized signals provided by the 12 glomeruli when the artificial epithelium is exposed to
different odors illustrate the combinatorial response of the artificial olfaction platform and the reversibility of the interactions between odors and the
artificial receptors (complementary to figure 6D).
doi:10.1371/journal.pone.0003139.g007
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is better than that from an individual neuron. There are, however,

some additional properties that we like to stress. The different

artificial olfactory neurons, i.e. the individual pixels, are distributed

in irregular areas, similar to real olfactory receptor neurons. The

experimental arrangement gives a diffusion limited temporal

dependence to the response of a given artificial glomerulus, leading

to a biomimicking spatiotemporal behavior of a collection of

artificial glomeruli. The time scale is, however, not particularly close

to the biological counterpart. The diffusion takes place in a circular

geometry and without forced convection as in the nasal cavity. We

believe that our experimental system may well be organized to

better mimic also this aspect of olfaction including the separation

properties observed in natural olfaction and shorter time constants.

Another detail, which can be better mimicked, is the ‘‘mosaic’’

structure of the receptor distribution within a given zone of the

olfactory epithelium, i.e. that receptors of different kinds are

intermixed as illustrated in figure 1. This can be achieved e.g. by

using a microspotter to (randomly) distribute spots of single pixel

size (‘‘single ORNs’’) of the color indicators used.

Discussion

The use of three-color excitation and detection based on a

computer screen-web camera platform makes the demonstrated

concept easily accessible for everyone interested. The experimental

setup provides a large area multi-colour light source and three-

colour images for further electronic manipulation. In the present

paper we used the sum of the intensity changes in the three camera

channels as the sensory signal. More information is available by

using the intensity changes in each individual channel, separating

absorption changes from emission changes. This can be used to

create more artificial glomeruli from the same artificial epithelium

using the intrinsic emission properties as the classification

parameter and the change in emissions as the signals from the

pixels as the artificial ORNs input to the glomeruli.

The use of the individual pixels in a digital image of the

response to an odor as independent chemical sensors creates a

simple way to obtain many individual sensors for signal evaluation

in a biomimicking fashion. The chosen experimental system,

where pixels with similar optical properties unsupervisedly

converge into a layer of artificial glomeruli, is extremely simple.

It provides several possibilities to vary the properties of the

glomeruli, some of them already pointed out above. Different

layouts and arrangements of the colour indicator spots are

possible. The sample cell geometry as well as the choice of the

polymer matrix for the colour indicators can be used to alter the

influence of diffusion processes on the response to an odour. This

degree of freedom was not used in the present study; the odour was

supplied simply through a hole in the middle of the cover to the

artificial epithelium with spontaneous diffusion as the only

mechanism for exposure of the indicator areas. Through a more

intelligent design of the sample cell pulsed operation or ‘‘sniffing’’

in geometry closer to that of the nasal cavity would be possible.

Although all these suggested improvements evidence the great

potential of the suggested approach, it is also necessary to

underline the important advantage of the simple to implement and

simple to use experimental platform we showed here; the system is

able to provide a readily available test vehicle for chemists

developing optical indicators for chemical sensing purposes and for

biologists to test models of olfactory system organization. This

relates actually not only to the optical platform but also to the

fabrication of the sensor array itself. Spontaneous formation of

indicator spots of arbitrary sizes and shapes should be one of the

simplest ways of making a sensor array for further evaluation. We

have thus described a platform with a short distance between idea

and experiment, which can be used both to model the importance

of the distribution of ORNs and of diffusion in olfaction and for

the development of electronic noses.

Materials and Methods

For the test structure illustrated in this paper the following

tetrapyrrolic macrocycles were used (the acronym used through the

text are given in brackets): (5,10,15,20-tetraphenylporphyrin)zinc

[ZnTPP], (5,10,15,20-tetraphenylporphyrin)palladium [PdTPP],

(5,10,15,20-tetraphenylporphyrin)manganese chloride [MnTPPCl],

(5,10,15,20-tetraphenylporphyrin)rhodium chloride [RhTPPCl],

(5,10,15-triphenylcorrole)iron chloride [FeTPCCl], (2,3,8,12,17,18-

hexamethyl,7,13-dimethylcorrole)manganese [MnEMC] and

(2,3,7,8,12,13,17,18-octamethylcorrole) oxotitanium [OTiHOMC].

The artificial epithelium was prepared placing drops of a

tetrahydrofuran solution of a PVC membrane containing the

tetrapyrrole indicator (membrane composition in weight: tetrapyr-

role/PVC/bis(2-ethylhexyl)sebacate 1:33:66) onto a 25 mm dia-

meter ThermanoxH plastic coverslip (NuncTM). The sensing film

was overlaid with an empty PVC membrane and then covered with

another plastic coverslip. The upper cover slip was endowed with a

hole to expose the polymeric film to odor and to allow odor molecules

to freely diffuse into the film and interact with the indicator molecules.

The appearance of the epithelium is visible in Fig. 2a. As partially

evident in this figure, the chosen porphyrinoids are characterized by

well separated colors (or optical spectra). The experimental set-up is

shown in figure 2b and 2c: the artificial epithelium was enclosed in a

sample cell with transparent walls and endowed with inlet and outlet

for odour delivery. The cell was placed in an optical path connecting

a standard LCD monitor (Philips 170S4) with a computer camera

(Philips SPC650NC/97). This seemingly trivial instrumentation

allows optical fingerprints of color indicators and their interaction

with guest molecules to be determined, where the fingerprints contain

information about both absorption and fluorescence [7,24].

The optical properties of the artificial epithelium were

fingerprinted with a three colors sequence, pure red, pure green

and pure blue, rgb = (255, 000, 000), (000, 255, 000) and (000,

000, 255) respectively. For each color the camera recorded the

intensity received in its three channels (red, green and blue). A

total of 9 values thus define the optical fingerprint of each pixel

(Figure 3a). Fingerprints have been classified with a k-means, an

unsupervised algorithm providing the membership of each pixel to

a glomerulus [21].

The response to odors was measured in experiments where the

artificial epithelium was exposed to vapors of ethanol, triethyl-

amine, and butylamine at a concentration given by the saturated

vapor pressure at room temperature diluted five times in a

nitrogen flow (200 sccm total flow). Each experiment lasted 1000 s

and a measurement point was taken every 10 s. The epithelium

was exposed to gas from measurement 1 to measurement 50 and

then left exposed only to nitrogen. Measurement 1 (in carrier gas

only) was used as the reference, see below.

The response was evaluated illuminating the epithelium with

the three pure colors. For each color the camera response in the

three channels was acquired. It resulted in nine measurements of

which only six were considered meaningful. The camera channel

corresponding to the illuminating color (color- camera filter: red-

red, green-green and blue-blue) provides information about

absorption and the camera channels corresponding to longer

wavelengths than the illumination (green-red, blue-green, and

blue-red) contain information about emission. The six signals were

simply summed to form the individual ORN signal. In order to

Artificial Olfaction
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evaluate only the changes induced by the exposure to odors in

each experiment the signals recorded in the first measurement

were subtracted from all of those following.
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