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Abstract

In this paper we derive entropy bounds for hierarchical networks. More precisely, starting from a recently introduced measure
to determine the topological entropy of non-hierarchical networks, we provide bounds for estimating the entropy of
hierarchical graphs. Apart from bounds to estimate the entropy of a single hierarchical graph, we see that the derived bounds
can also be used for characterizing graph classes. Our contribution is an important extension to previous results about the
entropy of non-hierarchical networks because for practical applications hierarchical networks are playing an important role in
chemistry and biology. In addition to the derivation of the entropy bounds, we provide a numerical analysis for two special
graph classes, rooted trees and generalized trees, and demonstrate hereby not only the computational feasibility of our
method but also learn about its characteristics and interpretability with respect to data analysis.
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Introduction

The investigation of topological aspects of chemical structures

concerns a major part of the research in chemical graph theory and

mathematical chemistry [1,2,3,4]. Following, e.g., [5,6,7,1,2,8,9],

classical and current research topics in chemical graph theory

involve, e.g., modeling of chemical molecules by means of graphs,

graph polynomials, graph-theoretical matrices, enumeration of

chemical structures, and aspects of quantitative structure analysis

like measuring the structural similarity of graphs and structural

information. Further, a lot of the above mentioned contributions

can be integrated under the following thematic categories which are

well know in chemistry: QSAR and QSPR. QSAR (Quantitative

structure-activity relationship) deals with descripting pharmacoki-

netic processes as well as biological activity or chemical reactivity

[10,11]. In contrast, QSPR (Quantitative Structure-Property

Relationship) generally addresses the problem to convert chemical

structures into molecular descriptors which are relevant to a

physico-chemical property or a biological activity [11,12]. Howev-

er, a main problem in QSPR is to investigate relationships between

molecular structure and physicochemical properties, e.g., the

topological complexity of chemical structures [7,13,14,11].

This paper mainly deals with a challenging problem of

quantitative graph analysis: Deriving bounds for the entropies of

hierarchical graphs. An important application area of information-

theoretic methods applied to networks is, e.g., QSPR where our

main focus lies on the examination of graph classes which are

widely used in chemical graph theory and computational biology.

Generally, there are two main directions in quantitative graph

analysis: (i) Comparing and (ii) characterizing networks. Network

comparison addresses the problem of measuring their structural

similarity or distance, see, e.g., [15,16,17,18,19,20,21,22]. In

contrast, to characterize a network means that one has to infer

structural network statistics which capture certain structural

information of the networks [23,24,25,26]. For giving a short

review on information-theoretic methods to characterize graphs

[6,7,14,27,28,29], we want to emphasize that the problem of

quantifying certain structural information of systems was a starting

point of an emerging field that deals with applying information-

theoretic techniques to networks, e.g., for investigating living

systems [30,31,32,33,34,35]. As a fundament, SHANNON [36]

extended the concept of entropy that was known in thermody-

namics for transmitting information. For this, he considered a

message transmitted through information channels as a certain set

of symbols denoted as an outcome which was selected from the

ensemble of all k such sets containing the same total number of

symbols N [27]. By assigning probabilities p1,p2,…,pk to each i-th

outcome based on the quantities pi~
Ni

N
where Ni denotes the

number of symbols of the i-th outcome, SHANNON characterized

the entropy H as the uncertainty of the expected outcome [27].

Then, the classical SHANNON-entropy formula to measure the

average entropy of information per communication symbol can be

expressed by

Hm~{
Xk

i~1

pilog pið Þ~{
Xk

i~1

Ni

N
log

Ni

N

� �
bits =symbol: ð1Þ

Hm is often called the mean information. Additionally, BRIL-

LOUIN [37] defined the total information as

H~Nlog Nð Þ{
Xk

i~1

Nilog Nið Þbits: ð2Þ
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Now, the topics we just mentioned [30,31,32,33,34,35] have been

mainly influenced by the, at that time, novel insight that an

inferred or constructed graph structure can be considered as the

result of a certain information process or communication between

the elements of the underlying system [14,36]. As a consequence

[7,38], Equation (1) and

Im Gð Þ~{
Xk

i~1

pilog pið Þ, ð3Þ

Equation (2) can be now interpreted as the mean information

content and the total information content

I Gð Þ~ Vj jlog Vj jð Þ{
Xk

i~1

Vij jlog Vij jð Þ, ð4Þ

of a graph G. Here, |V| denotes the number of vertices of a graph

G, k denotes the number of different (obtained) sets of vertices, |Vi|

is the number of elements in the i-th set of vertices, and it holds

pi~
Vij j
Vj j.

The first attempt in this direction was given by [34] who

developed a technique to determine the structural information

content of a graph. This technique is based on the principle of

finding distinguishable vertices of a graph to apply SHANNON’s

entropy (Equation (3) and Equation (4)) for determining the

information content of such a graph-based system. Also,

[38,39,40,41] investigated this problem by using algebraic

methods, i.e., determining the automorphism groups of graphs.

We remark that the mentioned methods, e.g., [38,39,40,41,34,35]

for measuring the structural information content of a graph-based

system are based on the following principle: Starting from a

certain equivalence criterion, a graph-based system with n

elements can be partitioned into k classes, see, e.g., [14]. As a

consequence, a probability distribution can be obtained that leads

directly to the definition of an entropy of the system under

consideration (Equation (3) and Equation (4)). Following

[14,38,28], the structural information content of such a system is

interpreted as the entropy of the underlying graph topology. As a

remark, we note that graph entropy definitions which are rooted in

information theory can be found in [42,43,44,45].

A major contribution of this paper addresses the problem of

finding bounds for the entropies of hierarchical graphs, which

often occurs in chemical graph theory and computational and

systems biology. Here, the term ‘‘hierarchical’’ means that we deal

with graphs having a distinct vertex that is called a root. To

achieve this goal, we use an approach for determining the entropy

of undirected and connected graphs that has been recently

presented in [28]. In contrast to the classical methods which we

have already outlined above, this method is based on assigning a

probability value to each vertex in a graph by using a special

information functional. The information functional we have

presented in [28] is based on metrical properties of graphs, more

precisely, on so-called j-spheres. In terms of practical applications,

we want to point that the task of deriving bounds for the entropies

of graphs is crucial because the exact entropy value can often not

be calculated concretely, especially regarding large graphs. For this

reason, entropy bounds for special graph classes help to reduce the

complexity of such problems and can be also used for

characterizing graphs or graph classes by using information-

theoretic measures.

As mentioned, hierarchical (rooted) graph structures do have a

large application potential in chemical graph theory and

computational biology. Therefore, we restrict our analysis on

such graph structures. A further reason for focusing on rooted

graphs is, to our knowledge, such a study does not exist. Another

contribution of this paper deals with demonstrating the practical

ability of the used graph entropy approach [28] by interpreting the

produced numerical results. Starting from two graph classes,

ordinary rooted trees and so-called generalized trees [46,47], we

show that our entropy measure captures important structural

information meaningfully. To summarize the main contribution of

this paper, Figure (1) shows the overall approach exemplarily.

I (T)= p log( ),f i f p pf f
i i

Define a Graph Entropy

T H

I (T) < (>) x I (T)f g I (H) < (>) x I (H)f g

Deriving Entropy Bounds

Information Measures for QSPR/QSAR Problems

Characterizing Graphs and Graph Classes

Information functional f
?

Figure 1. Overall approach to derive entropy bounds for hierarchical graphs.
doi:10.1371/journal.pone.0003079.g001
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Analysis

Applications of Hierarchical Graphs
In this section, we briefly outline some applications of

hierarchical graphs in chemical graph theory and computational

biology.

Mathematical Chemistry. There is a universe of problems

dealing with trees for modeling and analyzing chemical structures

[48,1,2,3,4]. However, also rooted tree structures are of particular

interest because, e.g., considering such graph classes often helps to

solve more general graph problems. In the following, we state

some interesting applications of rooted trees in chemical graphs

theory:

N Enumeration and coding problems of chemical structures by

using rooted trees [49,50,51,52].

N Describing so-called signatures as molecular descriptors for

problems in QSAR [53].

N Graph polynomials of hierarchical graphs [54].

N Chemical graph analysis by using algebraic and metrical graph

properties [55,56,57,58].

Biology. Tree structures have been intensely investigated for

solving and modeling biological problems. In particular, rooted

trees often serve as an important graph representation for many

biological classification problems as well as for problems in

evolutionary biology [59]. To summarize some known approaches

involving hierarchical graph structures, we state the following

listing:

N Reconstruction problems and so-called supertree methods in

phylogenetics [60,61,62,63,59].

N Modeling and analyzing RNA structures [64,65].

N Supervised and unsupervised graph classification problems in

computational biology [66,67].

N Clustering problems in computational biology [68,69].

A Method for Determining the Entropy of Graphs
In this section, we briefly repeat the method to measure the

entropy of arbitrary undirected and connected networks, see [28].

As mentioned, we will interpret and define the structural

information content as the entropy of the underlying graph

topology [28]. The method we want to use is mainly based on the

principle to assign a probability value to each vertex in a graph by

using a certain information functional for quantifying structural

information in a graph and, hence, for determining its entropy.

The information functional that has been used [28] is based on

determining the so-called j-spheres of a graph. Before outlining the

main construction steps of this approach, we want to mention that

[70] also used so-called vertex distance degree sequences (DDS) to

develop the idea of a graph center for chemical structures.

Interestingly, the derived DDS-distributions correspond to vertex

distributions by using j-spheres. Similarly to the just described

idea, one main idea of the approach of [28] to determine the

entropy of a graph was to use a connectivity concept to express

neighborhood relations of its vertices. Finally, it turned out that a

natural procedure for expressing such relations is to calculate the

number of the first neighboring vertices, the number of the second

neighboring vertices, etc. and, hence, this just corresponds to the

definition of the j-sphere. As an example, Figure (2) shows the

process of determining j-spheres visually.

In order to repeat the main construction step of the above

mentioned graph entropy method, we first express some

mathematical preliminaries [71,72,28]. We define an undirected,

finite and connected graph by G = (V,E),|V|,‘, E(
V

2

� �
. G is

called connected if for arbitrary vertices vi and vj there exists an

undirected path from vi to vj. Otherwise, we call G unconnected.

GUC denotes the set of finite, undirected and connected graphs.

The degree of a vertex vMV is denoted by d(v) and equals the

number of edges eME which are incident with v. In order to

measure distances between vertices in a graph, we denote d(u,v) as

distance between uMV and vMV expressed as the minimum length of

a path between u,v. We notice that d(u,v) is a metric. We call the

quantity s(v) = maxuMVd(u,v) the eccentricity of vMV. Further,

r(G) = maxvMVs(v) is called the diameter of G. The j-sphere of a

vertex vi regarding GMGUC is defined as the set,

Sj vi,Gð Þ :~ v[V d vi,vð Þj ~j,j§1f g: ð5Þ

Now, we state the definition of a special information functional

that has been introduced in [28] to define the entropy of a graph.

Here, the information functional fV quantifies structural informa-

tion of a graph G by using the cardinalities of the corresponding j-

spheres.

Definition 2.1 Let GMGUC with arbitrary vertex labels. For the vertex

viMV, the information functional fV is defined as

f V við Þ :~ac1 S1 vi ,Gð Þj jzc2 S2 vi ,Gð Þj jz���zcr Sr vi ,Gð Þj j,

ckw0,1ƒkƒr,aw0:
ð6Þ

fV (vi) captures structural information of G by using metrical properties of G.

The parameters a and ck are introduced to weight structural characteristics or

differences of G in each sphere, e.g., a vertex with a large degree.

As a remark, we generally see that it always

S1 v1,Gð Þj jz S2 v1,Gð Þj jz � � � � � �z Sr v1,Gð Þ
�� ��, ð7Þ

~ S1 v2,Gð Þj jz S2 v2,Gð Þj jz � � � � � �z Sr v2,Gð Þ
�� ��,

~ � � � � � � � � � � � �
ð8Þ

~ S1 v Vj j,G
� ��� ��z S2 v Vj j,G

� ��� ��z � � � � � �z Sr v Vj j,G
� ��� ��, ð9Þ

holds [28]. Hence, the ck have to be chosen such that they are not

vi
S v ,G1 i( )

S v ,G2 i( )

G

Figure 2. G represents an undirected and connected graph. For
example, we get |S1(vi,G)| = 5 and |S2(vi,G)| = 9.
doi:10.1371/journal.pone.0003079.g002
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equal, e.g, c1.c2.….cr. Finally, we observe that the variation of

ck and a aims to study the local information spread in a network.

Definition 2.2 The vertex probabilities are defined by the quantities

pV við Þ :~
f V við ÞPVj j

j~1

f V vj

� � : ð10Þ

Definition 2.3 Let G = (V,E)MGUC. Then, we define the entropy of G

by

IV
f Gð Þ :~{

XVj j

i~1

pV við Þlog pV við Þ
� �

: ð11Þ

As outlined in [28], we recall that the process of defining

information functionals and, hence, the entropy of a graph by

using structural properties or graph-theoretical quantities is not

unique. Consequently, each information functional captures

structural information of a given graph differently. Further, we

pointed out [28] that the parameter a can always be determined

via an optimization procedure based on a given data set and,

hence, is uniquely defined for a given classification problem.

Bounds for the Entropies of Hierarchical Graphs
In this section, we derive bounds for the entropies of

hierarchical graphs. For this, we use the entropy measure

explained in the previous section. As mentioned, in this paper

we choose the class of rooted trees and so-called generalized trees

[47]. We notice that a generalized tree contains an ordinary rooted

tree as a special case [47]. Further, it turned out that generalized

trees can be very useful for solving current problems in applied

discrete mathematics, computer science and systems biology

[47,73,74,66]. To start with the problem of finding entropy

bounds, we first define the mentioned graph classes. Directed

generalized trees have already been defined in [47].

Definition 2.4 An undirected graph is called undirected tree if this graph

is connected and cycle free. An undirected rooted tree T = (V,E) is an undirected

graph which has exactly one vertex rMV for which every edge is directed away

from the root r. Then, all vertices in T are uniquely accessible from r. The level

of a vertex v in a rooted tree T is simply the length of the path from r to v. The

path with the largest path length from the root to a leaf is denoted as h.

Definition 2.5 As a special case of T = (V,E) we also define an

ordinary w-tree denoted as Tw where w is a natural number. For the root vertex

r, it holds d(r) = w and for all internal vertices rMV holds d(v) = w+1. Leaves

are vertices without successors. A w-tree is fully occupied, denoted by Tw
o, if all

leaves possess the same height h.

Definition 2.6 Let T = (V,E1) be an undirected finite rooted tree. |L|

denotes the cardinality of the level set L: = {l0,l1…,lh}. The longest length of a

path in T is denoted as h. It holds h = |L|21. L:VRL is a surjective

mapping and it is called a multi level function if it assigns to each vertex an

element of the level set L. A graph H = (V,EGT) is called a finite, undirected

generalized tree if its edge set can be represented by the union

EGT: = E1<E2<E3, where

N E1 forms the edge set of the underlying undirected rooted tree T.

N E2 denotes the set of horizontal Across-edges. A horizontal Across-edge

does not change a level i.

N E3 denotes the set of edges which change at least one level.

As an example, Figure (3) shows an undirected rooted tree T

and its corresponding undirected generalized tree H.

Entropy Bounds for Rooted Trees. Starting from the

definition of the information functional fV (see Equation (6)), we

first express a technical assertion proven in [75] that states a

relationship between certain vertex probabilities. Starting from the

definition of fV, this assertion expresses that it is always possible to

infer inequalities between the corresponding vertex probabilities.

In order to achieve this, we also use simple estimations of

parameters which we introduce in Lemma (2.1). Finally, we will

see that by applying this lemma, we can easily derive entropy

bounds for the graph classes under consideration. Hence, the

following lemma serves as a fundament for the proofs of some

theorems we want state in this section.

Lemma 2.1 Let T be a rooted tree with a certain height h and let fV be

the information functional represented by Equation (6). Further, we define the

quantities

v vikð Þ :~ max
1ƒjƒr

Sj vik,Tð Þ
�� ��,v :~ max

0ƒiƒh
1ƒkƒsi

v vikð Þ, :~ max
1ƒjƒr

cj ,

and Q :~ min
1ƒjƒr

cj :

ð12Þ

It holds

pV vikð Þvar w:v{Q½ �:pg vikð Þ,r w:v{Q½ �w0 Vaw1, ð13Þ

where

pg vikð Þ :~
g vikð Þ

g v01ð Þz
Ph

i~1

Psi

k~1 g vikð Þ
, ð14Þ

and g vikð Þ~ar:w:v vikð Þ. pV (vik) denotes the vertex probability of vik regarding

fV. Further, vik denotes the k-th vertex on the i-th level, 1#i#h,1#k#si. si

denotes the number of vertices on level i.

In the following, we derive entropy bounds for hierarchical

networks by applying Lemma (2.1). Because Lemma (2.1) provides

inequalities between vertex probabilities for each vertex in a

graph, the main idea for inferring entropy bounds is to add up the

obtained inequalities. As a result, we get relations between graph

entropy measures for hierarchical networks which can be

interpreted as entropy bounds. Also, the conclusion of Lemma

(2.1) implies that by varying the Inequalities (13), special entropy

bounds can be obtained.

Theorem 2.2 Let T be a rooted tree. For the entropy of T, it holds the

inequality

If V Tð Þwar w:v{Q½ � Ig Tð Þ{log ar w:v{Q½ �
� �h i

Vaw1, ð15Þ

Figure 3. An undirected tree T and its corresponding undirect-
ed generalized tree H. It holds |L| = 4 and h = |L|21 = 3.
doi:10.1371/journal.pone.0003079.g003
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where

Ig Tð Þ :~{ g v01ð Þz
Xh

i~1

Xsi

k~1

vikð Þlog g vikð Þð Þ
" #

: ð16Þ

Proof: To start the proof, we consider Inequality (13) in

Lemma (2.1). If we multiply this inequality by -1, we get

{pV vikð Þw{ar w:v{Q½ �:pg vikð Þ: ð17Þ

Now, by using the assertion of Lemma (2.1) and the monotonicity

property of the logarithm function, we obtain

{pV vikð Þlog pV vikð Þ
� �

w{ar w:v{Q½ �:pg vikð Þ:log pg vikð Þð Þ

{ar w:v{Q½ �:pg vikð Þ:log ar w:v{Q½ �
� �

:
ð18Þ

If we perform this step for each vertex vikMV and then add up the

obtained inequalities, we get

{pV v01ð Þlog pV v01ð Þ
� �

{pV v11ð Þlog pV v11ð Þ
� �

{ � � �

{pV vhsh
ð Þlog pV vhsh

ð Þ
� �

war w:v{Q½ � {pg v01ð Þlog pg v01ð Þð Þ½

{pg v11ð Þlog pg v11ð Þð Þ{ � � �{pg vhsh
ð Þlog pg vhsh

ð Þð Þ�

{ar w:v{Q½ �log ar w:v{Q½ �
� �

pg v01ð Þz
Xh

i~1

Xsi

k~1

pg vikð Þ
" #

:

Because by definition it holds

pg v01ð Þz
Xh

i~1

Xsi

k~1

pg vikð Þ~1,

we obviously get

{pV v01ð Þlog pV v01ð Þ
� �

{pV v11ð Þlog pV v11ð Þ
� �

{ � � �

{pV vhsh
ð Þlog pV vhsh

ð Þ
� �

war w:v{Q½ � {pg v01ð Þlog pg v01ð Þð Þ½

{pg v11ð Þlog pg v11ð Þð Þ{ � � �{pg vhsh
ð Þlog pg vhsh

ð Þð Þ�

{ar w:v{Q½ �log ar w:v{Q½ �
� �

:

ð19Þ

Now, by using the definition of the graph entropy (see Definition

(2.3)), Inequality (19) finally becomes to

If V Tð Þwar w:v{Q½ � Ig Tð Þ{log ar w:v{Q½ �
� �h i

:

This completes the proof of the theorem.

By considering special classes of rooted trees, we obviously get

special bounds for the corresponding entropies.

Theorem 2.3 Let Tw
o be a fully occupied w-tree. For the graph entropy

of Tw
o holds

If V Toð Þwa2h w:wh{Q½ � Ig To
w

� �
{log a2h w:wh{Q½ �

� �h i
,Vaw1: ð20Þ

Proof: Let Tw
o be a fully occupied w-tree. Therefore, it holds

r = 2h. Starting from the root vertex v01, all other vertices are

reachable. Hence, we obtain |Sh(v01,Tw
o)| = wh. Then, we clearly

get |Sj(vik,Tw
o)|,wh, 1#j#2h. Hence, we can set v = wh. Now, the

proof of the Theorem (2.3) can be obtained by analogously

applying the same technique and steps of the proof of Theorem

(2.2).

Theorem 2.4 Let Tw be an ordinary w-tree. For the graph entropy of

Tw holds

If V Tð Þwar w:wh{Q½ � Ig Tð Þ{log ar w:wh{Q½ �
� �h i

,Vaw1: ð21Þ

Proof: Let Tw be an ordinary w-tree. Actually, it holds v#wh.

From this, and by applying Lemma (2.1), we yield

pV vikð Þvar w:wh{Q½ �:pg vikð Þ: ð22Þ

Finally, we obtain the assertion of the theorem by applying the

same technique and steps performed in the proof of Theorem

(2.2).

We emphasize that each information functional captures

structural information of a graph differently. Obviously, the

resulting graph entropies are also different. If we now apply

Theorem (2.2) and additionally assume an abstract information

functional f*, we find as a consequence of the previous theorems

that one can infer a statement that expresses a relationship

between the resulting graph entropies. These kind of inequalities

can be used to study the influence of an information functional on

the final graph entropies.

Corollary 2.5 Let T be a rooted tree and let f*(vik) be an information

functional such that

pV vikð Þvar w1:v1
{Q½ �:p1 vikð Þ,r w

1:v
1
{Q

h i
w0,aw1: ð23Þ

pV (vik) and p*(vik) denotes the vertex probability value (k-th vertex on the i-th

level) regarding fV and f*. Then, it holds

If V Tð Þwar w1:v1
{Q½ � If

1 Tð Þ{log ar w1:v1
{Q½ �

� �h i
: ð24Þ

Entropy Bounds for Generalized Trees. In this section, we

give a first attempt to state entropy bounds for certain classes of

generalized trees. By only allowing generalized trees with specific

edge sets, we get bounds for the entropies of special classes of

generalized trees. The assertion of the next theorem means the

following: The entropy of a specific generalized tree can be

characterized by the entropy of another generalized tree that is

extremal with respect to a certain structural property.

Theorem 2.6 Let H = (V,EGT) be a generalized tree with

EGT: = E1<E2, i.e., H possesses Across-edges only. Starting from H, we

define H* as the generalized tree with the maximal number of Across-Edges on

each level i,1#i#h.

N First, there exist positive real coefficients ck which satisfy the inequality

system

c1 S1 vik,H
1

� ���� ���zc2 S2 vik,H
1

� ���� ���z � � �zcr Sr vik,H
1

� ���� ���
wc1 S1 vik,Hð Þj jzc2 S2 vik,Hð Þj jz � � �zcr Sr vik,Hð Þ

�� ��,
0ƒiƒh,1ƒkƒsi,cjw0,1ƒjƒr:

ð25Þ

Entropy Bounds
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N Second, it holds

If V Hð Þwar w1:v1
{Q½ � If V H

1
� �

{log ar w1:v1
{Q½ �

� �h i
Vaw1: ð26Þ

Proof: We assume H = (V,EGT) such that EGT = E1<E2. Besides

edges eME1, H possesses Across-edges eME2 only. Then, we first

determine

S1 vik,Hð Þj j, S2 vik,Hð Þj j, . . . , Sr vik,Hð Þ
�� ��:

Now, we consider H* and find that the total number of Across-

edges for each level equals
si si{1ð Þ

2
,i§1. Except for the root vertex

v01, we further see that in particular |S1(vik,H
*)|$|S1(vik,H)| holds.

This corresponds to the fact that H* has normally more

connections than H. Finally, the cardinalities of the remaining j-

spheres of H* increase correspondingly. Therefore, we conclude

that we can find coefficients ck.0 such that the Inequality System

(25) holds. But from this, we directly obtain

f V
H vikð Þ :~ac1 S1 vik ,Hð Þj jzc2 S2 vik ,Hð Þj jz���zcr Sr vik ,Hð Þj j

vac1 S1 vik ,H
1ð Þj jzc2 S2 vik ,H

1ð Þj jz���zcr Sr vik ,H
1ð Þj j,

~: f V
H

1 vikð Þ,

ð27Þ

if a.1, 1#i#h, 1#k#si. fH
V (vik) and f V

H� vikð Þ denotes the

information functional fV regarding H and H*, respectively. We

want to emphasize that it holds f V
H v01ð Þ~fH�V v01ð Þ. Similarly as

in Lemma (2.1), by using the quantities we yield

v � vikð Þ :~ max
1ƒjƒr

Sj vik,H�ð Þ,v� :~ max
0ƒiƒh

1ƒkƒsi

v � vikð Þ,

w� :~ max
1ƒjƒr

cj , and Q :~ min
1ƒjƒr

cj ,

pV
H vikð ÞvpV

H1 vikð Þ:ar w1:v1{Q½ �: ð28Þ

Finally, Equation (26) can be obtained by applying the assertion of

Theorem (2.2).

We want to remark that by using the main argument of

Theorem (2.6), one can easily express similar assertions for other

specific generalized tree classes. To finalize this section, we state a

simple lemma concerning the maximum entropy of a graph.

Then, we apply this assertion to generalized trees.

Lemma 2.7 Let K|V|,|V| be the complete graph with |V| vertices.

K|V|,|V| maximizes the graph entropy with respect to the information

functional fV, i.e.,

If V K Vj j, Vj j
� �

~{
XVj j

i~1

1

Vj j log
1

Vj j

� �
~{log

1

Vj j

� �
: ð29Þ

Theorem 2.8 Let H = (VH,E) be an arbitrary generalized tree and let

H|V|,|V| be the complete generalized tree such that |VH|#|V|. It holds

If V Hð ÞƒIf V H Vj j, Vj j
� �

: ð30Þ

Proof: The proof follows directly by using the monotonicity

property of the logarithm function and the assertion of Lemma

(2.7).

Corollary 2.9 Let H* = (V*,E*) and it holds |V*|#|V|.

If V H
1

� �
ƒIf V H Vj j, Vj j

� �
: ð31Þ

Results and Discussion

Numerical Results for Hierarchical Graphs
This section aims to demonstrate that our entropic measure is

able to distinguish certain graph classes of hierarchical graphs

structurally by comparing the resulting cumulative entropy

distributions. As a result of our numerical analysis, we will find

that the calculated entropy distributions can be clearly distin-

guished and, hence, also the graph classes under consideration.

Thus, this proves that the entropy measure captures significant

structural information. To start, we give a short overview on the

key steps we performed to carry out our numerical analysis:

N Generate the data classes Ca
RT and Ca

GT. For this, we

randomly create rooted trees with a fixed height h. Further, we

use these trees to generate generalized trees (see also below).

N Choose the parameters ck.

N Vary a to compute If
V for different classes Ca

RT and Ca
GT.

N Compute the mean of the entropies for each such class

denoted by m and the variances s2.

N Compute and interpret the cumulative entropy distributions

for Ca
RT and Ca

GT.

We remark that the intuitive meaning of the entropy If
V (G) has

been already explained in [28]. Now, we start our numerical

section with defining some data classes. These data classes emerge

from starting with fixed sets of hierarchical graphs and by varying

certain parameters.

Definition 3.1 The class Ca
RT denotes a certain set of rooted trees

whose entropies have been computed by using the value a and the coefficient

vector (c1,c2,…,crm). We set

rm :~max r T1ð Þ,r T2ð Þ, . . . ,r T CRT
aj j

� �� �
:

Correspondingly, Ca
GT denotes a certain set of generalized trees whose entropies

have been computed by also using the value a and (c1,c2,…,crm).

In order to compute the graph entropies concretely, we choose

the ck values such that

c1wc2wc3wc4wc5wc6,

holds, and set c1: = 6,c2: = 5,c3: = 4,c4: = 3,c5: = 2,c6: = 1. A class

Ca
RT was generated by providing a fixed value h as the height of

each tree T[CRT
a . Further, each T[CRT

a has an unique root vertex

and the remaining vertices and edges were created randomly. To

generate a class Ca
GT, we first compute an arbitrary random tree

with height h as mentioned and, then, a certain number of

additional edges of a generalized tree randomly. The numerical

results of our study are summarized in Table (1). As we have

already mentioned, we computed the entropies of certain classes of

rooted and generalized trees with a fixed height h by varying the a-

value. We notice that by providing a fixed height h, the number of

vertices of T or H can be nevertheless extremely different. Now,

from Table (1) we see that the resulting entropies of generalized
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trees are in average larger than the entropies of rooted trees,

depending on a. This corresponds to our intuition that a

generalized tree can be generally considered as structurally more

complex than an ordinary rooted tree. To argue in this way, we

apply a definition due to [11] that states, the higher the

information content (entropy) of a system is, the more complex

is the system. Further, one finds that the variances of the generated

tree and generalized tree classes can be clearly distinguished. This

can be also explained by the fact that a set of generalized trees is in

average more structurally complex and diverse than a set of rooted

trees with the same height h. Also, we observe that the larger the a-

value of Ca
RT and Ca

GT is, the smaller is the resulting mean and

variance. Additionally, we also find that the entropy of a graph

decreases with an increasing a-value. In the following, we interpret

the cumulative entropy distributions (for h = 8) which are shown in

Figure (4) and Figure (5). Such a distribution expresses the

percentage rate of graphs (of the cardinality of Ca
RT or Ca

GT)

which possess an entropy value less or equal If
V (T) or If

V (H). As an

important observation, we find that for aM{2,3,4,5,10} the

cumulative entropy distributions of Ca
RT (see Figure (4)) are

clearly different from the corresponding cumulative distributions

of Ca
GT (see Figure (5)). Hence, we interpret this result such that

the entropy measure (by incorporating the information functional

fV) is able to detect that we deal with different graph classes. The

Table 1. m represent the means of the entropies for each class Ca
RT and Ca

GT and s2 denotes the corresponding variance.

h = 7

C1
RT C1

GT C2
RT C2

GT C3
RT C3

GT C4
RT C4

GT C5
RT C5

GT

m 6.029 6.218 1.766 2.846 1.123 1.987 0.895 1.629 0.775 1.423

s2 0.595 0.614 0.828 1.221 0.611 1.110 0.506 0.955 0.444 0.841

C6
RT C6

GT C7
RT C7

GT C8
RT C8

GT C9
RT C9

GT C10
RT C10

GT

m 0.701 1.287 0.649 1.188 0.610 1.113 0.580 1.054 0.556 1.005

s2 0.402 0.758 0.373 0.696 0.351 0.648 0.333 0.611 0.320 0.580

h = 8

C1
RT C1

GT C2
RT C2

GT C3
RT C3

GT C4
RT C4

GT C5
RT C5

GT

m 6.713 6.767 2.087 3.434 1.287 2.389 1.009 1.959 0.867 1.720

s2 0.546 0.672 1.027 1.571 0.711 1.792 0.581 1.686 0.511 1.559

C6
RT C6

GT C7
RT C7

GT C8
RT C8

GT C9
RT C9

GT C10
RT C10

GT

m 0.780 1.566 0.721 1.456 0.677 1.372 0.643 1.306 0.616 1.253

s2 0.467 1.449 0.436 1.355 0.412 1.277 0.394 1.211 0.379 1.153

It holds |Ca
RT| = |Ca

GT| = 100. a varies in natural numbers from 1 to 10, the step size is equal to 1.
doi:10.1371/journal.pone.0003079.t001
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Figure 4. Cumulative entropy distributions of the classes Ca
RT for h = 8. The x-axis corresponds to the entropy If

V (T) and the y-axis represents
the cumulative entropy distribution for C1

RT -C5
RT and C10

RT.
doi:10.1371/journal.pone.0003079.g004

Entropy Bounds

PLoS ONE | www.plosone.org 7 August 2008 | Volume 3 | Issue 8 | e3079



reason why the distribution for C1
RT and C1

GT seems to be almost

equal is related to the fact that our entropy measure has always a

maximum at a = 1. For this case, the entropies of trees- and

generalized trees are almost equal. We remark that we have

already been proven that the entropy functional (by using fV)

possesses for every graph a maximum at a = 1, see [28]. As the

main result of this section, we find that our entropy measure

captures important structural information meaningfully and,

hence, detects that rooted and generalized trees manifest

structurally different graph classes.

Summary and Conclusion
In this paper, we investigated the problem of finding entropy

bounds for hierarchical graphs. Based on an entropic measure to

determine the entropy of graphs, we derived certain estimations

for the corresponding entropies. We now summarize the main

contributions and arguments of our paper as follows:

We defined two classes of hierarchical graphs, rooted trees and

generalized trees. A generalized tree is structurally more complex

than an ordinary rooted tree because it contains a rooted tree as a

special case. As a main result, we proved entropy bounds for

rooted trees as well as for generalized trees. Also, assuming specific

structural properties of the graph classes under consideration led

us to characteristic bounds. It is important to note that we

presented only one method for finding those entropy bounds,

different bounds can be derived by using different entropy

measures and techniques. To classify these bounds, we call the

derived bounds implicit bounds because the entropy of a graph was

estimated by a quantity that contains another graph entropy

expression. Generally, bounds to estimate the entropy of graphs

are very useful for practical applications because the real entropy

value is often difficult to obtain. Particularly, an interesting result

represents Corollary (2.5). From this assertion, we found that an

information functional (e.g., fV or f*) has an influence on the

resulting graph entropy because each such functional quantifies

structural information differently. Hence, Corollary (2.5) can be

used for describing relations of the resulting entropies by using

different information functional.

Further, we performed a numerical study to demonstrate the

practical ability of our graph entropy measure. Based on two

generated graph classes of rooted and generalized trees, we

computed the entropies of each such class by varying the free

parameter a. Then, we calculated the cumulative entropy

distributions for these classes. From the obtained results we could

conclude that our entropy measure can distinguish between rooted

trees and generalized trees. This implied that the used entropy

measure captures significant structural information because we

know that rooted trees and generalized trees are different graph

classes.
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