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Abstract

Background: Historically, only partial assessments of data quality have been performed in clinical trials, for which the most
common method of measuring database error rates has been to compare the case report form (CRF) to database entries
and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated
as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs
typically leveraged for quality measurement are not used in EDC processes.

Methods and Principal Findings: The National Institute on Drug Abuse Treatment Clinical Trials Network has developed,
implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average
source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error
rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-
to-database error rates reported in the published literature. We attribute this largely to an absence of medical record
abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions.

Conclusions: Historically, medical record abstraction is the most significant source of error by an order of magnitude, and
should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent
on the amount of structured data collection in the clinical setting and on the complexity of the medical record,
dependencies that should be considered when developing data quality benchmarks.
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Introduction

Research sponsors and clinical research organizations (CROs)

are transitioning from paper-based data collection to electronic

data capture (EDC) systems. If novel technologies are to be

successfully integrated into clinical trials, their effects on data

quality must be fully understood. Relatively few new data

collection systems or methodologies, with the exception of

electronic patient reported outcomes (ePRO) [1–12], are well-

characterized with respect to data quality.

Data quality for paper-based clinical trials is traditionally assessed

through audits that compare database listings against data recorded

on paper case report forms (CRFs), thereby providing an estimate of

the database error rate [13,14]. Audits may also indicate location

and distribution of errors, which are usually categorized in a manner

meaningful to the study (e.g., critical versus noncritical) or the

organization (e.g., systematic versus random errors, or according to

root causes) [13]. In addition to providing objective information

about processes, audits can prevent future errors by identifying

problematic work patterns or behaviors.

Clinical trial data audits
There are numerous examples, both published [15–33] and

unpublished, of database audits that compare database listings to

CRFs. The average error rate in the published literature for CRF-to-

database audits is 14 errors per 10,000 fields. Such audits do not

assess the percentage of correct data; rather, they identify additional

errors introduced during data processing [14]. Other errors,

including measurement error, recording error, or transcription

mistakes that occur when transferring data from source documents

to CRFs [34] lie outside the scope of traditional CRF-to-database

audits. Thus, the commonly reported ‘‘database error rate’’ is merely

an estimate of errors introduced during data entry and cleaning; at

best equal to, but likely less than, the total ‘‘true’’ error rate.

Determining actual data quality requires an assessment of all possible

sources of error, including data measurement, recording, abstrac-

tion, transcription, entry, coding, or cleaning [13,35].

In compliance with Good Clinical Practices (GCP), trial

sponsors typically perform source document verification (SDV)

of recorded data [36]. SDV compares original data, such as the

medical record, with the study CRF. Although the SDV process is

not usually quantified during trial operations, our literature review

identified 42 articles that provided source-to-database error rates,

primarily from registries [37–78]; the average error rate across

these publications was 976 errors per 10,000 fields. In contrast, the

average error rate for published CRF-to-database comparison

audits was 14 errors per 10,000 fields [15–33].
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With EDC, there is no paper CRF to compare to the source,

leading to differences in data collection processes and resulting

data quality [79]. Although EDC proponents frequently claim that

clinical trial data quality improves with use of such systems, studies

supporting this contention have yet to appear in the peer-reviewed

literature, and it is not clear whether traditional methods of

ascertaining data quality suffice for EDC trials.

Exploring the effects of EDC on data quality
The comparison of published source-to-database and CRF-

to-database error rates suggests that most errors occur when data

are transferred from source to CRF during medical record

abstraction or transcription. Web-based EDC can only affect the

latter, through structured data collection, valid value lists, and on-

screen checks for values that are missing, out of range, or

inconsistent. Possible detrimental effects of EDC have not been

investigated.

We sought to explore the effects, if any, of EDC on data quality.

We hypothesized that for EDC to substantially improve quality, it

would have to facilitate improvements to the process of medical

record abstraction. Unfortunately, abstraction error rates are not

usually quantified in clinical trials. Manual SDV can detect

abstraction errors, but is labor intensive and highly sensitive to the

vagaries of locating the pertinent text or value in medical records,

leading to variability and measurement error. Additionally, ePRO

systems, in which data are directly entered by the research subject,

may be difficult or even impossible to assess for data quality

because the information may not be validly and reliably retrieved;

however, such issues lie outside the scope of our study.

Purpose
The National Institute on Drug Abuse (NIDA) Clinical Trials

Network (CTN) has instituted a process for quantifying data

quality on EDC trials. In 2005, the NIDA CTN implemented the

InForm (Phase Forward, Inc.) Web-based EDC system at the data

and statistical center (DSC) housed at the Duke Clinical Research

Institute. The system facilitates extensive error checking for

missing, out-of-range, and logically inconsistent values across the

CRF in real time so that many potential errors are caught prior to

final data submission.

NIDA CTN trials use structured paper data collection forms as

the source (patient questionnaire data for CTN trials are captured

via ePRO and are not included in our analysis). The data auditing

method for EDC trials provides an objective assessment of quality

at each site, including sample size calculations for audits,

assessment of data quality by site and by trial, corrective action

processes, and reports to communicate and monitor audit results.

We present findings from our initial evaluation of the NIDA CTN

data quality assessment program.

Methods

An audit plan was applied to trials conducted at the network’s

DSC that opened to enrollment after April 2005 and used Web-

based EDC, excluding trials that were migrated to the center. Two

audits, in which source data were compared to database listings for

a prespecified sample of study patients, were conducted at each

research site. The first source-to-database audit at each site

occurred at a point when 20%–30% of the expected subjects were

enrolled. The second audit was performed at 70%–80% of

expected enrollment. Our audit plan incorporated both the

statistically calculated sample sizes used in industry CRF-to-

database audits, and the National Cancer Institute’s method of

auditing cases source-to-database at each site.

Researchers have choices of powering the audit based by 1) the

width of the confidence interval (CI), 2) standard error, or 3) a formal

hypothesis test. We considered CI and hypothesis testing methods of

sample size calculation. The first CI-based method is for comparison

of an error rate to a standard. Here, a known or assumed limit, or a

specified acceptance criterion (Formula 1) is compared to an

observed value. The intent is to ensure that the observed value is less

than some criterion; hence, a one-tailed interval. The second CI-

based method (Formula 2) is the CI for the difference between two

sites or times; i.e., based on the standard error of the difference. The

hypothesis-based method (Formula 3) is a comparison of two error

rates drawn from different samples to assess differences between sites

or times (e.g., error rates between two sites or between two different

time points within a site).

In the CI-based method, a one-sided CI might be used to assess

the probability that the rate is lower than some prescribed level.

Formula 2 would be employed to assess if a rate differed between

sites or times. Assuming a 95% CI, where npi.5, the CI can be

calculated from the following equations [80]:
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where Za is 1.645 (the one-sided alpha level associated with 95%

of the normal Z), and pi is the observed error rate in site, i, of

sample size ni. Further, in Formula 2, pj is the error at site or time j

of size nj to be compared to some other error rate pj with sample

size nj, and Za/2 is 1.96 (the two-sided alpha level associated with

95% of the normal Z). As written, the formulas show a CI for a

given pi (and pj) and sample size. The required sample size can

then be algebraically derived. Sample size curves for a variety of

desired CI widths and expected error rates are shown in Figure 1.

The sample size based on a one-sided CI for an acceptance

criterion of 50 errors per 10,000 fields, underlying expected error

rate of 30 errors per 10,000 fields, and a desired CI width of 20

errors per 10,000 fields, is 2100 fields. Curves for difference-based

CIs (Formula 2) can be similarly derived.

A formal hypothesis test could be conducted; e.g., to test if there

are differences between sites or times. The test of a difference in

error rates between two sites or times requires a slightly different

formula: pi and pj are averaged under the null hypothesis to give

Formula 3:
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and q̄ = 12p̄.

The required sample size can then be algebraically derived at a

given error rate and assumed difference (pi and pi2pj). This test,

however, does not adjust for power, nor for multiple comparisons.

As shown in Figure 2, for a set of baseline error rates and assumed

differences, the sample size required to distinguish groups quickly

becomes large at 80% power. For example, if the error rate is 30/
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10,000 in one site, and the error rate in the second site is triple

(difference = 60), then at 80% power (and not adjusting the overall

type I error rate for multiple comparisons), we would require 2900

fields per group. Where nipi,5, the normal approximation breaks

down. Since many audits have found nipi,5, and since as nipi

increases, exact methods approach those using the normal

approximation, we employed the Clopper-Pearson exact method

[81] to calculate the CIs presented in the Results section.

Figure 1. Sample size curves: 95% confidence intervals (Formula 1), one-tailed. Intersection of vertical and horizontal lines shows sample
size needed to achieve a one-sided CI given an acceptance criterion of 50 errors per 10,000 data fields, an underlying expected error rate of 30 errors
per 10,000 fields, and a desired CI width of 20 errors per 10,000 fields (Fleiss J, Levin BL, Paik M. Statistical Methods for Rates and Proportions. 3rd ed.
New York, NY: Wiley; 2003).
doi:10.1371/journal.pone.0003049.g001

Figure 2. Sample size curves: Hypothesis testing method (Formula 3) at 80% power and a of 0.05 (two-tailed), showing sample sizes
needed to distinguish among groups for given baseline error rates and assumed differences (Fleiss J, Levin BL, Paik M. Statistical
Methods for Rates and Proportions. 3rd ed. New York, NY: Wiley; 2003).
doi:10.1371/journal.pone.0003049.g002
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We sought to detect differences between sites. Given CTN site

norms (i.e., outpatient setting, patients whose conditions are

chronic rather than acute, and significant use of structured

worksheets for source data collection), we assumed a rate of 50

errors per 10,000 fields, and wished to obtain a 20 error per

10,000 field CI, yielding a sample size of 3400 fields per site.

A sample of at least 3500 data fields, providing 100 fields

overage, was obtained by selecting random forms (a CRF page or

subset of pages from a patient visit) from the list of patient forms.

An additional 3500 fields were audited when approximately 70%–

80% of expected enrollment was achieved, providing a statistically

representative sample at each site across two time points. Any

discrepancy between source and database not explained by study

documentation was counted as an error. The error rate

denominator was the number of fields actually audited, excluding

those defined as system-calculated or propagated fields.

Results

For our initial assessment, we completed source-to-database

audits of 24 sites participating in 4 EDC trials conducted through

the CTN (Figure 3). Preliminary findings show an average error

rate across all 4 trials of 14.3 errors per 10,000 fields, with a 95%

CI (averaged across audit CIs) of 12–39 per 10,000 fields, a low

rate compared with those reported for source-to-database audits,

and comparable to the average of reported CRF-to-database error

rates. Fourteen percent of errors were in fields critical to the

analysis (major independent or dependent variables or covariates).

Because these results, which were considerably lower than

published error rates for source-to-database audits, seemed

counterintuitive, we compared them to audit results from four

earlier paper-based trials managed at the DSC (Figure 4). Three

trials—5, 6, and 7—used paper CRFs sent to the DSC for double

data entry and cleaning. Trials 5, 6, and 7 had error rates of 3.4, 0,

and 3.7 errors per 10,000 fields, respectively, as determined by

CRF-to-database audits. Trial 5 used only CRF-to-database

auditing at the DSC. Trials 6 and 7 were migrated to the DSC

and audited both source-to-database (as part of ongoing quality

control) and CRF-to-database to measure processing fidelity for

migrated data. The source-to-database error rates for Trials 6 and

7 were 8.3 (5, 13) and 15.4 (13, 19) errors per 10,000 fields,

respectively (Figure 4).

Trial 8 was also migrated to the DSC but employed a form of

Web-based EDC in which sites completed paper CRFs and

transcribed data into the EDC system. Legacy data were single-

entered at the DSC from printed data listings and subjected to

‘‘CRF’’ (data listing)-to-database audits to assess fidelity of data

processing. The error rate for this migrated data was 20.3 (7, 50)

errors per 10,000 fields. The source-to-database error rate for

Trial 8 was 40.5 (36, 46) errors per 10,000 fields (Figure 4). We

attribute the difference between Trials 5, 6, and 7 as compared to

Trial 8 to the data processing method used for the latter trial.

Comparison of Figures 3 and 4 shows that the source-to-database

and CRF-to-database audit results are comparable.

During this period, the DSC also performed a source-to-

database audit for a trial in a different therapeutic area (epilepsy).

This study, characterized by medically complex patients, an

inpatient phase, and a more complex medical record, proved a

useful comparator to CTN protocol trials. Data were abstracted

Figure 3. Source-to-Database Audit Error Rates for CTN EDC Trials 1–4. The first source-to-database audit (‘‘early’’) was performed when
20%–30% of expected subject enrollment was reached; the second database audit (‘‘late’’) was performed when 70%–80% of expected enrollment
was reached.
doi:10.1371/journal.pone.0003049.g003

Data Quality for EDC Trials

PLoS ONE | www.plosone.org 4 August 2008 | Volume 3 | Issue 8 | e3049



directly from medical records and entered. A total of 3250 data

fields from five subjects were audited. We identified 139 errors,

yielding an estimated error rate of 428 errors per 10,000 fields,

comparable to the published literature for source-to-database audits.

Discussion

The CTN source-to-database error rates were unexpectedly

low, especially when compared to the average of 976 errors per

10,000 fields derived from published reports for source-to-

database audits, and the rate of 428 errors per 10,000 fields from

a recent source-to-database audit conducted at our center. The

CTN source-to-database results more closely resembled CRF-to-

database error rates reported in the literature and touted by

industry.

One reason for these unexpected results may be the processes used

to document treatment at NIDA CTN sites. CTN sites are

community treatment programs for substance abuse and addiction

treatment. In this setting, patient charts, largely consisting of clinic

notes, tend to be brief, and confidentiality policies restrict access to

research records. The CTN sites therefore separate subjects’

research and clinic records, with study visit documentation residing

in the research record. Because more data typically are collected

during clinical research than in standard practice, and because some

programs do not clinically document treatment, worksheets provided

to sites for capturing trial data often comprise the source documents.

Data from these worksheets are single-entered by site staff into an

EDC system with extensive on-screen checking.

In this context, our results are consistent with previous reports,

with CRF-to-database error rates being lowest, followed by EDC

data entered from worksheets, and finally the source-to-database

error rate from therapeutic areas characterized by more acute

patient conditions being highest. However, we emphasize that our

findings are derived from a specialized and somewhat atypical

clinical research environment; given the wide variability in the

design and conduct of clinical trials, our results may not be

generalizable to other research venues and should be viewed as

hypothesis-generating only.

We examined variations in local monitoring by regional and

community treatment centers, some of which undertake additional

quality assurance. Two trials employed a central quality assurance

(QA) monitor who performed SDV at all participating sites; one trial

required sites to have local QA auditors to perform SDV; another

neither performed central monitoring nor required sites to do so. We

expected pseudo-independent central monitoring to produce higher-

quality data than decentralized monitoring, and a decentralized

monitoring regime to produce higher-quality data than no

monitoring. However, we observed no correlation between database

error rates and differences in additional local auditing or monitoring.

In the clinical trials arena, source document verification (manual

comparison of the medical record to the CRF or database) although

unproven, is generally thought to decrease data errors. Effective

SDV would be a confounding factor impacting data error rates, and

should be taken into account when interpreting results.

Anticipation of an audit may be an important quality assurance

mechanism, providing sites an additional incentive to maintain data

quality. Based on observed error rates, one audit visit per site may be

sufficient, as statistical power remains suffices for determining the

data quality of the trial as a whole as well as at each site.

Given these findings, the NIDA CTN changed its auditing plan

and decreased the frequency of audits, resulting in reduced travel

expenses incurred by auditors. Under the revised plan, an initial

source-to-database audit would be performed for each site upon

reaching 20%–30% of expected enrollment. Sites with an error

rate over 50 errors per 10,000 fields would require a second audit.

Most sites with error rates below this benchmark that also

addressed data queries and protocol violations in a timely manner

would not receive additional audits, although one site would be

chosen at random for a second audit. The revised plan results in

fewer logistical and financial burdens for sites, should continue to

provide comprehensive data quality monitoring, and could

potentially prove more cost-effective, although without accurate

comparators, this assertion remains speculative. An alternative

approach, in which sites would be given 24 hours to copy specified

charts and send them to the data center, was considered but

deemed more burdensome by the sites.

It is also worth noting that as electronic health records (EHRs)

become increasingly ubiquitous, clinical researchers may adopt

data collection strategies that directly access patient medical

records, which would streamline the process of data collection and

may significantly reduce errors associated with medical record

abstraction. Such strategies, however, will face a number of

hurdles, including electronic access to patient data by research

staff, information retrieval, privacy concerns, and issues relating to

data standardization.

Acceptance criteria
NIDA CTN sites initially requested that an acceptance criterion

be set in order to provide an objective performance standard;

however, the authors felt that the introduction of such a criterion

at the onset of the audit program was premature and not justified

by an appropriate basis in evidence. Instead, we compared sites

within a trial and performed an assessment, described here, early

in the program to investigate the applicability of a CTN-wide

acceptance criterion.

All random errors detected during source-to-database audits

were reviewed with the site and subsequently corrected. If an error

was deemed systematic (i.e., occurring across subjects or forms and

due to a common cause), the characteristics and root cause were

used to identify similar occurrences and apply corrections

throughout the database. Error rates within a trial were also

compared across sites to identify sites whose data quality differed

Figure 4. Source-to-database and CRF-to-database audits for
Comparator Trials 5–8. These audits were undertaken to provide a
‘‘control’’ for comparison with Trials 1–4 (results displayed in Figure 3).
doi:10.1371/journal.pone.0003049.g004
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substantially from others’. If the error rate of source-to-database

audits for a given site was outside the bounds of the 95% CI

calculated over all audits on the trial, that site’s data quality was

deemed to differ sufficiently to warrant further investigation and

intervention. In such cases, site data were further examined to

elucidate the source of the errors, and corrective action was taken to

bring data quality within range of other sites. We also compared

error rates by trial to explore differences in data quality across trials.

Setting an acceptance criterion is unnecessary from a statistical

point of view, given that 95% CIs could be used. Two possibilities

then arise: 1) if any site’s error rate is above the upper bound of the

overall CI (aggregated across all sites, calculated from the total

number of audited fields across all sites and the total number of

errors across all sites for a trial), the error rate may be considered

excessive, or 2) if any site’s CI exceeds the upper bound of the overall

CI, the site’s error rate would be considered excessive. However,

such rules may fail to produce operationally meaningful results; e.g.,

differences between sites might be so small as to have no effect on

conclusions drawn from the trial, if all sites had relatively low error

rates and consistently narrow CIs. Such methods might also promote

a competitive or even punitive environment.

A useful acceptance criterion, then, would distinguish opera-

tionally meaningful differences. Now that we understand the

process capability of the CTN, naming an acceptance criterion

would also: 1) provide sites with objective performance bench-

marks, allowing sites to alter internal quality systems accordingly;

2) allow statisticians to assess its appropriateness for that particular

trial; and 3) provide a common language for trial-specific needs to

be communicated to sites.

The consistency of data from three of the 4 trials implies that a

‘‘network-wide’’ acceptance criterion could be set. CTN sites were

able to meet our relatively arbitrary limit of 50 errors or fewer per

10,000 fields; there was no indication that this limit was excessive.

Even though we measured source-to-database processes, it is

reassuring that this limit is within industry expectations for CRF-

to-database processes. A recent data quality survey conducted by

the Society for Clinical Data Management reported the most

popular overall database error rate acceptance criteria to be 50

errors per 10,000 fields and 10 errors per 10,000 fields. The most

popular acceptance criteria for critical variables were 10 errors per

10,000 fields and zero errors per 10,000 fields [34]. The question

of ‘‘how many errors is too many?’’ is difficult to answer because it

depends on many factors, including what variables are in error,

the robustness of the analysis, and the concern that a single data

error may cast doubt on the validity of the rest of the data [82].

Thus, arbitrary (and low) acceptance criteria tend to be employed.

We opted not to re-audit sites whose upper CIs exceeded our

established limit, thereby accepting the level of risk implicit within

the CI. However, in a situation in which many CTN sites were

participating in multiple trials, if a particular site consistently

appeared close to the limit of the acceptance criterion, those

findings could be addressed as a trend. During the initial program,

one trial had a significantly higher error rate than the others. A

single site was identified as the cause of the high error rate; that site

also had a significantly higher rate of protocol violations, and

suffered most frequently from computer-related problems.

Operationally, the initial 3500-field sample size allowed for a

half day on site, but the requirement to complete the audit at

20%–30% of enrollment at each site did not permit trips to be

combined. The benchmark of 20% enrollment was selected to

ensure that sufficient data were available for source-to-database

audits, but that the amount would be too large for sites to ‘‘scrub’’

the first few cases. Conducting audits sufficiently early for sites to

benefit from using results to prevent future problems and to allow

sufficient time for remediation were also significant considerations,

as such instant feedback appeared to promote more effective site

management.

Limitations
Our results are limited to a single therapeutic area and are

drawn from a setting that may not be generalizable to other

arenas. Our results, however, may not be extrapolable to

inexperienced research sites, or to therapeutic areas that require

significant amounts of medical record abstraction, or to industry

trials that lack CTN research infrastructure. Further, these results

are based on our experience with a single commercial EDC

system; use of a different system, or variations in implementation

of the same system, might have a significant impact on data

quality, and methods for calculating error rates vary widely across

the industry [13,34].

Important questions remain to be answered, however; for

example, the impact of data cleaning and auditing on trial results

remains unclear. In addition, a model does not yet exist for error

distributions in clinical trial data. In the absence of such a model,

event independence is assumed (e.g., in our sample size

calculations).

Conclusions
Our evaluation provides additional evidence that medical

record abstraction and transcription are the steps most likely to

introduce error into data collection and management processes,

and that source-to-database error rates may vary depending on

therapeutic area and according to site data practices. Data centers

should be aware of these factors, and provide assistance to sites in

reducing variability in the abstraction process. We also found that

the capacity to compare data at the level of individual sites

facilitated evaluation and allowed us to demonstrate the degree of

consistency among sites. Finally, we observed that higher error

rates may correlate with other operational problems. We believe

that objectively quantifying data quality will provide a more

comprehensive picture of a site’s performance.
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