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Abstract

Background: The identification of transmission of variant Creutzfeldt-Jakob disease (vCJD) by blood transfusion has
prompted investigation to establish whether there has been any alteration in the vCJD agent following this route of
secondary transmission. Any increase in virulence or host adaptation would require a reassessment of the risk analyses
relating to the possibility of a significant secondary outbreak of vCJD. Since there are likely to be carriers of the vCJD agent
in the general population, there is a potential for further infection by routes such as blood transfusion or contaminated
surgical instruments.

Methodology: We inoculated both wild-type and transgenic mice with material from the first case of transfusion associated
vCJD infection.

Principal Findings: The strain transmission properties of blood transfusion associated vCJD infection show remarkable
similarities to the strain of vCJD associated with transmission from bovine spongiform encephalopathy (BSE).

Conclusions: Although it has been hypothesized that adaptation of the BSE agent through secondary passage in humans
may result in a greater risk of onward transmission due to an increased virulence of the agent for humans, our data
presented here in two murine models suggest no significant alterations to transmission efficiency of the agent following
human-to-human transmission of vCJD.
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Introduction

Variant Creutzfeldt-Jakob disease (vCJD) is an acquired form of

human transmissible spongiform encephalopathy (TSE) caused by

infection by the bovine spongiform encephalopathy (BSE) agent

that entered the human food chain in the United Kingdom during

the 1980s and early 1990s. [1,2] 164 cases of vCJD have been

identified in the United Kingdom and a further 41 cases in other

countries worldwide. Annual mortality rates indicate that the

vCJD outbreak is now in decline in the UK following a peak in

1999/2000. [3] In 2003 the first case of human-to-human

secondary transmission of vCJD via blood transfusion was

identified through a collaborative study between the UK National

Blood Services, the National CJD Surveillance Unit, and the

Office of National Statistics (Transfusion Medicine Epidemiology

Review, TMER). [4,5] Statistical analysis showed that the

possibility of this case being due to BSE infection was in the

order of 1:15,000 to 1:30,000. [4] This patient had received a

transfusion of non-leucodepleted red cells that had originated from

a donor who 3 years 4 months later developed clinical vCJD. The

blood recipient was methionine homozygous at codon 129 of the

prion protein (PrP) gene (PRNP), the same genotype as all tested

vCJD cases. [6]

Two further cases of vCJD linked to blood transfusion, in MM

genotype individuals, have subsequently been identified through

the TMER study. [7,8] Following the discovery of these cases

policy changes were made in relation to blood donation in the UK

and elsewhere. In 2004 the UK Blood Service deferred transfusion

recipients from acting as blood donors.

A fourth case, of asymptomatic infection following blood

transfusion, was described in 2004 and this individual was

heterozygous (MV) at codon 129. [9] This case was the first

indication that individuals with PRNP genotypes other than MM

could be infected by the vCJD agent. All three codon 129

genotypes are now thought to be susceptible to vCJD infection

following the identification of two VV genotype appendix tissues

positive for vCJD associated PrP (PrPSc) in an anonymous

screening study, and the successful transmission of vCJD to

‘humanised’ transgenic mice of each genotype. [10–12]

The implications of these findings are that a significant number

of the UK population may be carriers of vCJD infectivity, that

some of the individuals may be donating blood, and that not only
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those with an MM genotype may be susceptible to infection from

this source. Our research in transgenic models indicates that MV

and VV individuals are likely to remain in an infectious preclinical

state for a significant period of time with incubation periods

potentially longer than average lifespan. [12] The identification of

four instances of secondary transmission of vCJD infection from a

group of 66 individuals known to have received blood products

from vCJD donors, including only 28 who survived at least five

years post transfusion indicates that blood transfusion is a

significant risk factor for vCJD. This is likely to be due to either

the route of transmission being more efficient of the agent being

more infectious on human-to-human transmission or a combina-

tion of both.

TSE transmission by the blood transfusion route has been

investigated in a sheep model. [13,14] These studies used

intravenous (i.v.) transfusion of whole blood and blood fractions

from clinical and preclinical sheep infected with BSE or scrapie.

Preliminary data showed that the i.v. route gave relatively short

and consistent incubation periods suggesting an efficient trans-

mission route, with success rates of 60% for sheep infected with

BSE and 40–45% for natural scrapie. [14,15]

Strain characterisation using a standard panel of inbred lines of

wild-type mice originally demonstrated that BSE and vCJD agents

had similar biological properties following transmission. [2,16]

Similar work in other murine models has also been undertaken to

study other human TSEs (genetic and iatrogenic CJD [17], and

sporadic CJD [2]), and has been used to examine emerging TSEs

(atypical BSE [18] and chronic wasting disease in deer and elk

[19]). [20] The development of transgenic mice expressing human

PrP has lead to further dissection of the nature of human TSE

strains, including transmission of vCJD to gene targeted human

transgenic mice. [12,17,21,22] Extensive data from studies in both

wild-type and transgenic models at the Neuropathogenesis

Division provide an essential background which will allow us to

identify any change in the transmission characteristics of vCJD

following secondary transmission. [2,12,23]

To investigate the nature of the transmissible agent following

secondary transmission from human-to-human following blood

transfusion we have examined the biological properties of brain

material from the first case of transfusion-associated vCJD

inoculated into panels of both wild-type, and transgenic mice

expressing human PrP.

Results

Clinical signs of a TSE in the transgenic mice were rare and

occurred after long incubation periods (IP) as found in our

previous study. [12] Inoculation of the vCJD (transfusion) case

produced one clinically positive HuMM mouse (at 659 days post

inoculation), two positive HuMV mice (at 596 and 638 dpi) and

no positive HuVV mice. Transmission of the vCJD (transfusion)

case to the RIII and VM lines showed extended incubation

periods compared to the three vCJD (BSE) cases. However, the

hierarchy of incubation periods in the two wild-type lines was

identical. (Figure 1 and Table 1) These data also show close

similarities to previously published vCJD (BSE) transmission to

wild-type mice despite different methodologies. These earlier

studies used cerebellar material for the inoculum which was

injected by simultaneous intracerebral and intraperitoneal routes.

[2,23,24]

The frequency of transgenic mice positive for TSE associated

vacuolation was similar between the vCJD (transfusion) case and

the published vCJD (BSE) case [12], with positive results in 8/15

HuMM, 0/17 HuMV, and 0/17 HuVV mice and 6/16 HuMM,

1/15 HuMV, and 1/15 HuVV mice respectively. Regional

distribution of TSE vacuolation in the brain was assessed through

lesion profiling. All wild-type and the HuMM transgenic lines had

sufficient positive mice to generate a profile (n$6 mice). The

overall pattern of the lesion profiles was the same in the vCJD

(transfusion) and vCJD (BSE) cases for all lines of mice, however,

Figure 1. Comparison of incubation periods in wild-type mice.
Incubation period plot comparison of vCJD (transfusion) case versus
transmissions in wild-type mice of vCJD (BSE) from three sources. (Data
shows mean incubation period6standard error of the mean. Open
circles RIII line and open triangles VM line.)
doi:10.1371/journal.pone.0002878.g001

Table 1. Clinical and pathological assessment of wild-type mice.

Inoculum Mouse Line Mice Inoculateda
Positive for
Clinical TSE Signs

Positive for TSE
Vacuolation

Incubation Period
(days6SEM)

vCJD(BSE) A RIII 20 17 17 352.7669.78

vCJD(BSE) B RIII 20 18 17 374.3569.98

vCJD(BSE) C RIII 21 17 16 381.8866.07

vCJD (transfusion) RIII 23 18 18 477.33612.68

vCJD(BSE) A VM 22 15 22 510.20610.97

vCJD(BSE) B VM 22 20 21 523.75612.57

vCJD(BSE) C VM 21 13 18 530.6968.16

vCJD (transfusion) VM 22 15 18 572.90612.96

Wild-type mouse lines RIII and VM, inoculated with vCJD(BSE) and vCJD(transfusion) were assessed clinically and pathologically for signs of TSE and mean incubation
periods calculated.
aThe group of 24 was reduced due to unavailability of some brain material for analysis.
doi:10.1371/journal.pone.0002878.t001
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for the former case the VM and HuMM mice scores were lower.

(Figure 2)

Immunocytochemical (ICC) detection of disease associated

abnormal PrP in paraffin sections was also used as a method of

assessing whether mice were transmission positive. There were 13/

14 HuMM, 8/17 HuMV, 1/17 HuVV positive mice in the vCJD

(transfusion) case, which was similar to the frequency of positives

in the published vCJD (BSE) case: 11/15 HuMM, 11/13 HuMV,

1/15 HuVV mice. ICC data can be used to show variation in

targeting of abnormal PrP deposition in the brain and variation in

the nature of deposits. The ICC pattern in transgenic mice

inoculated with the vCJD (transfusion) case matched that reported

for vCJD (BSE) [12]. The thalamus was specifically targeted with

deposition of abnormal PrP, and for the HuMM mice the

hippocampus contained many intensely stained plaques including

vCJD transmission associated florid plaques. ICC pattern in wild-

type mice also showed similarities between the data sets with

abnormal PrP deposition targeted to the thalamus and hippocam-

pus, and large aggregates in the white matter of the corpus

callosum. (Figure 3)

Biochemical analysis of disease-associated PrP by Western blot

can discriminate between human cases of vCJD and sporadic

CJD. [25] In the vCJD (transfusion) case the HuMM mice had a

type 2B gel mobility and glycoform ratio identical to that found in

vCJD (BSE) transmission to HuMM mice, and in vCJD itself.

(Figure 4) Brain tissue from both vCJD (transfusion) [4] and

published vCJD (BSE) [26] patients showed the type 2B pattern.

The levels of PrPSc seen in the HuMV and HuVV were too low to

allow typing by this standard Western blot method.

Discussion

Secondary passage of vCJD infection via blood transfusion in an

MM codon 129 genotype individual results in a clinical disease

phenotype and pathological characteristics that are similar to

vCJD derived from BSE. [4] In this paper we confirm that the

agent strain properties of primary and secondary vCJD cases are

similar in transmission studies in transgenic and wild-type mice.

Strain characteristics can be assessed by the frequency of clinical

signs in recipient animals, the incubation period, neuropatholog-

ical features, and PrP typing. All these parameters were similar in

the transmission studies of primary and secondary vCJD in

transgenic mice, indicating that the strain properties of the vCJD

agent have not changed significantly following secondary passage

in humans.

There were some differences in the results of the transmission

studies which deserve further comment. The incubation period in

wild-type mice was relatively extended in the vCJD(transfusion)

case. However, the hierarchy of incubation periods in different

inbred mouse strains was unchanged and the most plausible

explanation for these findings is that, rather than implicating a

change in agent characteristics, the titre of infectivity was less in

the brain sample from the vCJD(transfusion) case. The distribution

and degree of vacuolation was identical in the RIII mice. (Figure 2)

While the distribution was identical in the VM and HuMM mice

the degree of vacuolation intensity was lower for the vCJD(trans-

fusion) case. This variability could be due to the much longer

incubation times observed in these lines of mice or due to minor

changes of the strain properties.

Preliminary investigation of the individuals diagnosed with

vCJD following blood transfusion does not indicate a change in the

neuropathological characteristics of vCJD following secondary

transmission, although further studies are required to confirm this

observation.

The level of infectivity in peripheral tissues in secondary cases of

vCJD is unknown, although spleen and a lymph node were PrP

positive in the sub-clinical case linked to blood transfusion.

Evidence from BSE inoculation of primates indicates similar

peripheral distribution of disease associated PrP following either

oral or intravenous infection. [27] Further studies are required to

assess the anatomical distribution, strain properties and level of

infectivity in peripheral tissues in secondary vCJD infection. This

may be important for accurate assessment of the public health risks

associated with the potential for iatrogenic transmission of vCJD,

which are not solely defined by the agent characteristics in brain.

Blood transfusion appears to be a relatively efficient means of

secondary transmission of vCJD. To date, there have been four

such transmissions in a cohort of 28 individuals who survived at

least five years following transfusion of blood derived from

individuals incubating vCJD. Despite extensive exposure of the

UK population to the BSE agent in the food chain, there have

been a relatively limited number of primary cases of vCJD (164 in

the UK) and the outbreak has been in decline since 1999/2000.

An important question is why there should be a disparity in the

apparent efficiency of infection between primary and secondary

vCJD. Transmission is generally more efficient within species than

between species which may explain this observation. [28,29]

Inoculation of wild-type mice with material from primary and

secondary BSE passage in macaques showed that the BSE agent

retained a characteristic lesion profile even though the second

passage incubation period in the macaques was reduced by 50%.

[30] This suggests that efficiency of transmission may increase

without obvious changes to the agent strain.

Another factor is that the intravenous route of infection is very

much more efficient than the oral route, as shown in experimental

models. [27,31,32] Results from this study suggest the major factor

here is likely to be the route of infection rather than any changes in

the strain of agent. Future studies, including those using

experimental oral exposure to infectivity in transgenic mice, will

further address this issue.

All the primary and secondary clinical cases of vCJD have

occurred in individuals with a MM genotype. The sub- or pre-

clinical transfusion related infection was in a codon 129

heterozygote and genotyping of positive appendix samples

identified in a screening study confirmed valine homozygosity in

2 of 3 samples tested. [10] This indicates that individuals with all

codon 129 genotypes may be infected with the vCJD agent and the

effect of the MV or VV background on the characteristics of the

vCJD agent have not been addressed by the data in this paper.

In conclusion, transmission studies indicate that the strain

characteristics of vCJD have not been significantly altered by

secondary transmission through blood transfusion. This suggests

that the risk of onward transmission of vCJD through other routes,

for example contaminated surgical instruments, have not been

increased by adaptation of the infectious agent to humans

following secondary passage. However the characteristics of the

infectious agent in different genetic backgrounds has not yet been

defined and the prevalence of vCJD infection in the general

population remains uncertain. There is need to continue to

implement appropriate policies to protect against the risk of

secondary transmission of vCJD until many of the remaining

uncertainties are resolved.

Materials and Methods

The transgenic mice (HuMM, HuMV, HuVV) used in these

experiments have been described previously. [12] These mice

express human PrP under the regulation of the murine promoter
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sequences, and survive for the same lifespan as non-transgenic

mice of the same genetic background (129Ola) with no adverse

effects and no features of spontaneous TSE disease. Wild-type

mice (lines VM and RIII) are inbred lines used routinely for strain

typing of TSEs. RIII is a Prnp-a genotype line and VM is a Prnp-b

genotype line. [33] Use of mice for this work was reviewed and

approved by the Neuropathogenesis Division Ethics Committee

for Animal Experimentation.

Mice were inoculated as described previously. Groups of 24

wild-type mice received a 0.02 ml dose at 1021 dilution by the

intracerebral route, for vCJD (transfusion) and vCJD (BSE).

Groups of 18 transgenic mice were injected with inoculum at a

higher dilution of 1022 as in previous experiments more

concentrated inocula had been found to be toxic to the mice.

Inoculum was prepared as a homogenate in sterile saline from

frozen frontal cortex (with full consent from the patient’s relatives,

and approved by the Lothian NHS Board Research Ethics

Committee (Reference: 2000/4/157)) to allow accurate compar-

ison with previous data. Cases used for transmission were: the first

blood transfusion associated case, designated here as vCJD

(transfusion), and three historical vCJD cases designated here as

vCJD (BSE) A, B, and C. The historical vCJD cases were not

inoculated into the transgenic mice. Data from vCJD (transfusion)

inoculation of the transgenic mice was compared with that already

published for vCJD (BSE). [12] Data from vCJD (transfusion)

inoculation of the wild-type mice was compared with data from

the three historical vCJD cases.

Mice were housed in independently ventilated cages in a

Category 3 facility, monitored daily and scored for signs of TSE

disease weekly from 100 days post inoculation. Mice were culled,

when clinical TSE was evident or for animal welfare reasons, by

cervical dislocation and the brain bisected sagittally; one half

frozen for biochemical analysis of disease-associated prion protein

and the other half fixed in formalin for histology.

Vacuolation scoring was performed according to published

protocols and lesion profiles generated. [34,35] Immunocyto-

chemical detection of abnormal PrP deposition was performed as

published and Western blotting of disease-associated PrP from the

frozen half-brain carried out according to Head et al. [12,25]
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