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Abstract

Background: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the
metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and
391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum) or no
growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and
insulin resistance.

Methodology/Principal Findings: The analysis of metabolic changes was performed using microarray analysis of liver tissue
and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools.
The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR
metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of
trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid
and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis
identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in
urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to
that of the 391 mutant as the 569 mice became obese after six months age.

Conclusions/Significance: The metabonomic observations were consistent with the parallel analysis of gene expression and
pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism,
especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a
coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone receptor, and
supports a potentially important role for taurine in enhancing b-oxidation.
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Introduction

Growth hormone (GH) is both the major regulator of postnatal

growth and an important metabolic regulator, influencing many

aspects of lipid, carbohydrate, and protein metabolism [1]. GH

exerts its anabolic actions by increasing lean body mass and

decreasing adiposity. These actions are mediated largely by

increased protein synthesis, decreased proteolysis, inhibition of

insulin-stimulated adipogenesis and induction of lipolysis [2–7].

Treatment with GH also affects hepatic glucose metabolism,

mostly through the stimulation of gluconeogenesis [8]. A large

number of other physiological processes are affected by GH,

including drug and xenobiotic metabolism through the regulation

of P450 cytochrome expression [9].

GH acts through its receptor on the cell surface, which is a

cytokine class I receptor with multiple tyrosines on the intracellular

domain. Binding of the hormone to the receptor induces receptor

tyrosine phosphorylation with intracellular signaling through a

number of pathways, such as signal transducer and activator of

transcription 5 (STAT5), Mitogen-activated protein kinase

(MAPK), Phosphoinositide-3 kinase (PI3K) and Janus kinase 2

(JAK2) [10,11], leading to differential gene expression and changes

in physiological response. While the role of GH in metabolism has

been studied in a number of animal models and in humans

undergoing GH therapy [12–16], the contribution of individual

pathways to metabolism remains unclear. Treatment of GH-

deficient adults or the elderly has been shown to normalize the

altered body composition seen in GH deficiency, including
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increased fat mass, decreased muscle mass and decreased bone

mineral density. Transcript changes associated with these metabolic

alterations have been studied in animal models, but the full extent

and physiological consequences of the altered transcript profiles are

not clear [15,17,18]. Recently, we have described growth hormone

receptor (GHR) mutant mice, with truncations of the intracellular

domain of the GHR at position 569 and 391 [19]. These truncations

lead to altered signaling through the GHR in response to hormone

binding and allow us to study the contribution of particular GH

receptor signaling domains to gene expression and metabolism. In

particular, these mouse strains exhibit variable levels of STAT5

signalling in response to GH stimulation (Figure 1) and show

substantial alterations in hepatic gene expression, together with

growth deficit and later onset obesity.

The microarray analysis in our previous study focused on the

genes involved in GH enhancement of postnatal growth. We

identified sets of genes regulated by particular signaling pathways

with a major focus on STAT5 targets. However, there was little

analysis of how this differential gene expression affects metabolism

in the GHR mutant mice. As GH regulates metabolism in many

ways, we were interested in identification of the actual metabolic

changes that relate to the development of obesity and insulin

resistance in our mice. However, changes in gene expression do

not directly measure metabolic changes, and mapping of the

differentially expressed genes onto metabolic pathways only

provides an indication of pathways that can be affected, without

defining the actual metabolic consequences. Therefore there was a

need to use an alternative method to assess the global metabolic

changes and their time course to determine the likely causes of

observed phenotypic changes in our mouse model.

Any significant perturbation of metabolism, such as the one

caused by the GHR mutations, is reflected in the composition of

body fluids such as urine, blood or saliva, which yield a different

‘‘metabolic fingerprint’’ for each metabolic state [20]. Conse-

quently, valuable information about metabolic changes can be

obtained by monitoring global changes in the composition of

biofluids of various populations or individuals [20]. The

experimental approach enabling this is metabonomics and has

been defined as ‘‘the quantitative measurement of the dynamic

multiparametric metabolic response of living systems to patho-

physiological stimuli or genetic modification’’ [21]. As it is able to

analyze global metabolic changes in biofluids it is an appropriate

tool for comparing GHR mutant mouse models and allows us to

integrate metabolite data with our previous microarray study [19].

Nuclear magnetic resonance (NMR) spectroscopy is one of the

major techniques used in metabonomic studies. The advantage of

using NMR over other techniques such as mass spectroscopy is that

it requires only minimal sample preparation, is non-destructive and

inherently quantitative [20]. NMR spectra possess a wealth of

metabolic information, containing signals from thousands of

individual metabolites that are observed simultaneously and that

can partially overlap. Because of the information density of NMR

spectra, data are routinely analysed by a combination of data

reduction and pattern recognition methods using multivariate

statistical analysis, such as principal components analysis (PCA) or

partial least squares discriminant analysis (PLS-DA) [22]. This

strategy results in identification of groups with similar metabolic

patterns. In addition, individual metabolites discriminating between

these experimental groups can be identified.

The aim of this study was therefore to identify metabolic

changes in our GHR mutant mice by analysis of urinary and

hepatic metabolites and to correlate these changes with tran-

scriptome-based pathway analysis to establish metabolic pathways

affected by the extents of differential STAT5 signalling. This is to

our knowledge the first study linking the analysis of transcriptional

changes based on microarrays with metabonomic analysis of

actual metabolite changes in strains of receptor mutant mice. Our

approach has allowed us to identify key metabolites and altered

pathways, which provide a coherent and complementary picture

of physiological changes at the level of the whole organism in

relation to the metabolic role of GH.

Results

Growth hormone receptor (GHR) modifications in vivo:
In this study we used animals previously generated in our

laboratory with characterized mutations in the intracellular domain

of the GHR [19] (Figure 1). Our previous study showed that their

hepatic response to GH administration is impaired in relation to the

extent of STAT5 signalling, with mutant 569 showing 30% of the

wild-type response, while mutant 391 has no STAT5 signalling

response [19]. At the same time both mutants have shown normal

activation of JAK2, MAPK and STAT3 signalling, and microarray

comparison with mice harboring complete GH receptor deletion

showed most GH-regulated transcripts do not involve STAT5

signalling. Thus, in this study we determined the metabolic

consequences of the loss in GHR signalling from the distal portion

of the GH receptor, including total loss of STAT5 signalling.

Adipose accumulation:
The most striking physiological and phenotypic change in the

mutant animals is a dramatic increase in weight, resulting from

obesity (Figure 2B–E). The weight of all mutants and wild-type

littermates up to 21 days of age was not significantly different [19].

The body weight differentiated in the following 2 months, and was

in both sexes significantly lower for each of the 569, 391 and

GHR2/2 mutants than for their wild-type littermate controls at 2

months of age ([19], Figure 2C). However, over the next 4 months

the weight of the mutant 569 mice increased, so that at 6 months

the difference with the wild-type was no longer statistically

significant, and later mutant 569 mice became significantly

heavier. While the weight of the 391 mutant mice was essentially

Figure 1. Structure of the intracellular domain of the Growth
Hormone Receptor (GHR). The mutations in the GHR have been
made in the intracellular domain (ICD) of the receptor. (A) The wild-type
has intact signaling through JAK2, MAPK and STAT5. (B) In mutant 569
the ICD has been truncated at residue 569 and two distal tyrosines were
mutated to phenylalanines resulting in only 30% of wild-type STAT5
signaling in response to GH. (C) Mutant 391 has been truncated at
residue 391 and has no STAT5 signaling ability, while normal JAK2 and
MAPK signaling is maintained.
doi:10.1371/journal.pone.0002764.g001

Metabolism in GHR Mutant Mice

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2764



lower than that of the wild-type at the same time (Figure 2C), they

were also significantly shorter than wild-type mice as evident in

Figure 2B, and thus became severely obese at a lower body weight.

The observed increase in weight reflected an increased fat

deposition for all mutant mouse strains. Indeed, when the fat

accumulation was analyzed over time at 2, 4, 10 and 13 months

(Figure 2D and E), there was a significant difference between the

mutants and the wild-type. This difference is especially pro-

nounced in the subcutaneous fat deposits, which is expected, as

subcutaneous fat pads have been shown to be the deposit most

sensitive to GH regulation in rodents [23]. While the wild-type

mice showed only a small increase in subcutaneous fat up to 13

months of age, the 391 mutants began to accumulate subcutane-

ous fat from early in their life reaching a maximum at 10 months

of age (Figure 2D). The 569 mutant showed a slower, more

constant increase of subcutaneous fat and by 13 months of age

almost reached that of the 391 mutant. The picture changes only

slightly when the perirenal fat deposits are viewed (Figure 2E).

While the wild-type exhibited only a slow increase in the

percentage of dissectable body fat, all mutants accumulated fat

very rapidly after 2 months of age, with the 569 mutant displaying

a rate of perirenal fat accumulation that was similar to the

GHR2/2 mutant and slightly faster than the 391 mutant

(Figure 2E).

Metabolic pathway analysis and identification of marker
genes in microarray data

To investigate the biological processes underlying this dramatic

change in phenotype, we determined the effects of the GHR

mutations and altered STAT5 signalling on transcript expression

in liver tissue of 42-day old mice, In a first round of analysis, we

used the MAS 5.0 algorithm and fold changes with a cut-off of 1.5-

fold to identify differentially expressed genes. These were

subsequently analysed by ANOVA to identify predictor genes

able to separate the four classes of microarray data (wild-type,

mutant 569, 391 and GHR2/2) [19]. This generated a list of 20

genes regulated concordantly in all mutant mice and additional 31

genes differentially expressed between the individual mutant

groups. However, as this analysis was a supervised approach, we

wanted to use an unsupervised multivariate statistical method

Figure 2. Identification of marker genes differentiating between the groups and physiological characterisation of GHR mutant
mice. (A) A heatmap of classifier gene expression in liver tissue of wild-type and GHR mutant mice at 42 days age from the GeneRaVE analysis,
clustered according to similarity of expression. Gene expression has been represented as a scale between red and blue, with red indicating over
expression and blue representing under expression. Gene abbreviations are used according to current nomenclature. (B) A picture of 10 month old
male mice used in this study. (C) The weight curves of male mice from 2 months to 10 months. (D) Subcutaneous fat accumulation of male mice from
2 months to 13 months. (E) Perirenal fat accumulation of male mice from 2 months to 13 months. (C-E) green = wild-type, red = mutant 569,
blue = mutant 391, black = GHR2/2.
doi:10.1371/journal.pone.0002764.g002
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similar to the tools used in metabonomic analysis. In a second

round of analysis we therefore used GeneRaVE as a method to

identify the classifier genes differentiating the groups and explore

gene interactions using network analysis.

GeneRaVE identified three genes as differentiating the groups,

RCK/p54, Hsd3b5 and Es31, whose expression levels can separate

the four classes with 84% accuracy. Subsequent classifier genes

from 11 rounds of selection were extracted from the dataset and

are shown in Figure 2A. Among these were transcripts increased in

the wild-type mice, such as cysteine sulfinic acid decarboxylase

(Csad), esterase 31 (Es31), hydroxysteroid dehydrogenase-5,

delta,5.-3-beta (Hsd3b5), hydroxysteroid (17-beta) dehydroge-

nase 2 (Hsd3b2) and kidney expressed gene 1 (Keg1) as well as

transcripts decreased in the wild-type, such as sulfotransferase

family 2A, dehydroepiandrosterone (DHEA)-preferring, member

2 (Sult2a2), flavin containing monooxygenase 3 (Fmo3), hydro-

xyacid oxidase (glyoxylate oxidase) 3 (Hao3), cytochrome P450,

family 2, and subfamily b, polypeptide 9 (Cyp2b9). The only genes

not identified as biomarkers in our previous approach were Ghr,

Rck, Fmo3 and Dbp. In addition, Hsd3b2, Fos, H19, Mt1 and Igfbp1,

were differential in our previous study [19], but not reported.

Based on these results we predicted taurine as one of the

metabolites that would differentiate between the groups, as the

mRNA levels of the key enzyme involved in its biosynthesis, Csad,

were reduced in mutant 391 and GHR2/2. In contrast, the possible

metabolic effects of changes in genes encoding other enzymes were

not immediately obvious. It was also clear from this analysis that at

42 days of age the hepatic expression pattern of the mutant 569 was

very similar to that of the wild-type, and it was expected that these

mice would have very similar metabolic profiles.

GeneRaVE [24] identified several sets of genes that could be

used to discriminate the different strains of mice under study.

Individually they represent classifiers, but taken together they

represent a group of genes whose expression has been altered in

the different mouse strains in comparison to the wild-type.

However, this still did not clarify which biological pathways and

processes are affected in the GHR mutant mice.

To further characterize the pathways affected in the mutant mice

and to determine how the physiological response was changed, we

used Gene Ontology analysis and pathway mapping. Gene

Ontology (GO) analysis using NetAffx GO Browser identified that

228 (57.3%) out of 398 genes differentially expressed between the

strains were involved in metabolism, with a number of biological

processes identified. The most prominent processes affected were

generation of precursor metabolites and energy metabolism, lipid

metabolism, nucleic acid metabolism, biopolymer metabolism and

sulfur metabolism (Table 1). In addition to these metabolic processes

and those identified in [19], inflammatory response was identified as

significantly altered. Further breakdown of affected biological

processes was possible using the DAVID Functional Annotation

Tool [25], which identified 55 biological processes with a p-

value,0.05 and a minimum of 4 genes present. The 15 top

biological processes altered in GHR mutant mice as identified by

DAVID are shown in Table 2.

While gene ontology (GO) analysis and functional annotation

were pointing consistently to differences in metabolic responses

between the mouse groups, they did not indicate which individual

pathways were affected. Therefore we used pathway mapping to

identify these. In addition to functional classification, DAVID

mapped the genes successfully to pathways (Table 3). In addition,

we also performed pathway mapping using Pathway Miner

(http://www.biorag.org). This analysis indicated major changes

in multiple pathways, including xenobiotic metabolism, comple-

ment cascades, glutathione, tricarboxylic acid (TCA) cycle, fatty

acid metabolism and others (Table 3). It is clear that some

pathways were identified with both tools, while others were only

identified with one. One of the reasons for such discrepancies is

that both tools have not managed to map many of the

differentially expressed genes. DAVID has mapped only 33% of

input genes to the pathways in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) data base, while Pathway Miner mapped

17% of input genes to the KEGG pathways. This highlights the

insufficiencies in analysis using pathway mapping and GO analysis

and a need for an alternative method of analysis of metabolism.

NMR-based metabonomics provides this alternative, as it

integrates the responses of all different organs to the altered

GHR signalling on a whole-body level and thus offers a direct,

cost-effective and non-invasive avenue to monitor actual metabolic

Table 1. Gene Ontology analysis of differentially expressed
genes (equal or .1.5-fold) using NetAffx Gene Ontology
Browser.

Biological Process

% of
genes
involved

Number
of genes

Total
number
of genes
in process

Probability
value*

Generation of precursor
metabolites and energy

9.6 54 562 2e–16

Lipid metabolism 8.6 50 577 1.7e–12

Biopolymer metabolism 1.8 65 3531 5.1e–11

Catabolism 7.5 41 542 7.6e–8

Nucleic acid metabolism 1.9 51 2599 1.2e–6

Inflammatory response 11 12 109 1.6e–5

Carbohydrate metabolism 5.6 22 391 0.02

*Probability value – the likelihood of this over-representation by chance.
doi:10.1371/journal.pone.0002764.t001

Table 2. Top 15 metabolic processes identified among the
differentially expressed metabolic genes using DAVID
Functional Annotation Tool.

Biological Process Number of genes % p-value

1 generation of precursor metabolites
and energy

47 10.8 1.95e–
11

2 electron transport 34 7.8 1.4e–9

3 steroid biosynthesis 12 2.8 3.3e–6

4 catabolism 35 8 1.8e–5

5 cellular lipid metabolism 29 6.6 2.2e–5

6 biosynthesis 57 13.1 2.5e–5

7 coenzyme metabolism 17 3.9 2.7e–5

8 lipid metabolism 32 7.3 2.7e–5

9 lipid biosynthesis 18 4.1 4.1e–5

10 steroid metabolism 15 3.4 4.7e–5

11 cellular catabolism 29 6.6 1.2e–4

12 cofactor metabolism 17 3.9 1.3e–4

13 sulfur metabolism 9 2.1 2.1e–4

14 general metabolism 209 47.9 4.2e–4

15 cellular biosynthesis 48 11 4.4e–4

doi:10.1371/journal.pone.0002764.t002
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changes in a subject over several months. Therefore we used

NMR metabonomics to provide a global metabolite analysis of the

GHR mutant mice.

NMR spectra of mouse urine
500 MHz one-dimensional (1D) proton NMR spectra of urine

from wild-type mice (n = 16) and GHR mutant mice (n = 39) were

compared. Urine from GHR2/2 mice was not analyzed with

NMR spectroscopy because of difficulties in obtaining samples

from those animals. Only a few systematic differences were

detected by visual inspection, as can be seen in the comparison of

urine spectra at four months of age, depicted in Figure 3. The

chemical compounds present in the urine samples were assigned

on the basis of previously published chemical shift data [26,27],

data available in small metabolite data bases (http://mdl.imv.liu.

se, http://www.hmdb.ca, http://www.bmrb.wisc.edu), and addi-

tional information obtained from high-resolution homo- and

heteronuclear two-dimensional (2D) correlation spectra of repre-

sentative urine samples of the wild-type and 391 mouse strains. To

facilitate chemometric analysis and to reduce the complexity of the

NMR spectra, all 1D spectra were data reduced to integral

segments (‘‘buckets’’) with a width of 0.05 ppm.

Principal Components Analysis of urinary data
Principal components analysis (PCA) is a standard technique of

pattern recognition and multivariate data analysis. The technique is

particularly suited to the analysis of a set of data where each

individual measurement contains itself a multitude of data – as is the

case in a series of NMR spectra, containing signals from hundreds of

individual metabolites. PCA compares all measurements with each

other and explains the variation inherent in the data set in terms of

artificial components called principal components (PCs). The first

principal component (PC1) is reponsible for the largest amount of

variation in the data, the second principal component is orthogonal

to PC1 and explains the largest amount of yet unexplained variation,

and so forth with higher PCs. In effect, the first two PCs explain the

vast majority of variation present in the data. In the resulting scores

plot (Figure 4A), each data point corresponds to one NMR spectrum,

and the position in the plot is determined by the difference of that

spectrum with respect to the average of the respective PC.

Essentially, the closer points are to each other the more similar the

corresponding spectra are. This feature allows one to recognise easily

if the data form several distinct groups or are all similar to each other.

In the corresponding loadings plot (Figure 4B) each data point

corresponds to one spectral region ( = bucket), and the position in the

plot is equivalent to the correlation coefficient of that bucket with the

corresponding PC. This means that it is possible to identify from the

loadings plot which spectral regions and thus which chemical

compounds are responsible for any grouping of data points observed

in the scores plot. Loadings coefficients ( = correlation coefficients) of

0 mean no correlation, and loadings coefficits of 1 mean total

correlation is observed between a particular bucket ( = chemical

compound) and the variation in the corrresponding dimension. As

can be seen from Figure 4B, the loadings coefficients for most

spectral regions cluster around zero, indicating that concentration

changes in the metabolites corresponding to these regions are

insignificant. However, a number of spectral regions are clear

outliers in the loadings plot, indicating that concentration changes in

the corresponding metabolites are significantly associated with the

variation/separation observed in the scores plot in the corresponding

PC. Due to their nature as correlation coefficients the loadings

coefficients are not directly associated with fold changes. They rather

indicate, which concentration changes are significant, irrespective of

the actual magnitude of change.

PCA was performed on urine to find if it was possible to

distinguish the three different mouse strains on the basis of their

NMR spectra. A preliminary PCA showed that the urine samples

were contaminated by ethanol, possibly from sterilisation of the

urine collection vials (data not shown). Thus, a second data

reduction and PCA was performed, in which the spectral regions

containing ethanol signals were excluded. The PCA scores plot of

the first two principal components (Figure 4A) showed consider-

able clustering of the three groups, albeit with some overlap

Table 3. Pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysed using DAVID Functional
Annotation Tool and Pathway Miner.

Pathway DAVID Pathway Miner

Number of genes % p-value 569 391 GHR2/2

Metabolism of xenobiotics 12 2.8 8.8e–5 4.4e–3 9.9e–4 4.3e–3

Complement and coagulation cascades 13 3 8.9e–5 3.5e–4 7e–5 1e–4

Gluthathione 9 2.1 3.04e–4 2.6e–3 4.3e–3 1.3e–3

TCA 7 1.6 9.2e–4 ns 1.7e–2 1.3e–2

Fatty Acid metabolism 8 1.8 2.8e–3 Not identified

Valine, Leucine and isoleucine 8 1.8 2.8e–3 ns 3e–2 ns

Androgen and estrogen metabolism 7 1.6 3.7e–3 Not identified

Proteasome 6 1.4 1.5e–2 Not identified

Arachidonic acid metabolism 8 1.8 1.9e–2 ns 4.5e–3 ns

Oxidative phosphorylation 11 2.5 2e–2 ns 1.8e–2 0

Propanoate metabolism 5 1.1 3.4e–2 ns 1.6e–2 ns

Glycine, serine and threonine metabolism 6 1.4 3.9e–2 ns 3.5e–2 1.6e–2

Lysine degration 6 1.4 4.7e–2 Not identified

Bile acid biosynthesis 5 1.1 4.9e–2 2.1e–2 4.5e–3 ns

ns: non significant
doi:10.1371/journal.pone.0002764.t003
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between the groups. Notably mice from the 391 strain were clearly

separated from wild-type mice, with mice from the 569 strain

exhibiting a distribution in between these two extremes. The

separation between the three groups was mostly along PC2.

Partial Least Squares-Discriminant Analysis of urinary
data

To maximise separation between the three mouse strains a

partial least squares-discriminant analysis (PLS-DA) was per-

formed. In contrast to PCA, which is an unsupervised multivariate

statistical classification method that works to explain maximum

variation between samples, PLS-DA is a supervised method that

explains maximum separation between pre-defined classes (e.g.

genotype or health state) in the data. Thus, the class membership

of each sample must be known and is provided in form of a Y-

table. PLS-DA then performs a regression of the original data

against the Y-table to maximise separation between the individual

classes. In our case, the group identity of the three mouse strains

was used in the Y-table. The PLS-DA scores plot of the first two

partial least squares (PLS) components, PLS1 and PLS2,

(Figure 4C) showed improved separation of the three mouse

strains compared to the PCA. Again, mice from the 391 strain are

completely separated from the wild-type strain, with mice from the

569 strain exhibiting a distribution in between these two extremes.

The separation between the three groups was mostly along PLS1,

suggesting that this PLS component contains metabolites associ-

ated with differences between the three strains.

The equivalent loadings plot showed several spectral regions

that exhibit significant correlation with PLS1 and/or PLS2

(Figure 4D). The chemical compounds corresponding to the

NMR signals in these regions were identified as described above.

The components most strongly associated with PLS1 and PLS2

are taurine, trimethylamine (TMA) and trimethylamine-N-oxide

(TMAO). Taurine was less prominent in the spectra of the 391

and 569 mutants than in the wild-type mice. In contrast TMA and

TMAO were present in higher concentrations in the spectra of the

mutant mice as compared to the wild-type. Other compounds

discriminating between the three strains were creatine, creatinine,

allantoin, and hippurate, all of which increased in the mutant

mice. In contrast, the concentrations of citrate and 2-oxoglutarate

were decreased in the mutant mice. Other compounds with

significant loadings coefficients in PLS1 or PLS2 that could be

identified are listed in Table 4 and indicated in Figure 4B and D.

In addition to the PLS-DA comprising all three mouse

genotypes (Figure 4C–D), two-way PLS-DAs were performed

with all possible pairwise comparisons of the genotypes (data not

shown). These analyses confirmed that especially the mutant 391

strain is completely separated from the wild-type mice, while the

569 mutant mice are more similar to the 391 mutant mice than the

wild type especially with age. As expected, essentially the same

metabolites that are responsible for the differences between all

three genotypes were with minor differences also significant for

discriminating between groups in the two-way comparisons (as

shown in Table 4).

Figure 3. 1D proton NMR spectra of mouse urine at 298 K. Spectra of one individual of four months age from each mouse strain are shown.
Top: wild-type, middle: 569 mutant, bottom: 391 mutant. The identity of relevant metabolites is indicated above each spectrum.
doi:10.1371/journal.pone.0002764.g003
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Figure 4. Statistical analysis of metabolites in mouse urine. (A) Principal components analysis - scores plot of PC1 versus PC2. Each data point
represents one mouse urine sample, and the distance between points in the score plot is an indication of the similarity between samples. Green
circles: wild-type, red squares: 569 mutants, blue triangles: 391 mutants. The borders of the groups are also highlighted by lines in the corresponding
colors. (B) Principal components analysis - loadings plot of PC1 versus PC2. Each data point represents one bucket (with the chemical shift indicated
explicitly). The plot indentifies which spectral regions (and thus which chemical compounds) are responsible for the differences between the spectra
observed in the scores plot. The loadings coefficients in each dimension are correlation coefficients that indicate how strongly each metabolite is
correlated with the observed variance in the respective dimension. t = 0 means no correlation, and t = 1 means total correlation. Several significant
metabolites are indicated explicitly. 2-OG: 2-oxoglutarate, DMA: dimethylamine, TMA: trimethylamine, TMAO: trimethylamine-N-oxide. The model

Metabolism in GHR Mutant Mice
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Interestingly, while the positions of the wild-type mice and the

391 mutants in the PLS-DA scores plot remain constant, the

position of the 569 mutant mice is clearly dependent on the age of

the mice: The samples of the younger 569 mutant mice with an

age up to 6.5 months cluster in the PLS1-PLS2 scores plot in the

metabolic space close to the wild-type mice (Figure 4C), while the

urine samples of older 569 mice between 9 and 12 months of age

cluster in the area of the 391 mutant mice. From the average PLS

scores of mice of similar age it was possible to construct metabolic

trajectories for the three mouse strains as shown in Figure 4E. This

graph reveals the same picture with even grater clarity: The

metabolism of the wild-type and 391 mutant mice remains

essentially unchanged with age, while the metabolism of the 569

mutant mice changes from a wild-type like metabolism in young

mice to a 391 mutant-like metabolism after 6 months of age,

associated with the onset of obesity.

Principal Components Analysis of murine liver tissue
After establishing the effects of the GHR mutations on the

metabolite profile of mouse urine we wanted to determine if these

mutations manifest in the metabolite profile of liver, as this was the

subject of the microarray analysis and a major GH target tissue.

We specifically wanted to compare the taurine status in the livers

of wild-type mice to their counterparts from the 569 and 391

mutants, as taurine status relates to obesity [28] (see below) . In

addition, we included obese wild-type animals fed on a high-fat

diet to distinguish effects caused by obesity from the effects caused

by the GHR mutations.

700 MHz 1D high-resolution magic angle spinning (HR-MAS)

proton NMR spectra of intact liver tissue from four months old

wild-type mice (n = 6), mutant 569 mice (n = 3), mutant 391 mice

(n = 6), and wild-type mice fed on a high-fat diet (n = 3) were

measured. An example spectrum is shown in Figure 5A.

A preliminary PCA of liver tissue spectra was dominated by the

signals of lactate and glutamate/glutamine, which changed

disproportionately in intensity and chemical shift (data not shown).

Thus, a second data reduction and PCA was performed, in which

the spectral regions containing these signals were excluded. The

PCA scores plot of PC1 versus PC2 (Figure 5B) showed

considerable clustering of the four groups of mice, albeit with

consists of 7 PCs and represents data from 48 samples. Regions containing water, urea, and ethanol signals were excluded from the PCA. (C) Partial
Least Squares-Discriminant Analysis - scores plots of PLS1 versus PLS2. The coding of groups is same as in panel (A). (D) Partial Least Squares-
Discriminant Analysis - loadings plot of PLS1 versus PLS2. The chemical shift of each bucket as well as selected metabolites are indicated explicitly.
Abbreviations as in panel (B). (E) Metabolic trajectories of the three mouse strains. Depicted is the change in the first PLS component PLS1 with the age
of the mice. The mean metabolic trajectories (obtained by averaging the PLS1 scores of mice with similar age) are indicated by thick lines. The wild-
type trajectory is colored green, the 569 mutant red, and the 391 mutant blue. The 2s standard deviation from each mean trajectory is indicated by
areas shaded in the respective color. As can be seen, the metabolic trajectory of the 569 mutant mice moves with age from the position of the wild-
type mice to the position of the 391 mutant mice.
doi:10.1371/journal.pone.0002764.g004

Table 4. Identified metabolites with significant loadings coefficients in the first three PLS components t1 to t3.

Metabolite 1H chemical shifts [ppm] multiplicity / 13C chemical shifts[ppm]a Increase (+) or decrease (2) in:

m./wtbc 569/wtc 391/wtc 391/569c

Taurine 3.43t / 35.6; 3.27t / 47.5 22 22 22 22

Trimethylamine (TMA) 2.88s / 44.6 ++ ++ ++ 22

Hippurate 7.84d / 122; 7.64t / 127; 7.56t / 123; 3.97d / 43.8 ++ + ++ ++

Allantoin 7.36m / 124; 5.39s / 63.6 ++ 0 ++ ++

Creatinine 4.06s / 56.2; 3.05s / 30.1 + + ++ ++

Creatine 3.94s / 53.9; 3.04s / 36.8 + + + +

Isethionic acid 3.96t / 57; 3.17t / 52.7 + + + +

TMAO 3.28s / 59.5 22 0 22 22

Citrate 2.69d / 44.5; 2.55d / 44.5 2 2 2 2

2-Oxoglutarate (2-OG) 3.02t / 29.9 2 22 2 2

Oxaloacetate 3.37s / 48.7 22 0 0 0

Succinate 2.41s / 34.1 2 2 0 0

Dimethylamine (DMA) 2.72s / 34.4 0 + 0 2

Methylamine 2.61s / 24.7 0 0 0 0

3-Hydroxybutyrate 2.45t / 44.2; 1.25d / 21.9 2 2 2 0

Fatty Acid 2.30t / 35.6; 1.64m, 1.63m, 1.61m / 24.9; 1.60m, 1.59m; 0.88t / 15.2 22 2 22 ++

Valine 2.06m / 26.6; 0.94d / 21.5 2 2 2 0

Isoleucine 0.93t / 12.8 2 2 2 0

achemical shifts in ppm denote the position of a signal in the NMR spectra, the multiplicity describes the coupling pattern of a NMR signal, s: singlet, d: doublet, t: triplet,
m: multiplet. These data were used for metabolite identification.

bm.: mutants, wt: wild-type.
ct1 to t3 are the loadings coefficients ( = correlation coefficients) for each metabolite in the first three PLS-DA dimensions. t = 0 means no correlation between
metabolite and variance in the respective dimension, and t = 1 means total correlation. For the majority of metabolites, t is between 20.1 and 0.1. ++: t.0.2, +:
0.1,t,0.2, 0: 20.1,t,0.1, 2: 20.2,t,20.1, 22: t,20.2.

doi:10.1371/journal.pone.0002764.t004
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some overlap between them. As is the case in the spectra of mouse

urine, the 391 mutant mice were clearly separated from wild-type

mice, with the 569 mutants exhibiting a distribution encompassing

these two extremes. The spectra of the high-fat diet wild-type mice

also form a separate group, distinct from both the lean wild-type

and 391 mutant mice. The separation between these groups was

mostly along PC1. The loadings plot (Figure 5C) reveals that the

buckets associated with taurine (d= 3.20–3.50 ppm) are the most

significant descriptors associated with this group separation. It

indicates that on average taurine levels are decreased in the liver

tissue of the 391 mutant mice as compared to the wild-type. This

parallels the result obtained in the multivariate analysis of mouse

urine. In contrast, taurine levels are increased in obese wild-type

mice fed on a high-fat diet when compared to their lean

counterparts (Figure 5BC).

Discussion

In this paper we have shown that metabonomics can identify

significant metabolic changes in animal models exhibiting altered

signalling by the growth hormone receptor and that these changes

correlate with altered expression of key metabolic enzymes in the

liver, the major GH target organ. While both metabonomics and

microarray approaches are very different, both allowed identification

of groups of animals according to their genotype. This was achieved

by using multivariate statistical tools, which identified markers

(metabolites and genes) correlating with a particular genotype. As the

strains of mice used in this study have the same C57Bl/6J

background and differ only in the GHR sequence [19] (Figure 1),

the metabolic differences observed can be exclusively attributed to

the effects induced by mutations in the GHR associated with

differential signalling in response to GH. While the altered

transcripts identified by microarrays are useful, it was important to

understand how they affect the physiological outcome of the

mutations in the GHR mutant mice. This aim was achieved by

combining Gene Ontology analysis, pathway mapping and

metabonomic data to generate a global image of metabolic changes

in these mice (Supplementary Information Figure S1).

The observed separation of the mouse strains in PCA, PLS-DA

and GeneRaVE, reflects the observed phenotype and gene

expression, with the 569 mutant locating between the wild-type

and the 391 mutant. The 569 mutant, possessing only partial

STAT5 signalling ability, was generally not well separated from

the wild-type or the 391 mutant. Moreover, while the metabolism

in mutant 391 is clearly different from that of the wild-type

littermates (Figure 4E) at 4 months of age and stays different up to

12 months of age, the metabolism of the 569 mutant mice changes

with the age of the mice. The younger 569 mutant mice with an

age up to 6 months have a metabolic fingerprint close to the wild-

type mice (Figure 4E), which is consistent with their microarray

profiling at 42 days of age (Figure 2A). On the other hand, the

metabolic fingerprint in the older 569 mice between 9 and 12

months has changed to resemble the 391 mutant mice (Figure 4E).

At this time they also became visibly obese (Figure 2B). It should

be noted that metabolic enzymes are often regulated by means

other than transcription, for example substrate availability,

enzyme half-life, changes in activity, or binding co-factors [29].

Thus, an analysis of predicted metabolic changes based on

microarray data alone does not provide the full picture, especially

Figure 5. Statistical analysis of metabolites in murine liver
tissue. (A) 1D proton HR-MAS NMR spectrum of murine liver tissue. The
identity of relevant metabolites is indicated. Glu: glutamate, Gln:
glutamine (B) Principal components analysis - scores plot of PC1 versus
PC2. Each data point represents one liver tissue sample. Green circles:
wild-type, red squares: 569 mutants, blue triangles: 391 mutants,
orange diamonds: wild-type on high-fat diet. (C) Principal components
analysis - loadings plot of PC1 versus PC2. Each data point represents one
bucket (with the chemical shift indicated explicitly). Several significant

metabolites are indicated explicitly. The model consists of 3 PCs and
represents data from 18 samples. Regions containing water, lactate and
glutamate/glutamine signals were excluded from the PCA.
doi:10.1371/journal.pone.0002764.g005
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when changes in physiology are subtle or appear later in life.

Characterisation of metabolite levels are a more direct measure of

the actual metabolic changes, and it is recognised that metabo-

nomics provides a connection between differential mRNA

responses and the metabolic phenotype [30–33].

The NMR-metabonomic analysis identified taurine as the most

prominent metabolite able to distinguish between wild-type and

mutant mice, with urinary taurine levels being decreased in

mutants. This was in agreement with the microarray analysis,

which identified Csad (cysteine sulfinic acid dehydrogenase) as one

of the marker transcripts decreased in the mutant mice. As CSAD

is the rate-limiting enzyme in taurine biosynthesis [34], the

decreased transcript levels are concordant with the reduced

taurine levels observed in the metabonomic analysis (Supplemen-

tary Information Figure S1). The observed change is also

consistent with reduction in the STAT5 signalling in GHR

mutant mice, as Csad transcript levels were decreased in

STAT5A2/2 mice [35]. Taurine is the best example of the

convergence of the two methods and the power of multivariate

statistics in this combined analytical approach.

Taurine is an important metabolite involved in the bile acid

synthesis pathway [34], osmoregulation and intracellular calcium

levels [36]. It is generally regarded as a sensitive marker indicating

changes in the liver metabolism [37]. Our microarray analysis has

identified altered metabolic transcripts in the liver, in particular in

lipid, energy, nucleic acid and sulphur metabolism. Moreover, our

previous and current analysis of the 569 mutant mice showed that

they develop obesity and insulin resistance later in life [19]. The

change observed in the metabolic profile of mutant 569 is

accompanied by an increase in fat depots (Figure 2D–E). Taurine

is related to the development of obesity, as its conjugation to bile

acids is the only mechanism of excretion of cholesterol, and thus

reduces serum levels of cholesterol in humans, in particular in low-

density lipoproteins (LDL) [38]. Decreased taurine levels will thus

lead to increased cholesterol retention. This links taurine

biosynthesis with the cholesterol and steroid metabolism, which

are also affected in the GHR mutant mice (Kerr, Lichanska,

Rowland, Waters, in preparation). In addition, taurine levels are

decreased in diabetic patients [39].

Most significantly, a vicious cycle involving obesity and taurine

has recently been discovered [28], implicating low levels of taurine

in the continuing maintenance of this condition. The concentra-

tion of taurine in the blood regulates positively the expression of

cysteine deoxygenase (CDO), one of the key enzymes involved in

taurine biosynthesis (Supplementary Information Figure S1,

schematic), in white adipose tissue. Thus, decreasing blood taurine

levels lead to less CDO, further decreasing the taurine concen-

tration. Importantly, taurine promotes fatty acid oxidation (b-

oxidation) and increases mitochondrial energy metabolism. A

depletion of taurine blood levels, resulting from deficient STAT5

generation would thus reduce b-oxidation, promoting further

obesity and creating the vicious cycle [28] (Supplementary

Information Figure S1, schematic).

High expression levels of Csad are found only in the liver and

kidney [40,41], while they are negligible in most other organs,

especially in muscle and adipose tissue, making any contributions

from transcript changes in these organs to the observed reduction

in urinary taurine levels highly unlikely. It is likely that both liver

and kidney contribute to urinary taurine under the control of GH,

since both tissues possess responsive GH receptors. Indeed, the

metabonomic analysis of liver tissue shows the same changes in

taurine levels as seen in the urine, i.e. taurine levels are reduced in

liver tissue of 391 mutant mice when compared to lean wild-type

mice (Figure 5BC). This result demonstrates directly that the

reduced urinary taurine levels in the mutant mice reflect decreased

hepatic taurine biosynthesis. In contrast, taurine levels are

increased in obese (fat fed) wild-type mice compared to their lean

counterparts (Figure 5BC). This shows that the effects of GHR

mutation are clearly different from the effects of obesity and that

the obesity in the mutant mice is likely to be a consequence of the

low taurine levels and the GHR mutations rather than the

converse. It is plausible that the increase in hepatic taurine levels

seen in fat-fed wild-type mice is a compensatory mechanism to

overcome the increased supply of dietary triglycerides by

promoting b-oxidation.

Indeed, while a reduction in b-oxidation would be expected in

obesity, we have observed an increase in expression of a number of

genes involved in fatty acid b-oxidation. Similar observations were

made previously by other groups [15,17,18] in animals deficient in

GH. Most of these transcripts are normalized by GH treatment.

The changes observed by ourselves and others are generally small,

1.5–2 fold between the wild-type and mutants or GH-deficient

animals, and may reflect the hepatic response to increased lipid

load resulting from upregulation of the CD36 transporter and

lipoprotein lipase expression evident in the microarray analysis

(19), leading to steatosis in older animals.

The increased lipid transport in the GHR mutant mice is likely

to create an increased demand for lecithin, which can be satisfied

by increased lecithin synthesis via glycine and choline, causing an

increased flux through the choline metabolism. This interpretation

is corroborated by increased urinary levels of TMA, dimethyla-

mine (DMA) and TMAO. Indeed, these three metabolites are the

second-most significant metabolites in the metabonomic analysis

after taurine. They can be made either via endogenous pathways

from choline or from dimethylglycine (Supplementary Information

Figure S1), or via exogenous pathways involving gut flora [42,43].

The increased flux through the endogenous glycine-choline

pathway is further substantiated by increased transcriptional levels

of FMO3 [44,45], the enzyme catalysing the conversion of TMA

to TMAO, and this enzyme was identified as one of our marker

genes (Figure 2A).

The increased flux through the choline metabolism is likely to

be further facilitated by the decreased taurine production. Due to

the feedback inhibition of CDO and the decreased levels of Csad

levels, the taurine precursor cysteine can be shunted through

alternative pathways, by being converted via serine to glycine and

then further into choline and lecithin as outlined above.

However, the metabonomic data suggest that the majority of

the cysteine is shunted into the biosynthesis of creatine, which

undergoes breakdown to creatinine (Supplementary Information

Figure S1). The urinary levels of both compounds were increased,

which can indicate an overflow of the serine to glycine pathway,

alteration of muscle metabolism, kidney function, or all of those.

Indeed it has been previously suggested that increased cysteine

synthesis is associated with hypercreatinuria [46]. Creatine is also

an important metabolite of energy metabolism because a

phosphorylated form of it (phosphocreatine) is able to phosphor-

ylate ADP to ATP [47], thereby generating energy reserves. The

excretion of creatinine is a sensitive marker for lean muscle mass

[48], which is in turn highly influenced by GH, and thus it could

be argued that the observed changes in creatine/creatinine

excretion are a result of changes in the muscle mass as result of

the disrupted GH signaling. However, the percentage of lean

muscle mass decreases in the GHR mutant mice, while excretion

of creatine and creatinine increases, meaning that the first

interpretation is more likely.

We anticipated abnormal energy metabolism, as 21% of

differentially expressed metabolic genes are involved in generation
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of energy and precursor metabolites. The NMR analysis

demonstrated changes in the urinary levels of TCA cycle

metabolites, with decreased urinary concentrations of citrate,

succinate, oxaloacetate and 2-oxoglutarate. These changes can

have a variety of reasons and are not straightforward to interpret,

as TCA cycle metabolites are also central metabolic branching

points for biosynthesis or breakdown of fatty acids as well as for

biosynthesis and breakdown of amino acids. A reduction in

urinary citrate can also indicate metabolic acidosis [49].

Correlating with the metabonomic observations, the microarray

analysis indicated alterations in the TCA cycle, albeit at low levels.

GH is known to regulate a number of TCA cycle enzymes, in

particular NADH-dependent isocitrate dehydrogenase, succinate

CoA ligase and fumarate hydratase [15,18].

One of the other categories changed in Gene Ontology analysis

was the metabolism of nucleic acids and its components (Table 1).

While we were unable to match the changes in gene expression to

a single pathway, there were indications of changes in pyrimidine

and to smaller extent in purine metabolism. The metabonomic

data showed increased urinary levels of allantoin, which is an

intermediate in purine metabolism. This is most likely the result of

an increased flux in purine metabolism, possibly due to increased

DNA breakdown and excretion via the xanthine-allantoin-urea

pathway. Alterations in this pathway would not be surprising, as it

has been described previously that in GH-deficient patients there

is increased excretion of urea [50,51] in fasting individuals, which

is overcome by GH replacement. Relevant to this is a large

increase in transcript levels of hydroxylamine oxidase (Hao3), for

which transcript levels were increased from 3.8 fold in mutant 569

to 11 fold in mutant 391 and GHR2/2 mice. This would lead to

an increase in nitrite levels and consequently ammonia levels,

which can enter the urea cycle, further increasing urea excretion.

Conclusions
In this paper we have shown that truncations in the intracellular

domain of the GHR that impair STAT5 signaling in particular cause

dramatic metabolic changes, leading to obesity, and involving the

metabolism of the whole body, as evidenced by their consistency

between liver tissue and urine. The most prominent hallmarks of

these changes are a decrease in taurine levels and changes in choline

metabolism, characterized by increased levels of TMA, TMAO and

DMA. Both changes are connected via lipid transport pathways and

amino acid metabolism and support a potentially important role of

taurine in regulating b-oxidation.

We have also has shown how various parts of metabolism

interact with each other in response to altered hormonal levels.

The effects of GH on metabolism were always described as

complex, but they can be unraveled when global metabolism

analysis methods are used.

The multivariate statistical techniques analysing metabonomic

and gene expression data implicated the same biochemical

pathways. The convergence of both methods on the same

biochemical pathways underlines the complementarity of both

techniques and exemplifies the power of this combined approach.

Our results demonstrate that metabonomic data can be success-

fully linked with microarray results to develop a coherent picture

of physiological changes in response to a varying genetic

background, allowing a deeper understanding of systems biology.

Future studies combining more detailed genetic expression profile

data with established data of metabolic fluxes in tissues, metabolic

modelling, and metabonomic data will be useful in developing a

more detailed understanding of how changes in gene transcription

lead to the observed metabolic and systemic changes.

Materials and Methods

Animals
Animals were housed in an approved facility and treated as per

university guidelines with ethics approval from the University of

Queensland Animal Ethics Committee and the Australian Office

of the Gene Technology Regulator. Water and standard feed

pellets were available ab libitum under a 12 hr light/dark cycle at

20–22uC. Prior to urine collection, animals were fasted overnight

(16 hours), with water being provided ab libitum. Urine samples

were taken from 55 male mice aged from 2 to 12 months. The

mice were either wild-type C57Bl/6J (n = 16), or had a truncation

in the GHR at lysine 569 together with conversion of tyrosines 539

and 545 to phenylalanine (mutant 569) (n = 27) or had a

truncation in the GHR at lysine 391 (mutant 391) (n = 12). In

addition, three animals/strain were used for gene expression

analysis using microarrays (see below). In addition, a second

cohort of male mice was used for metabonomic analysis of liver

tissue. This cohort comprised six wild-type C57Bl/6J mice fed on

standard chow, three wild-type mice fed on a special high-fat diet,

three mutant 569 mice and six mutant 391 mice, both fed on

standard chow. Mice were sactrificed at four months of age, the

left lateral lobe of the liver was removed immediately after killing,

snap frozen in liquid nitrogen, and stored at 280uC until required.

Creation of the two mutant strains is described in Rowland et al.

[19] and of the GHR2/2 mice in Zhou et al. [52].

Adipose tissue analysis
Adipose tissue was dissected from two separate areas. Subcu-

taneous fat pads were obtained from the side of the back legs and

body, and renal adipose tissue was dissected from around the

kidneys. Each of the fat pads was weighed, and their weight

relative to the whole body weight is reported in the figures. For

each time point 4–8 animals/strain were sacrificed.

Microarray analysis
Mice were sacrificed at 42 days of age and the livers were

dissected directly into RNAlater solution (Ambion, Austin TX).

Total RNA was extracted using RNAqueous kit (Ambion)

according to the manufacturer’s instructions, quality of RNA

was confirmed by spectrophotometry and gel electrophoresis.

Probes were prepared as described in Rowland et al. [19]. Three

animals were used in each group. The samples were hybridized to

the Affymetrix U74v2A arrays.

The increases and decreases, as well as signal log ratios (SLRs,

equivalent of fold changes) were identified following standard

Affymetrix protocol with MAS 5.0, and then the comparisons were

loaded into DMT (Affymetrix), which allowed identification of

transcripts changing in the same direction and the number of

comparisons in which they change as described in [19]. In this

analysis a gene was scored as significantly changed in one group in

comparison to the other if it was changed in the same direction in

at least 8 out of 9 comparisons performed and the fold change was

above 1.5-fold. We used Anova to test the statistical significance of

the array data with a cut-off score of p,0.0005 and obtained a set

of 398 genes differentially expressed between the three groups.

Marker identification using microarrays
Microarray data were normalised using RMA [53] with qspline

normalisation of perfect match probes only. Median polish of the

results was used for a final expression value per probeset. The

resulting expression values were then analysed with GeneRaVE

algorithms [24], made available via the RChip library for the R

statistical language package, (RChip library and vignette are
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available from https://www.bioinformatics.csiro.au/GeneRave/

index.shtml). Genes were identified whose expression values could

be used to distinguish between the sets of array data. These genes

were removed from the dataset and a further set of classifiers were

obtained. This iterative process was continued until the predictive

power of the dataset was exhausted (11 rounds). Default settings

for GeneRaVE were used (kbess & bbess), as described in the

accompanying software vignette. The function ‘deleteRepeat’ was

used to extract multiple classifiers from the data using the

HGmultc method for fitting a multiclass logistic regression models

to our data. Ten-fold cross validation was also used to assess the

error associated with the chosen classifiers.

Functional classification and pathway analysis was performed

on the 399 genes identified in the previous study [19] as

differentially expressed. Gene Ontology analysis using NetAffx

GO Browser, and DAVID Functional Classification Tool [54]

were used to identify the main functional groups over-represented

among the differentially expressed genes. Pathway mapping was

performed using DAVID and the Pathway Miner (http://www.

biorag.org) [55]. For DAVID and NetAffx GO Browser we have

uploaded a gene list, in form of Affymetrix GeneIDs, of 399

differentially expressed genes, Biorag actually required GeneBank

accession numbers and log ratio changes for the 3 groups.

Array data are available from the NIH Gene Expression

Omnibus database (http://www.ncbi.nlm.nih.gov/geo/), with

accession numbers GSM15488, GSM15489, GSM15490,

GSM15491, GSM15492, GSM15493, GSM15494, GSM15495,

GSM15496, GSM15497, GSM15498, and GSM15499.

Preparation of urine samples
Urine was collected from animals into glass containers and

frozen immediately at 220uC. Samples were prepared for NMR

by diluting 200 ml mouse urine with 300 ml 0.1 M sodium

phosphate buffer, pH 7.4, and 50 ml D2O. In cases, where less

than 200 ml mouse urine was available, urine was diluted with

H2O to 200 ml. Samples contained trimethylsilylpropionic acid

(TSP) for calibration of the 1H and 13C chemical shifts.

NMR spectroscopy of urine samples
NMR spectroscopy of mouse urine samples was carried out on a

Bruker AV500 NMR spectrometer equipped with a 5 mm self-

shielded z-gradient triple resonance probe and a sample changer.

All spectra were recorded at 298 K. 1D proton spectra were

measured with 256 scans and 64k resolution over a spectral width

of 14 ppm. To ensure solvent suppression of the water signal, 1D

spectra were measured with the noesypr1d pulse program (Bruker

pulse program library), using a mixing time of 150 ms. The water

signal was additionally suppressed by low-power continuous

irradiation on the water resonance during the mixing time and

the relaxation delay of 2.3 s.

In addition, the following 2D spectra were recorded on

representative samples of wild-type and 391 mice to facilitate the

assignment of signals in the 1D spectra: total correlation

spectroscopy (TOCSY), double-quantum filtered correlation

spectroscopy (DQF-COSY), 13C-heteronuclear single-quantum

correlation (13C-HSQC), 13C-heteronuclear multiple bond corre-

lation (13C-HMBC) and 13C-HSQC-TOCSY.

In all 2D spectra the 1H carrier frequency was positioned on the

water resonance. TOCSY [56] and DQF-COSY [57] spectra were

recorded for each sample with a resolution of 40966512 points and a

spectral width of 14.0 ppm. Quadrature detection in the indirect

dimension was achieved using the time-proportional phase incre-

mentation (TPPI) [58] method. Water suppression in the DQF-

COSY experiments was achieved using selective low-power irradi-

ation of the water resonance during the relaxation delay of 1.0 s. For

the TOCSY experiments a 3-9-19 WATERGATE scheme [59] was

used employing gradient pulses of ,6 Gcm21 either side of a 10 kHz

3-9-19 binomial pulse. TOCSY experiments used a MLEV17

sequence [60] of 80 ms duration for isotropic mixing.
13C-HSQC [61,62] spectra were recorded with a resolution of

40966256 data points. The spectral width was 14 ppm for 1H and

100 ppm for 13C with the 13C carrier frequency positioned at

45 ppm. 13C-HSQC-TOCSY [63] spectra were measured with

40966256 data points, 128 scans, and spectral widths of 14 ppm and

200 ppm in 1H and 13C, respectively. Isotropic mixing was achieved

with a DIPSI2 sequence [64] of 80 ms duration. The 13C-HMBC

[65,66] spectra were measured with 40966256 data points, 128

scans, and spectral widths of 14 ppm and 200 ppm in 1H and 13C,

respectively. A relaxation delay of 2.0 s was used, and the transfer

delay was optimized for indirect coupling constants of 6 Hz.

HR-MAS NMR spectroscopy of liver tissue
For each sample about 50 mg of liver tissue were placed in a

4 mm reduced volume 50 ml zirconia rotor with a teflon top insert

and a Kel-F rotor cap (Bruker Biospin, Germany). All experiments

were carried out on a Bruker AV700 spectrometer, equipped with

a 4 mm HR-MAS triple resonance probe with z-gradients, at a

sample spinning rate of 8 kHz. 1D spectra were aquired with the

standard cpmgpr1d pulse program, using a rotor-synchronised

Carr-Purcell-Meiboom-Gill sequence [90u-(t-180u-t)n-acquisition]

of 20 ms duration (n = 80) to suppress signals from macromole-

cules and other substances with short T2 values. The refocusing

delay t was set to 125 ms to match the rotation speed of the rotor.

Proton 1D spectra were measured unlocked with 128 scans and

32k resolution over a spectral width of 15 ppm. The water signal

was additionally suppressed by continuous low-power irradiation

on the water resonance during the relaxation delay of 3.0 s. The

total acquisition time for each spectrum was 11 min.

Processing of spectra
All NMR spectra were processed with TopSpin (Bruker Biospin

GmbH, Rheinstetten, Germany). 1D spectra were processed to a size

of 64k after multiplying with an exponential window function.

Spectra were manually phase and baseline corrected, and chemical

shifts were referenced to the TSP signal in the case of urine spectra or

lactate in the case of HR-MAS spectra of liver tissue.

Homonuclear 2D spectra were processed to a size of

409661024 data points. Prior to Fourier transformation, a

Lorentz to Gauss transformation with a line broadening factor

of of 210 Hz and a GB of 0.1 was applied in the direct dimension,

while in the indirect dimension data were linearly predicted, using

30 poles, and then multiplied with a squared sine bell function,

shifted by p/2.

Heteronuclear 2D spectra were processed in a similar fashion to

a data matrix size of 20486512 data points, except that the

window function in the direct dimension was a squared sine bell

function, shifted by p/2. A magnitude calculation was applied in

the indirect dimension to all 13C-HMBC spectra after Fourier

transformation

Data reduction
The 1D spectra of mouse urine were data reduced over the shift

range of d= 10.0–0.5 ppm into spectral integral regions (‘‘buck-

ets’’) of 0.05 ppm width, using AMIX3.6.6 (Bruker Biospin

GmbH, Rheinstetten, Germany). The regions d= 4.6–5.0 ppm

and d= 5.5–6.5 ppm were excluded to avoid artefacts from

varying water suppression and cross-saturation through chemical

exchange in the urea signal. NMR signals were integrated for each
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region and normalised to the total spectral intensity over the whole

spectrum. A second bucket table was constructed in a similar

fashion, additionally excluding the regions of 1.22–1.16 ppm and

3.7–3.6 ppm to exclude ethanol signals.

A similar procedure was applied for the HR-MAS spectra of

mouse liver tissue. Buckets ranged from d= 10.0–0.2 ppm with a

bucket width of 0.1 ppm. The region d= 4.5–6.5 ppm was excluded

to avoid artefacts from varying water suppression. A second bucket

table was constructed in a similar fashion, additionally excluding the

regions of d= 1.9–2.5 ppm, and d= 1.2–1.5 ppm to avoid artefacts

from shifts in the signals of lactate and glutamate/glutamine that

otherwise dominated the analysis.

Principal components analysis (PCA)
PCA was performed in AMIX, using the data from the

bucketed 1D spectra of mouse urine. A first PCA model was

constructed using all samples. The scores plots of PC1 versus PC2

and PC1 versus PC3 were inspected for differences between the

different mouse strains. Samples that constituted outliers were

identified in AMIX by cross-validation, removed from the model,

and a further round of PCA was performed. The refined model

contained seven principal components (PCs) and comprised data

from 44 urine samples.

A second PCA model was constructed in a similar fashion from

the bucket table, additionally excluding ethanol signals. The final

model contained seven PCs, explaining 90.8% of total variance,

and comprised data from 48 urine samples.

PCA was also performed similarly with the data from the bucketed

1D spectra of mouse liver tissue. The PCA model contained all

samples and three PCs. As this analysis was dominated by large

variations in the signals of lactate and glutamate/glutamine, a

refined PCA was performed, additionally excluding these signals.

The final model contained three PCs, explaining 92.0% of total

variance, and comprised data from 18 tissue samples.

Partial Least Squares Discriminant Analysis (PLS-DA)
PLS-DA was performed in AMIX, using data from the

bucketed 1D spectra of urine and group IDs of 0 (wild-type

mice), 1 (569 mice), and 2 (391 mice) as Y table. Buckets

containing signals of water, urea and ethanol were excluded from

the analysis as described above. Samples that constituted outliers

were identified in AMIX by cross-validation, removed from the

model, and further round of PLS-DA was performed. The refined

model comprised data from 54 urine samples and contained seven

PLS components, explaining 84.2% of total X-variance and

87.5% of total Y-variance with an rmsec value of 0.249. In

addition, the mouse strains were compared pairwise in three

separate PLS-DAs. These analyses were performed similarly to the

PLS-DA comparing all three mouse strains.

Metabolic trajectories for each mouse strain were constructed

by averaging the PLS1 scores for groups of mice with similar age.

Age stages where only one single mouse was available were

included in the next closest age group if their ages did not differ by

more than half a month, otherwise they were omitted from the

analysis. In addition, the 2s standard deviation from the mean

PLS1 scores was calculated to indicate the possible bandwidth of

the metabolic trajectories.

Identification of metabolites
Metabolites were identified in the NMR spectra by comparing

their 1H and 13C chemical shifts and coupling patterns with

corresponding values of metabolites from previously published data

[26,27] and from publicly accessible data banks, such as the

BioMagRes data bank (http://www.bmrb.wisc.edu), the Metabo-

lomics Database of Linkoping (MDL) (http://mdl.imv.liu.se), or the

Human Metabolome Data Bank (http://www.hmdb.ca). In addi-

tion, the information contained in the high-resolution 2D NMR

spectra (proton-proton couplings, direct and indirect proton-carbon

couplings) was used for the identification of metabolites.

Supporting Information

Figure S1 Metabolic Pathways affected by GHR mutations. Individual

enzymes are depicted in italics, and sections of metabolism in bold

and boxed. Metabolites with increased concentration in the mutants,

as detected by the metabonomic study, are indicated in green and

marked by plus signs, whereas metabolites with decreased

concentration in the mutants are indicated in red and marked by

minus signs. Enzymes in the pathways with increased or decreased

expression levels are indicated similarly. The feedback loops between

taurine levels, CDO levels, b-oxidation and obesity are indicated by

dashed connections in blue. Arrowheads indicate positive feedback

and bar heads negative (inhibitory) feedback. The two negative

feedback connections beween taurine and fat levels form a vicious

cycle. Enzyme abbreviations: Csad - cysteine sulfinic acid decarbox-

ylase, Pdha1 - pyruvate dehydrogenase alpha 1, Idh2 - isocitrate

dehydrogenase 2, Suclg1 - succinate-CoA ligase, Sdhb - succinate

dehydrogenase complex, subunit B, Fmo3 - flavin containing

monooxygenase 3, LCAT - lecithin cholesterol acyltransferase, and

CDO - cysteine dioxygenase 1.

Found at: doi:10.1371/journal.pone.0002764.s001 (0.63 MB TIF)
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