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Isabel Bäurle, Caroline Dean*

Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom

Abstract

We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified
through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the
Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin
regulators, the histone demethylase FLD and the MSI1-homologue FVE, a conserved WD-repeat protein found in many
chromatin complexes. Here, we investigate how the RRM proteins interact genetically with these chromatin regulators at a
range of loci in the Arabidopsis genome. We also investigate their interaction with the DNA methylation pathway. In several
cases the RRM protein activity at least partially required a chromatin regulator to effect silencing. However, the interactions
of the autonomous pathway components differed at each target analysed, most likely determined by certain properties of
the target loci and/or other silencing pathways. We speculate that the RNA-binding proteins FCA and FPA function as part
of a transcriptome surveillance mechanism linking RNA recognition with chromatin silencing mechanisms.
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Introduction

A significant fraction of eukaryotic genomes comprises repeated

sequences including transposons and retroelements. These sequenc-

es are effectively silenced through a number of transcriptional and

posttranscriptional pathways involving DNA methylation, small

RNAs (sRNA) and histone modifications [1,2,3]. Plant DNA is

methylated at cytosine bases in the CG, CNG (N is any nucleotide)

and CHH (H is A, C or T) contexts [4,5]. CG methylation is

efficiently copied onto the daughter strand after DNA replication

whereas non-CG methylation requires an active mechanism to re-

establish the methylation following replication. For some loci this

involves sRNA and the plant-specific RNA polymerase IV (PolIV)

[1,6]. Efficient silencing therefore paradoxically involves transcrip-

tion of the locus [7]. We have recently identified an additional

Arabidopsis pathway involved in silencing of several endogenous

transposons and retroelements through the finding that the RRM-

domain proteins FCA and FPA play a role in RNA-mediated

silencing of a transgenic hairpin [8]. Although this pathway is distinct

from the sRNA-directed DNA methylation pathway, both pathways

interact closely in a target-specific manner [8]. This is particularly

evident from the analysis of the transgene system that originally

identified the additional function for FCA and FPA. There, FCA and

FPA are required for sRNA amplification [8].

FCA and FPA were originally identified based on their role in

flowering time control [9,10,11]. Both proteins promote flowering

by down-regulating expression of the gene encoding the MADS-

domain protein FLOWERING LOCUS C (FLC), which is the

major repressor of flowering in Arabidopsis [12,13]. FCA and FPA

both contain multiple RRM-domains but share no other sequence

homology. Flowering is closely aligned with seasonal conditions

and most pathways impacting on flowering rely on environmental

cues such as temperature and photoperiod (reviewed in [14]). fca

and fpa mutants still respond well to environmental cues and were

for this reason put into a group named the autonomous pathway

(AP). This group also comprises two chromatin regulators, the

putative histone H3 K4 histone demethylase FLOWERING

LOCUS D (FLD), which is a homologue of human LSD1, and the

MSI1 homologue FVE [15,16,17]. FVE is one of five Arabidopsis

MSI1-like genes, which are homologous to the eukaryotic MSI1

family of WD40 domain-containing proteins found in several

protein complexes acting on chromatin [18]. The autonomous

pathway also comprises the homeodomain protein LUMINIDE-

PENDENS (LD) [19], the K homology-domain protein FLOW-

ERING LATE WITH KH MOTIFS (FLK) [20,21] - also a

putative RNA-binding protein - and FY, a homologue of the S.

cerevisiae 39-end processing/ polyadenylation factor Pfs2p [22].

The interactions of the AP components FCA, FY and FLD have

been analysed [22,23]. FCA negatively regulates its own

expression through alternative transcript 39 processing, and this

and its regulation of FLC requires a physical interaction with FY

[22,24]. FCA also requires the activity of the histone demethylase

FLD to down-regulate FLC, suggesting an RNA metabolism/

processing step triggers chromatin changes at FLC [23].

Here, we have continued to investigate the role of the AP in

chromatin silencing, and have focused on the functional
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interactions of the RRM-domain proteins FCA and FPA with the

chromatin regulators FLD and FVE. We show that FVE, FLD

and the third putative RNA-binding protein, FLK, also play a

widespread role in chromatin silencing and that they interact

functionally in a target specific manner. We also show that the

RRM protein FPA largely acts through the histone demethylase

FLD in the silencing of FLC, reinforcing the conclusion that RRM-

type RNA-binding proteins trigger a chromatin change to effect

silencing. We find that the interactions of the RRM proteins and

the chromatin regulators are different at each target and we

exemplify this by comparing FLC and AtMu1 regulation.

Results and Discussion

The RRM-domain protein FPA acts through the histone
demethylase FLD to suppress FLC expression

We had previously shown that the RRM protein FCA requires

both the 39 processing/polyadenylation factor FY [22] and the

histone demethylase FLD to down-regulate FLC [23]. To address

whether the second RRM protein, FPA, also requires other AP

components for its function, we generated plants expressing FPA

from a genomic fragment under the control of the constitutive 35S

promoter. The 35S::FPA construct complemented an fpa mutant

Figure 1. Overexpression of FPA in autonomous pathway mutant backgrounds and FRI. For each background a non-transformed (nt)
control and T2 generation plants from 1–3 independent transformed lines (numbers) were used to assay flowering time and expression levels of FLC,
FPA and APT by RNA gel blot analysis. fpa-8 and FRI did not flower during the experiment, which was terminated at ,70 leaves. Error bars indicate
standard error of the mean. Lines were processed in two separate experiments as indicated. Within one experiment, all RNA gel blot panels shown
come from the same membrane/ hybridization.
doi:10.1371/journal.pone.0002733.g001

Figure 2. Flowering time of autonomous pathway single and double mutants. Flowering time of the indicated mutant plants grown under
long day conditions in a greenhouse was measured in days to flowering (opening of the first flower). Flowering time is indicated as the average delay
in flowering relative to the Col wild type +/2 standard error of the mean. (yellow (fve), green (fld), blue (flk), and black (all others) bars). Col was
flowering at 39 days. White and grey bars indicate predicted flowering time for calculated additive and epistatic scenarios, respectively. *, additive
interaction; **, epistatic interaction.
doi:10.1371/journal.pone.0002733.g002
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with respect to FLC transcript levels and flowering time and was thus

considered fully functional (Figure 1). Overexpression of FCA

suppresses late flowering and high FLC expression levels caused by

the presence of the strong FLC activator FRI [23]. Similarly, we

found that overexpression of FPA in a FRI background repressed

FLC expression levels and resulted in early flowering, thus

confirming that FPA overexpression is sufficient to overcome even

high FLC levels (Figure 1). We then studied whether any of the AP

components FCA, FLD, FLK, FVE, or FY were required for the FPA-

mediated repression of FLC. FPA overexpression reduced flowering

time and FLC levels in fca, flk, fve and fy mutant backgrounds to the

wild type level, suggesting that these genes are not required for FPA

function on FLC. However, overexpression of FPA in an fld mutant

background reduced both flowering time and FLC levels only slightly

compared to non-transformed fld mutant plants, suggesting that FPA

acts in part through FLD. This is further supported by the finding

that fpa fld double mutants flowered at the same time as the later of

the single mutants (Figure 2) and our previous results demonstrating

that reactivation of FLC in fpa and fld mutants is at the level of

transcription [8,23]. Together, the finding that the RRM-domain

protein FPA represses FLC expression through the putative histone

demethylase FLD is in line with a model where an RNA-binding

component recognizes a particular RNA feature and this triggers

chromatin silencing of the locus. Interestingly, while FCA requires

both FY and FLD, FPA requires FLD but not FY to repress FLC,

indicating that the involvement of the histone demethylase FLD is

common to both RRM-proteins, while the interaction with the 39-

end processing factor FY is specific to FCA.

Figure 3. Expression levels of (retro)transposon targets in AP single and double mutants. Expression levels were determined by
quantitative RT-PCR for AtMu1 (A) and IG/LINE (B). Data from 3 independent biological replicates were averaged and normalized to Col, +/2 standard
error of the mean. (C) AtSN1 expression levels were determined by semi-quantitative RT-PCR (AtSN1, 36 cycles; TUB, 25 cycles), a representative
experiment from 3 independent replicates is shown.
doi:10.1371/journal.pone.0002733.g003

RRM-Proteins and Chromatin

PLoS ONE | www.plosone.org 3 July 2008 | Volume 3 | Issue 7 | e2733



Analysis of flowering time in double mutants
To reveal further interactions between components of the

autonomous pathway, we created a number of double mutant

combinations in the Columbia (Col) background. We chose Col

over the Landsberg erecta accession, which had been used for the

early genetic work on the autonomous pathway [11,25], because

Landsberg erecta FLC carries a transposon insertion in the 39 end of

its first intron and this results in a reduction of expression of the

locus through sRNA-mediated silencing [26]. We determined

flowering time of the single and double mutants under long days

(Figure 2). Previous studies have established that the delay in

flowering in AP mutants is caused by the misregulation of FLC

[13,15,27]. All double mutants flowered at least as late as the later

single mutant and many considerably later, as expected if

independent action of both mutants was assumed. To further

analyze the interaction of the studied mutants during flowering

time control, we calculated predicted flowering times for the two

simplest genetic interactions conceivable and compared them to

the experimentally obtained values. If both gene actions were fully

independent, we would expect additivity of the delay in flowering

in the double mutant (Dm1 m2 =Dm1+Dm2). If one gene action was

dependent upon another (epistasis), we would expect the double

mutant to flower at the same time as one parent (eg. Dm1 m2 =Dm1,

for Dm1.Dm2). This method indicated that fca fld have an epistatic

interaction and fca fve are additive, confirming previous findings

[23]. It also indicated fpa fld are epistatic and both fca flk and fpa flk

additive, thus complementing the overexpression experiments

described above. The flowering time of the remaining double

mutants, including fpa fve, was intermediate between the two

scenarios, suggesting more complex interactions. Thus, in

flowering time control, FCA and FPA both act (at least partly)

through the histone demethylase FLD, while FVE acts indepen-

dently of FCA, but may have a more complex interaction with

FPA. Finally, the putative RNA-binding protein FLK acts

independently of both FCA and FPA.

Derepression of AtMu1, AtSN1 and IG/LINE in double
mutants

We have recently found that FCA and FPA also regulate a range

of other loci that are subject to sRNA-dependent chromatin

silencing [8]. We therefore investigated the interactions of the AP

components in their regulation. We first analyzed transcript levels

of AtMu1, AtSN1 and IG/LINE [6,28,29] in fca, fpa, fve, fld and flk

single mutants as well as Col FRI plants (Figure 3). While AtMu1

showed only a slight reactivation of expression in most AP

mutants, it was very highly up-regulated in fve (16.5 fold over wild

type; Figure 3A and [8]). IG/LINE expression was only enhanced

in fld (Figure 3B), whereas AtSN1 expression was strongly increased

in fpa, and slightly increased in fve and flk mutants (Figure 3C). Our

previous analysis indicated redundancy between FCA and FPA in

the regulation of these additional targets [8]. However, it was not

clear whether this reflected their shared feature of RRM-domains

in particular or whether double mutants with other AP

components would also show more-than-additive effects. We

therefore analyzed the available double mutants in the Col

background, focussing on the RRM-domain proteins FCA and

FPA and the chromatin regulators FVE and FLD. Indeed, a

number of these double mutants showed stronger reactivation of

AtMu1, AtSN1 and IG/LINE than any of the single mutants. Most

noticeably, fpa fve showed a 4.5-fold increase in expression of the

DNA transposon AtMu1 over fve (73-fold over wild type,

Figure 3A). fca fve and fve fld showed an increase in AtMu1

expression compared to wild type but less than fve alone. The

significance of this reduction in these double mutants is at present

unclear. fpa fld and fpa flk both showed slightly higher AtMu1

expression than any of the respective single mutants. Unexpect-

edly, fca fld mutants (but not fpa fld or fve fld mutants) consistently

showed hyper-repression of AtMu1 expression (5-10-fold).

IG/LINE is an intergenic transcript flanked by a solo LTR which

presumably acts as a promoter element [29]. Despite lack of IG/

LINE reactivation in any of the single mutants with the exception of a

slight increase in fld, in the majority of double mutants tested IG/

LINE expression was reactivated (Figure 3B). This indicates a

function in IG/LINE repression for all the AP mutants tested here,

most obviously seen in fpa fld, fca fld and fpa fve.

The retroelement AtSN1 is reactivated in all double mutants with

fpa, fve or flk to an extent which approximately reflects the addition of

the reactivation in the respective single mutants (Figure 3C). The one

exception was fpa fld which displayed a strong synergistic reactivation

of AtSN1. Thus, the most obvious conclusion is that FPA, FVE, FLD

and FLK act largely independently on AtSN1.

These data therefore reveal the inherent redundancy of AP

components. Effects on the targets are in most cases only revealed

in double mutant backgrounds and the variation at the different

loci presumably reflects their differential interaction with each

other and with other silencing pathways.

Figure 4. Interaction of FCA, FPA and FVE on FLC and AtMu1. Overexpression (ox) of FCA or FPA compensated loss of FVE on FLC, but not AtMu1.
FLC and AtMu1 expression in the indicated genotypes were determined by quantitative RT-PCR. Error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0002733.g004
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Differential interactions of FCA, FPA and FVE on FLC and
AtMu1

To further dissect the differential interactions between AP

components, we analyzed the effect of FCA, FPA and FVE on

AtMu1 regulation in more detail and compared it to the situation

at FLC. At the FLC locus, overexpression of either FCA or FPA can

compensate for the loss of FVE protein and reduce FLC expression

to or below wild type levels (Figure 4), suggesting that both FCA

and FPA act independently of FVE on FLC. The strong

Figure 5. DNA methylation at AtMu1 in double mutants. (A) Schematic representation of the AtMu1 TIR showing the recognition sites of the
enzymes used in (B) and (C), and the type of methylation analyzed. DraI was used as a control for complete digestion in all experiments ((C) and data
not shown). (B) and (C) Relative DNA methylation assayed by quantitative PCR of restriction enzyme digested DNA. Error bars indicate standard error
of the mean. (D) Bisulfite sequencing of AtMu1 TIR; ddm1, in which DNA methylation is strongly decreased [28], was included as a control.
doi:10.1371/journal.pone.0002733.g005
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reactivation of AtMu1 in fve enabled us to ask whether the same

was true for AtMu1. Overexpression of FCA or FPA in an fve

mutant did not restore silencing of AtMu1 (Figure 4), suggesting

that either FCA and FPA act through FVE on AtMu1, or that FCA

and FPA act in parallel to FVE and overactivation of FCA or FPA

is not sufficient to counteract loss of FVE. fca fve did not show

higher AtMu1 expression than fve (Figure 3A), consistent with the

notion that FCA is working through FVE on AtMu1. By contrast,

fpa fve did show higher AtMu1 expression than fve, consistent with

independent action of both genes. Furthermore, the fve mutant

background was more sensitive (than wild type) to loss of fpa with

respect to AtMu1 reactivation, highlighting the idea of redundancy

between different AP components.

The autonomous pathway mediates silencing through
DNA methylation-dependent and –independent effects

Silencing of AtMu1 is associated with both symmetric (CG) and

asymmetric (CNG, CHH) DNA methylation [28,30]. Derepression

of AtMu1 in fca fpa correlated with a loss in asymmetric DNA

methylation ([8] and Figure 5B). To address whether a similar loss in

DNA methylation at AtMu1 occurred in other AP mutants with

AtMu1 mis-regulation, we analyzed DNA methylation of the

Terminal Inverted Repeats (TIRs). First, we used an assay that

combines digestion of DNA using DNA methylation-sensitive

restriction enzymes and quantitative PCR (Figure 5A). As controls,

we used the methylation-insensitive enzyme DraI and compared the

mutants to nrpd1a (PolIVa) mutants, in which most of the asymmetric

DNA methylation is lost [6,8]. Using three different enzymes that

report on CNG and CHH sites (Figure 5A), we found a pronounced

loss of DNA methylation in fve and in fve fca, fve fpa, fve fld, and fld fpa

(Figure 5B, C). Despite the stronger reactivation of AtMu1 expression

in fve fpa compared to fve, DNA methylation levels in both mutants

were similarly low (Figure 5C), suggesting that the further increase in

expression was independent of DNA methylation. We confirmed the

loss of DNA methylation at CNG and CHH sites in fve and fve fpa

using bisulfite sequencing of the AtMu1 TIR region (Figure 5D,

Table S1). CG DNA methylation at AtMu1 was not or only slightly

affected in fve and fpa fve.

During the double mutant expression analysis, we found that fca

fld mutants had hyper-repressed AtMu1. Interestingly, this hyper-

repression correlated with an increase in asymmetric DNA

methylation in fca fld, but not fld single mutants (Figure 5B).

Further studies will be necessary to understand the basis of this

effect. At present, we can speculate that in the absence of FLD, an

FLD-like protein can take its place; in the presence of FCA, this

FLD-like protein would contribute to basal activation of AtMu1,

whereas loss of FCA would cause this protein to become a strong

repressor, possibly by switching its specificity to demethylate

certain residues on histone tails. FLD homologues have been

described recently [31], as has the context-dependent switch of

specificity for the human FLD homologue, LSD1 [32,33].

Asymmetric DNA methylation is thought to be directed by

sRNA [1,3,5]. We did not find a change in the abundance of

sRNA at AtMu1, AtSN1 or IG/LINE (soloLTR) in any of the double

mutants tested (Figure 6), suggesting that none of the AP genes

play a role in the amplification of sRNA, but rather that they act

either downstream or independent of sRNA. AtMu1 sRNA and

asymmetric DNA methylation are lost in PolIVa mutants, yet

expression increases only about 6-fold [8]. In contrast, we have

shown here that AtMu1 expression in fve fpa increases ,70-fold,

suggesting the involvement of DNA methylation-independent

effects besides the observed reduction in DNA methylation.

Reactivation of transcription in the presence of DNA methylation

has previously been reported for the targets of the MORPHEUS’

MOLECULE1 (MOM1) gene [34,35] and for AtSN1 in fca fpa [8].

Both MOM1 and FCA FPA act in parallel to DNA methylation, and

loss of DNA methylation through mutation or application of the

DNA methylation inhibitor 5-aza-deoxycytidine (aza-dC) in mom1 or

fca fpa leads to dramatic developmental perturbations [8,34]. To find

evidence for the DNA methylation-independent role of other

components of the autonomous pathway, we tested whether any of

the double mutants tested in this study showed hypersensitivity to

aza-dC. Indeed, at aza-dC concentrations that did not affect

development in wild type or fca or fpa single mutants, development in

fca fve and fpa fld mutant seedlings was strongly perturbed similar to

what was reported for fca fpa (Figure 7, Table S2 and [8]). fpa fve and

fpa flk were also hypersensitive to aza-dC, albeit to a slightly lesser

extent (Figure 7). Together, our results demonstrate that AP

components mediate silencing through both DNA methylation-

dependent and -independent effects (Figure 8).

Conclusions
The autonomous pathway was initially identified as a flowering-

specific pathway that promotes flowering by repressing expression of

the floral repressor FLC. However, it is now clear that it has more

widespread roles on other targets in the Arabidopsis genome [8,36].

Here, we have investigated how components of the autonomous

pathway functionally interact to achieve this silencing.

Using gain-of-function analysis of the RRM-domain protein FPA

to complement our loss-of-function double mutant analysis, we find

that FPA at least partially acts through the histone demethylase FLD

to repress FLC. Notably, FPA acts independently of the 39-processing

factor FY. This is in contrast to the other RRM-domain protein

FCA, which acts through both FY and FLD. Thus, FCA and FPA

have similar but distinct functions in repressing FLC. The MSI1

homologue FVE, in contrast, functions independently of FCA and

FPA on FLC. However, analysis of the DNA transposon AtMu1 in

double mutants and lines overexpressing FCA or FPA in an fve

mutant background is consistent with the notion that on this target

FCA acts through FVE.

Figure 6. Accumulation of sRNA from a range of targets (AtMu1,
AtSN1, IG/LINE (solo LTR)) is not affected in AP double mutants.
9 mg of RNA enriched for the low molecular weight fraction from 14 day
old seedlings of the indicated double mutants or nrpd1a was loaded
per lane. Micro RNA miR171 is shown as a control.
doi:10.1371/journal.pone.0002733.g006
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In general, we find that the effects of the AP genes and their

interactions differ with each target analyzed and show no

correlation with FLC levels, indicating the observed widespread

effects are unlikely to be secondary effects of FLC overexpression.

We therefore view the autonomous pathway not as a linear

pathway, but rather a module of proteins whose role may be to

recognize certain RNA features (presumably via the RNA-binding

proteins) and trigger a reduction in the transcription of the

corresponding loci (presumably via the chromatin regulators). This

process is likely to be highly coordinated with transcription and

transcript maturation (processing, capping, splicing). It is also

possible that different modules of the autonomous pathway

interact with different parts of the transcription and maturation

machinery. We propose that the autonomous pathway is part of a

widely conserved transcriptome surveillance mechanism and in

Arabidopsis the gene encoding the flowering repressor FLC has,

perhaps through selection for flowering time variation, become a

very sensitive target.

Materials and Methods

Plant Materials
All mutants were in the Col background and have been

described; fca-9, fpa-7, fpa-8 [8], fve-3 [16,17], fld-3, fld-4 [15], flk-1

[20], Col FRI Sf2 [37], nrpd1a-5 [38], ddm1-2 [39]. Plants were

grown in long day conditions in soil at 23uC or on GM minus

glucose plates at 20uC.

Construction of 35S::FPA
A genomic FPA fragment (coding sequence plus introns) was

amplified with flanking BamHI sites (primers 30/FPA_BamHI_F

(AAAGGATCCACAATGGCGTTATCTATGAAGCCATTC-

Figure 7. Several AP double mutants (fca fpa, fca fve, fpa fld, fpa fve, fpa flk) are hypersensitive to the DNA methylation inhibitor aza-
dC. Seedlings were grown for 14 days on plates containing the indicated concentration of aza-dC before their phenotypes were scored. (A) A
representative seedling of the indicated genotypes and treatments is shown. All pictures are the same magnification and represent 15 mm615 mm
original size. (B) Seedlings were grouped into different classes based on the phenotype of their primary leaves (fully expanded leaves, only 1 leaf
expanded, leaves bit expanded stub/stump/pin, no leaves). Severity of the phenotypes increased with increasing aza-dC concentration.
doi:10.1371/journal.pone.0002733.g007
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AGAGC) and 31/FPA_BamHI_R (AAAGGATCCTCAAGGC-

CCCTGTCCAGCCGGAGTA)) and inserted into 35S::pBIN-

Plus [40].

RNA and DNA methylation analysis
RNA was extracted from 14 day old seedlings and analyzed as

described [8]. Bisulfite sequencing was performed as described [8].

For determining DNA methylation through quantitative PCR, we

extracted DNA from 14 day old seedlings using the QIAGEN

DNeasy Plant Mini Kit and digested 20 ng of DNA overnight with

15 units of the indicated restriction enzyme. After inactivating the

restriction enzyme, we immediately performed quantitative PCR

using 0.3 ng of DNA per PCR reaction and primers 96/

MuTIR_F and 97/MuTIR_R as described in [8]. Primers for

FLC quantitative RT-PCR were FLC_cDNA_393F (AGCCAA-

GAAGACCGAACTCA) and FLC_cDNA_550R (TTTGTCC-

AGCAGGTGACATC). All other primers have been described

[8].

Supporting Information

Table S1 Additional information for Bisulfite sequencing of

AtMu1.

Found at: doi:10.1371/journal.pone.0002733.s001 (0.04 MB

DOC)

Table S2 Additional information on the Percentages of

abnormal seedlings after 14d growth on the indicated concentra-

tion of aza-dC

Found at: doi:10.1371/journal.pone.0002733.s002 (0.10 MB

DOC)

Acknowledgments

We would like to thank Fuquan Liu for generating the fca flk and Col

35S::FCA, fve lines and Szymon Swiezewski, Bas Rutjens and Michael

Lenhard for helpful comments.

Author Contributions

Conceived and designed the experiments: IB CD. Performed the

experiments: IB. Analyzed the data: IB. Wrote the paper: IB CD.

References

1. Zaratiegui M, Irvine DV, Martienssen RA (2007) Noncoding RNAs and gene

silencing. Cell 128: 763–776.

2. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic

regulation of the genome. Nat Rev Genet 8: 272–285.

3. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat

Rev Genet 6: 24–35.

4. Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007)

Transgenerational stability of the Arabidopsis epigenome is coordinated by CG

methylation. Cell 130: 851–862.

5. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA

methylation in Arabidopsis thaliana. Nat Rev Genet 6: 351–360.

6. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV

directs silencing of endogenous DNA. Science 308: 118–120.

7. Grewal SI, Elgin SC (2007) Transcription and RNA interference in the

formation of heterochromatin. Nature 447: 399–406.
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