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Abstract

The study of genetic interactions (epistasis) is central to the understanding of genome organization and evolution. A
general correlation between epistasis and genomic complexity has been recently shown, such that in simpler genomes
epistasis is antagonistic on average (mutational effects tend to cancel each other out), whereas a transition towards
synergistic epistasis occurs in more complex genomes (mutational effects strengthen each other). Here, we use a simple
network model to identify basic features explaining this correlation. We show that, in small networks with multifunctional
nodes, lack of redundancy, and absence of alternative pathways, epistasis is antagonistic on average. In contrast, lack of
multi-functionality, high connectivity, and redundancy favor synergistic epistasis. Moreover, we confirm the previous finding
that epistasis is a covariate of mutational robustness: in less robust networks it tends to be antagonistic whereas in more
robust networks it tends to be synergistic. We argue that network features associated with antagonistic epistasis are
typically found in simple genomes, such as those of viruses and bacteria, whereas the features associated with synergistic
epistasis are more extensively exploited by higher eukaryotes.
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Introduction

A consequence of genetic interactions is that the combined effect

of two or more mutations often deviates from what can be expected

by looking at each individual mutation [1,2]. This deviation, termed

epistasis, can be antagonistic or synergistic depending on whether the

combined mutational effect is respectively lower or higher than

expected under no genetic interaction [2]. For mutations affecting

fitness, the expected non-epistatic fitness of a genotype carrying

several mutations is calculated by multiplying the fitnesses of the

single mutants, whereas for other traits, the non-epistatic model is

not necessarily multiplicative [2]. Although it is obvious that network

parts interact and hence, that epistasis must be widespread, the

causes for systematic deviations towards one kind of epistasis or

another are still poorly understood. Yet, such deviations should play

a key role in many evolutionary processes, including the evolution

and maintenance of sexual reproduction [3], diploidy [4],

dominance [5], speciation [6], or the genetic deterioration of small

populations [7].

Until recently, it was common view that epistasis tended to be

null on average, with some genes interacting synergistically, some

antagonistically, and most in a non-epistatic fashion. Further,

generalities about the average sign of epistasis were hampered by

the apparently contradictory results obtained from different model

organisms and by the variety of methodologies employed.

However, a general correlation between epistasis and genomic

complexity has been recently shown [8]. This correlation is such

that in simple genomes as those of viruses and probably, some

bacteria, epistasis tends to be antagonistic, whereas there is no

apparent deviation from multiplicativity in unicellular eukaryotes

and a transition towards synergistic epistasis occurs in higher

eukaryotes. Recent advances in the characterization of molecular

networks and in network theory provide new avenues for exploring

the basis of epistasis and its relationship to complexity [9–11].

Evolutionary simulations [12], work with digital organisms [13],

RNA folding studies [13,14], data from mutagenized bacterial

proteins [15], and quantitative trait loci analyses [16] have shown

that epistasis correlates with mutational robustness. Therefore, we

can hypothesize that the mechanisms responsible for robustness

might also be relevant to epistasis. Several mechanisms of

robustness have been identified. First, genetic redundancy can

significantly reduce the impact of knock-out mutations, as shown

in yeast [17], animals [18,19], and plants [20]. Second, networks

can compensate for failures by systemically adjusting the flow of

matter to accommodate perturbations [21]. Finally, robustness can

be achieved by embedding functions in autonomous protein

complexes, transduction or transcriptional pathways, or differen-

tiated cell types [22].

To assess whether the above mechanisms can also control the

sign and intensity of epistasis, we simulated networks in which the

number of nodes, functions and pathways, as well as the amount of

multi-functionality, connectivity, and redundancy could be easily

manipulated. Basic networks were configured as nodes connected

by oriented edges, and pathways were defined as series of

connected nodes. Mutations that knocked-out specific nodes were

introduced and the ability of the network to accommodate these
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mutations was evaluated. We first present a simple model in which

epistasis, calculated on a multiplicative basis, is null on average.

We then add multifunctional nodes, extra edges, or redundant

nodes to the model to test their effects on epistasis and robustness.

Results

Null model
Similar to the ‘‘beanbag’’ model for genes [23], consider a ‘‘bag

of functions’’, where the term bag indicates the absence of

epistasis. Each mutation knocks-out a function and the perfor-

mance of the system declines proportionally to the number of

functions available. Then, performance declines multiplicatively

with the number of mutations. Specifically, being n the number of

functions and m the number of mutations, the decline in

performance, W, can be described by equation Wm = (121/n)m.

Deviations from this multiplicatively expected value would

indicate the presence of epistasis. In terms of networks, the

equivalent of the beanbag model is a system composed by non-

overlapping pathways, each with the same number of linearly

connected nodes (Fig. 1A). Mutations knock-out nodes and the

performance of the network is proportional to the number of

pathways that remain functional (i.e. able to produce an output).

For simplicity, we thereafter focus on the case of two pathways,

thought the conclusions would remain valid for higher numbers of

pathways.

In the two-pathway case, single mutations invariantly

inactivate one of the two pathways and hence, reduce

performance to W = 0.5. For double mutants, the expected W

is 0.52 = 0.25, whereas the observed W can be 0 if the two

mutations hit different pathways, or 0.5 if they hit the same

pathway. Since these two outcomes are equiprobable, the

average observed performance equals the multiplicatively

expectation and, consequently, average epistasis is null. It can

be proven that the same result holds for more than two

mutations and more than two pathways of equal length (Text

S1). Table 1 shows the analytically obtained epistasis values for

several mutation numbers in the two-pathway case. The goal of

our subsequent analyses is to assess how epistasis changes upon

the addition of unequal pathway lengths, multi-functional nodes,

extra-edges, or redundant nodes to this null model.

Unequal pathway lengths
When one of the two pathways is extended at the expense of

the other, the first mutation still reduces the fraction of active

outputs to 0.5, but after a second mutation, the outcomes W = 0

and W = 0.5 are not equally likely anymore. The chances that

both mutations hit the same pathway are higher and therefore,

average epistasis becomes antagonistic. This result can also be

proven for two or more mutations and two or more pathways

(Text S1).

Since unequal rather than equal path lengths constitute the

general case, simple, unreticulated, networks should exhibit a

tendency towards antagonistic epistasis, as also suggested by other

network models [24]. Deviation from multiplicativity occurs

because mutations often hit essential parts of the same pathway.

This multiple-hit effect is important for networks with a small

number of pathways, but vanishes as the number of pathways

increases. For instance, for two pathways of lengths two and eight,

two mutations have a 68% chance of hitting the same pathway,

whereas for 20 pathways, 10 of length two and 10 of length eight,

this probability is only 6.8%. Multiple-hitting can thus potentially

explain antagonistic epistasis in small genomes. Work with simple

digital organisms confirms this prediction [25].

Multifunctional nodes
To construct integrated networks, we first allowed pathways to

share nodes, such that some nodes became multifunctional. To do

so, the number of nodes in the two-pathway network was reduced

without changing the total number of functions (Fig. 1B).

Mutational analysis of these networks showed that, as multi-

functionality increased, there was a shift from multiplicative effects

towards antagonistic epistasis (Fig. 2). This is in agreement with

previous work with digital organisms, showing that a shift from

antagonistic epistasis towards multiplicativity can be obtained

when some tasks are removed from genomes without varying

genome length [26]. Notice that our definition of multi-

functionality is related to the more general notion of modularity.

Finally, we observed that robustness, calculated as the fraction

of pathways that remains active upon the introduction of single

mutations, dropped as epistasis became more antagonistic. This

Figure 1. Graphical representation of two-pathway networks.
Circles represent nodes, arrows their connections, and numbers the
functions performed by the nodes. Nodes 1 and 6 are input nodes and
nodes 5 and 10 are output nodes. A) The simplest case, or null model,
constituted by two separate pathways of length five each. B) An
example of multi-functionality: functions 3 and 8 are collapsed into a
single node, which implies that a mutation at this node will inactivate
both pathways. These two functions are physically linked but otherwise
independent, meaning that the flow through the two pathways
remains separated. C) Increased connectivity, through the addition of
an extra edge. The extra edge between nodes 2 and 8 implies that the
output produced by node 2 enters the lower pathway. Thus, mutations
occurring at the lower pathway upstream of node 8 have no effect,
provided the upper pathway is not mutated upstream of node 3. D) An
example of redundancy: node 2 is duplicated, making single mutations
at this node silent. A second mutation at node 2 has a 50% probability
of being silent, depending on whether it hits the previously damaged
copy or the intact one.
doi:10.1371/journal.pone.0002663.g001
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loss of robustness occurs because, as the number of multifunctional

nodes increases, there is a higher chance that single mutations

simultaneously damage several pathways (pleiotropy).

Connectivity
Connectivity in metabolic networks can arise from the use of

universal metabolites (e.g. ATP, or acetyl-coenzyme A), or from

the existence of interchangeable regulatory elements which

participate in different pathways. Similar to what usually happens

in silico [27,28], connectivity in biological networks allows the flow

of matter to be shuttled throughout the system, making it more

stable to perturbations [21,29]. We introduced extra edges

between pairs of nodes to increase the connectivity (c) of the

network (Fig. 1C). These extra edges make it possible that the flow

throughout the mutated pathways is restored from another

pathway and thus, that some mutations are silent. As expected,

we observed that the effect of single mutations decreased with

increasing connectivity. Moreover, this trend was accompanied by

a shift from multiplicativity to synergistic epistasis (Fig. 3).

Interestingly, for larger connectivity values, synergistic epistasis

peaked at larger mutation numbers. For example, for c = 0.9

synergism was statistically not significant anymore beyond 8

mutations, whereas for c = 2.8 it remained so for up to 37

mutations. The reason for this difference is that as connectivity

increases, the network can buffer more mutations and, as long as

mutations are silent, no epistasis is produced. However, as the

Table 1. Analytically obtained epistasis values for various mutation numbers in the simple, ten-node two-pathway model
(Figure 1A) for equal (5+5) and unequal (8+2) path lengths.

Equal path lengths (5+5) Unequal path lengths (8+2)

Mutation
number Possible epistasis values Frequency Mean Variance Frequency Mean Variance

2 20.250 50.0% 0 0.250 32.0% 0.090 0.234

0.250 50.0% 68.0%

4 20.063 87.5% 0 0.165 58.9% 0.143 0.246

0.438 12.5% 41.1%

7 20.008 98.4% 0 0.062 79.0% 0.097 0.204

0.492 1.6% 21.0%

10 20.001 99.8% 0 0.022 89.3% 0.053 0.155

0.499 0.2% 10.7%

The case of equal path lengths corresponds to the null model (see text). For each mutation number, the two possible epistasis values, the frequency of each, mean
epistasis and its variance are shown. Analytical results were cross-checked against simulations to confirm the consistency of the two approaches (not shown).
doi:10.1371/journal.pone.0002663.t001

Figure 2. Effect of multi-functionality on epistasis in two-pathway networks. The 10 functions of the network were assigned to 10, 7, 5, or 4
nodes. Each node performed thus 1, up to 3, up to 5, or up to 6 functions, respectively, as shown in the color legend. For each mulfi-functionality
value, 1000 networks were created, choosing multifunctional nodes at random. For each network, we introduced from 1 to 10 mutations. The main
graph reports average epistasis values6SEM. The inset shows the correlation between robustness and total epistasis. Total epistasis was computed
by summing all epistasis coefficients for mutation numbers larger than 1. Robustness was calculated as detailed in the text.
doi:10.1371/journal.pone.0002663.g002
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number of mutations increases, the buffering ability of the network

is exhausted and synergistic epistasis is released.

Redundancy
In biological systems, redundancy arises from gene duplications

or polyploidizations. Large-scale analyses have shown that genetic

redundancy plays a role in buffering mutational damage in yeast

[17], animals [18,19], and plants [20]. Redundancy was

incorporated into our network model by introducing identical

copies of the existing nodes, such that the duplicates conserved

their position in the network and all the connections with other

nodes (Fig. 1D). Mutations at redundant nodes were silent if at

least one of the copies of the node remained non-mutated. The

robustness of the two-pathway network obviously increased as

redundancy increased. This trend was, again, accompanied by a

shift from multiplicativity to synergistic epistasis (Fig. 4). However,

low levels of redundancy were not enough to produce significant

amounts of synergism, in contrast to the results obtained in the

above analysis of connectivity. For levels up to 50%, redundancy

had a much weaker effect on epistasis than on robustness. For

higher levels of redundancy, in contrast, strong synergistic epistasis

was generated.

Whereas redundancy decreases the probability that mutational

effects are expressed, such buffering becomes necessarily less

efficient as mutations accumulate. This is why redundancy is not

only a source of robustness, but also a source of synergistic

epistasis. A clear-cut example is that of synthetic lethality, whereby

inactivation of each of two duplicate genes produces little or no

visible effect whereas the double mutant is non-viable [30].

According to our results, though, high levels of redundancy are

needed to produce significant amounts of synergism.

Discussion

According to theory, selection should favour the evolution of

developmental and somatic processes that increase genetic

robustness in small populations with long generation times,

whereas in large, rapidly replicating populations, lack of robustness

should be selected [31]. These considerations lead us to expect that

higher eukaryotes should to be more robust to mutation than

viruses or bacteria and, as long as the correlation between

robustness and epistasis holds, these differences would translate

into differences in epistasis. Also, from a more molecular

perspective, divergent paralogs, genome-scale duplications, poly-

ploidizations, dominance, alternative pathways in metabolic

networks, or multiple regulatory elements per gene are forms of

complexity which have been shown to, or can be assumed to

confer robustness [17–22].

These variegate molecular mechanisms can be assigned to more

general features, as redundancy, multi-functionality, and connec-

tivity. As a sum up of our results, we have shown that simple,

unreticulated, networks with few pathways tend to display

antagonistic epistasis due the so-called multiple-hit effect, a

tendency that becomes more marked when multifunctional nodes

are frequent. In contrast, increased connectivity and redundancy

produce synergistic epistasis. Our model captures very basic

features of networks and thus, these conclusions might be valid for

many kinds of networks. However, it still needs to be elucidated

whether these general features are differentially found in genomes

of increasing complexity. A few inklings are discussed below.

Several RNA genomes have been shown to display antagonistic

epistasis, including those of viroids [14], bacteriophage [32],

negative-stranded mammalian viruses [33], and retroviruses [34].

Some data suggest that epistasis might also tend to be antagonistic

in bacteria [35]. RNA genomes encode few genes, are highly

compact and show a high degree of multi-functionality, which

results in marked fitness tradeoffs [36,37]. In the light of our

results, these features would also explain their tendency to exhibit

antagonistic epistasis. This is also a likely scenario for ancestral

metabolic networks, probably constituted by few enzymes with

broad specificities [38]. In the case of bacteria, an in silico study of

the global transcriptional regulatory network of Escherichia coli

Figure 3. Effect of connectivity on epistasis in two-pathway networks. Increasing numbers of extra edges (0, 1, 10, 30) were allowed (color
legend), which consequently increases connectivity (c = 0.8, 0.9, 1.8, and 3.8, respectively). For each connectivity value, 1000 networks were created,
choosing extra edges at random. For each network, 1 to 40 mutations were introduced. The main graph reports average epistasis values6SEM. The
inset graph shows the correlation between robustness and total epistasis. Total epistasis and robustness were computed as detailed in Fig. 2 legend.
doi:10.1371/journal.pone.0002663.g003
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indicated that genes can be grouped in few independent functional

groups [39], though it remains to be clarified whether this number

is low enough for multiple-hit to generate a significant amount of

antagonistic epistasis.

A recent extensive analysis of the enzymatic complement in

different genomes indicates that the ratio of the number of

enzymatic functions performed by the organism to the number of

genes encoding these functions is higher in prokaryotes than in

eukaryotes [40]. These differences can be explained either in terms

of redundancy or multi-functionality. However, interestingly, the

ratio was higher than one in some bacteria, which would

unambiguously indicate multi-functionality. Finally, it seems

reasonable that, as a general rule, large genomes as those of

higher eukaryotes should have more room for subdividing genetic

information into partially independent subsets, a subdivision that

would be further facilitated by subcellular compartmentalization

and cellular differentiation [41].

Functional connectivity in biological networks allows the flow of

matter to be shuttled throughout the system, making it more stable

in the face of perturbations [21,29]. This ability, termed

distributed robustness, has been described in processes as diverse

as the chemostatic responses of bacteria or the self-regulatory

behaviour of cortical neurons [28]. Distributed robustness seems

pervasive in Caenorhabditis elegans, as shown by the fact that 90% of

its single-copy genes can be silenced without producing any

detectable phenotypic effect [18]. It also seems to be important for

mammals, as suggested by phylogenetic analyses comparing

human and rodent genomes [42]. Although it is at present

difficult to correlate organismal complexity with network connec-

tivity, this correlation is suggested by the observation that, as the

number of genes in the genome increases, there is a dispropor-

tionate increase in the number of transcription factors [43,44].

Finally, gene duplication and the evolving subtle differences

between paralogs are thought to be a major source of biological

complexity [45,46]. Despite large gene families exist in bacteria,

the number of duplicates and the size of gene families increase in

eukaryotes [47]. Further, the amount of paralogs is not evenly

distributed among the latter. In yeast, 13% of the genome is

thought to be a relic from an ancestral whole genome duplication

event [48], whereas in higher eukaryotes, the number of duplicates

increases. Gene duplication primarily produces redundancy, but it

can also reduce multi-functionality if the duplicates diverge and

subfunctionalize. In the first case, gene duplications would tend to

produce synergistic epistasis, whereas in the second, they would

simply relax antagonistic epistasis. We have shown, though, that

high levels of redundancy are required to produce significant

synergistic epistasis. We can thus speculate that, whereas in

prokaryotes and lower eukaryotes the number of extant duplicated

genes might not be high enough to generate observable levels of

synergistic epistasis, it could be so in higher eukaryotes.

Methods

Model
Construction of the network. The pathways of the network

were encoded by a vector v0 with as many entries as there are

nodes, in which we assigned entries ni = 1 to the input nodes and

ni = 0 to the rest of them. The position of input nodes within this

vector was random, such that the resulting spectrum of pathway

lengths followed a uniform distribution of integers within a user-

defined range [,min; ,max]. Whenever the sum of pathway lengths

was not equal to the overall length n, some small reshuffling of

lengths was applied to do so. The resulting average pathway length

is 2n/(,min+,max).

The edge-connecting structure of the network was represented

by a square matrix M encoding the existing connections among

the n nodes. For each pair of connected nodes niRnj, M(ni,nj) = 1,

otherwise M(ni,nj) = 0. Upon calculation of v1 = Mv0, non-zero

entries in v1 indicate the transmission of the input throughout the

network. Pathway ends were represented by diagonal matrix

entries M(nk,nk) = 1. This stopped the propagation of node

activation and retained the information of an active pathway

Figure 4. Effect of redundancy on epistasis in two-pathway networks. Increasing numbers of duplicates (0, 3, 7, 10) were introduced (color
legend). For each redundancy level, 1000 networks were created, choosing duplicates at random (nodes could be duplicated more than once). For
each network, 1 to 50 mutations were introduced. The main graph reports average epistasis values6SEM. The inset graph shows the correlation
between robustness and total epistasis. Total epistasis and robustness were calculated as detailed in Fig. 2 legend.
doi:10.1371/journal.pone.0002663.g004
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output. The iterative application of M becomes redundant as soon

as a stable pattern of zero/non-zero entries is reached.

For simplicity, data shown correspond to networks encoding 10

functions divided into two pathways. Similar results were obtained

with larger networks (50 and 100 functions) as well as with larger

numbers of pathways.
Functions, edges, and nodes. Formally, each function is a

column or row in the square matrix M. Each non-zero element in M

defines an edge. Finally, if there is no multi-functionality, each node

is just the equivalent of one function, whereas if there is multi-

functionality, a number of functions are assigned to each node. This

latter information is external to the matrix M and therefore, nodes do

not affect its algebra. In biological terms, a node would be a gene in a

genetic network or an enzyme in a metabolic network. Nodes are the

target of mutations (all functions in the node are simultaneously

mutated). Graphically, each number in Fig. 1 is a function, each

arrow is an edge, and each circle is a node. For instance, two

redundant nodes have the same number because they have the same

function, and multi-functional nodes have several numbers because

they perform several functions.
Multi-functionality, connectivity, and redundancy. To

model node multi-functionality (i.e. the case in which there are

more functions than nodes), the dimensions of both M and v0 were

increased through the insertion, where appropriate, of new

columns and rows in the case of M, and just rows in the case of

v0. Those new n9 elements were randomly assigned to the basic n

nodes. Each node could be linked to more than one new element.

Given this configuration, n is the number of nodes and f = n+n9 the

number of functions performed by these nodes. Multi-functionality

(m) can be measured as the probability that a node performs more

than one function, m = 12(121/n)f2n.

Extra edges (also oriented) are straightforwardly incorporated

into the structure matrix M: for each connected pair niRnj, one

sets M(ni,nj) = 1. Since M is a representation of functions, edges

linked functions instead of nodes. In other words, for multifunc-

tional nodes, edges were wired independently for each function.

This allowed us to separate the effects of connectivity from those of

multi-functionality. Extra edges between nodes of the same

pathway were allowed but, given any edge niRnj, the condition

i,j was imposed to avoid loops. The number of extra edges per

node was drawn at random, producing roughly a Poisson

distribution for the number of edges departing from a node. We

also explored the case of a power law distribution, which is

probably a more natural one [49] and the results were qualitatively

similar (not shown). Connectivity (c) was calculated as the average

number of edges departing from a node.

Finally, in terms of modelling, redundancy is dealt together with

mutations and thus no per se modification of the up-to-now

explained framework is required.

Mutational analysis of the network. Mutations occurred

randomly and with replacement, that is, all nodes had the same

chance of being mutated and each node could be mutated more

than once. All mutated nodes were knocked-out, with no

intermediate mutational effects. We expect that assigning

intermediate effects to mutations would only add noise to the

results. From the list of candidate mutations, we determined the

effective ones. First, if redundancy was present, mutations acting

on redundant nodes were randomly distributed among the

different copies. Mutations hitting redundant nodes were silent

provided at least one of the copies remained mutation-free.

Second, as mentioned above, a mutation hitting a multifunctional

node affected all functions associated to the node. Once the list of

effective mutations was obtained, the columns of M corresponding

to these positions were set to zero. One can automatically set the

ith column of M to zero by right multiplication with an identity

matrix in which the ith diagonal is replaced by 0; the

corresponding matrix encoding all the effective mutations is

denoted M*. The last step is the calculation of active pathways.

Once the stable state vfinal = (MM*)k v0 is reached, this fraction is

easily read from the number of non-zero values in the entries

corresponding to the output nodes of the different pathways.

Robustness was defined as the average fraction of pathways

that remained active upon the introduction of single mutations.

For epistasis (e), we followed the standard mathematical definition

e1,...i,...n~W1,...i,...n{ P
n

j~1
Wj with n$2 and W the fraction of

successfully produced outputs [2].

Analytical results shown in Table 1 are derived in the

supplementary Text S1.

All network models were generated with Mathematica (Wol-

fram Research).

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002663.s001 (0.08 MB

PDF)
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