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Abstract

For complex biological networks, graphical representations are highly desired for understanding some design principles,
but few drawing methods are available that capture topological features of a large and highly heterogeneous network, such
as a protein interaction network. Here we propose the circular perspective drawing (CPD) method to visualize global
structures of large complex networks. The presented CPD combines the quasi-continuous search (QCS) analogous to the
steepest descent method with a random node swapping strategy for an enhanced calculation speed. The CPD depicts a
network in an aesthetic manner by showing connection patterns between different parts of the network instead of detailed
links between nodes. Global structural features of networks exhibited by CPD provide clues toward a comprehensive
understanding of the network organizations. Availability: Software is freely available at http://www.cadlive.jp
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Introduction

Biological networks are usually large and highly heterogeneous.

Intuitive representations are helpful to understand the structures of

such complex and abstract objects [1]. General graph drawing

methods, including those developed specifically for biological

networks, are intended for explorative relational maps with all

individual links clearly presented [2–5]. Such microscopy-oriented

drawings are clearly not suitable for large complex networks, since

the global features can hardly be grasped by inspecting the

complex details concerning thousands of nodes connected

irregularly by numerous edges.

To get macroscopic views of a complex network, a possible

way is to divide the original network into smaller parts and

then display the relationships between these parts. However, this

is usually not feasible for biological networks such as protein

interaction networks (PINs) because they do not contain

naturally separated parts and how to divide them remains to be

solved.

A circular perspective drawing (CPD) method often illustrates

plain architectures of a graph network, such as regular, random,

and small-world networks, while CPD is not employed for

explorative visualization of large complex networks because

numerous tangled edges would fill the whole circle and make

links undistinguishable. Consequently, its applications are limited

to small networks and no effective algorithm is available for large

networks. Existing techniques have high computation demands

and thus unsuitable for large networks [6]. In this work, we

propose a new efficient circular layout algorithm capable of

computing satisfied layouts for large networks with thousands of

nodes in an aesthetic drawing manner. The presented CPD

algorithm combines the quasi-continuous search (QCS) analogous

to the steepest descent method with a random node swapping

strategy for an enhanced calculation speed. The CPD method

depicts edge distribution on a disc around which the nodes sit

uniformly in an optimized order that minimizes edge lengths. It

greatly facilitates an intuitive or visual understanding of topolog-

ical features of a large-scale complex network.

Methods

Circular perspective drawing method
A CPD is determined by the node placement, also known as

circular layout, which can be expressed as a circular permutation

p = (p1, p2, …, pn) of (1, 2, …, n), n = the number of nodes. The ith

node is placed at position cos
2ppi

n
, sin

2ppi

n

� �
. The goal of node

placement is to show topological proximity between nodes by

geometric positions such that nodes of densely connected subnets

tend to appear in near places. This is achieved by minimizing the

objective function
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where m is the number of edges. If there is a link connecting nodes

i and j, aij = 1; otherwise, 0. It is easy to verify that 4f(p) is equal to

the mean squared edge lengths and 0#f#1.

Usually circular layout methods try to minimize the number of

edge crossings. Our goal is to find favorable global configurations

and detailed positions geometric neighboring nodes are of minor

concern, so minimizing edge lengths is more appropriate. In

addition, techniques employed for crossing reduction are based on

systematic swapping of node positions [6], whose O(m2) time

requirement for one local minimum makes their applications to

PINs impractical.

Here we propose a new method that is able to efficiently find

satisfactory circular layouts for large complex networks. The main

minimization algorithm of our method, called quasi-continuous

PLoS ONE | www.plosone.org 1 July 2008 | Volume 3 | Issue 7 | e2541



search (QCS), is analogous to the steepest descent method. We first

calculate the steepest descent direction of f(p),

g pð Þ~{
Lf

Lp1

,
Lf

Lp2

, . . . ,
Lf

Lpn

� �
, ð2Þ

where p is temporarily seen as a continuous vector. In continuous

steepest descent methods, the search point is given by

x tð Þ~pztg=gmax, gmax~max g1j j, . . . , gnj jð Þ,tw0: ð3Þ

For our purpose, x(t) needs to be discretized to represent a valid

circular layout; otherwise all nodes will aggregate at a same

position. So we set the search point p(t) = (p1(t),…,pn(t)) by

discretizing x(t) = (x1(t),…,xn(t)) through letting

pi tð Þ~1z the number of j =ið Þ such that xj tð Þvxi tð Þ
� �

,

i~1, . . . ,n:
ð4Þ

In other words, pi(t) is the rank of xi(t) in the ascendingly ordered

sequence of {x1(t),…,xn(t)}.

For an input layout p, a better layout can be found by

comparing a series of candidate layouts p(t) with different t. At the

end of QCS, the layout p is updated to the best candidate p(t0)

such that f(p(t0)) is minimal. To avoid being trapped in local

minima, search points are set in a large range along the steepest-

descent direction with t = tmax, tmax/2, tmax/4, until tmin. Numerical

experiments show that tmax = n/5 and tmin = 3 are choices suitable

for all tested cases.

After a QCS, most nodes are placed near their correct positions

but there is still space to further optimize the configuration through

swapping node positions, because node swapping is generally hard to

be realized by QCS. We use a random swapping strategy to avoid

the inefficiency of systematic swapping: In each trial, a pair of nodes

are randomly chosen and exchange their positions if the trial hits,

i.e., the exchange lowers down the f value. As the optimization

proceeds, a hit needs more trials and the procedure becomes less

efficient. Therefore the random swapping will be stopped when

either a certain number of hits (say, R = 50) are found or a large

number of trials (say, S = 100n) are tested. The optimization is then

switched to QCS again. The whole process is sufficiently repeated

until no hit is found in a random swapping phase. For clarity, the

algorithm is outlined in Table 1. The application program is written

in Matlab (The Mathworks, Inc.) (Program S1).

Extensively numerical experiments show that the control

parameters Rmax = 500, Smax = 100n, and Smin = 50 are suitable for

tested networks with up to 10000 nodes. To achieve further high

quality, we used a simple best-of-five strategy: calculating 5 layouts

and picking the best one (with the lowest f value) as the output.

Drawing method
For a large complex network, an effective drawing method is

necessary to make the circular layout visually meaningful. Instead

of directly plotting the edges, CPD shows an image that displays

how the edges distribute on the disc enveloped by the layout circle.

A pixel of the CPD image represents to a small grid square on the

disc, whose color is determined by calculating the edge count, i.e.

the number of edges that pass through the corresponding grid

square. Edge distributions can be shown by properly setting the

functional relation between the color and the edge count. Of

course, there are many suitable color mappings. We find that

satisfactory visual effects can usually be obtained through color

maps with brightness scaled to logarithm of the edge count. Here a

CPD is produced by displaying the matrix log(1+c) as an image

using the MATLAB ‘‘bone’’ color map, where c is the matrix

whose elements are edge counts of the corresponding pixels; the

log function operates element-wise on 1+c.

Assessment of the drawing algorithm
Quality of a CPD is determined by the node placement. Each

run of the algorithm yields a different CPD due to the initial

random layouts and the random node swapping steps. Are

suboptimal solutions found by the algorithm close enough to the

absolute optimum? The f value itself is not adequate to answer this

question because the absolute minimum is unknown. So we define

similarity score between two circular layouts p and p9
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Obviously, 21#s#1 and for two equivalent or mirror-equivalent

layouts, s = 1. The score describes similarity between detailed

structures of two layouts in terms of relative configurations

between nodes and their partners. Higher scores imply more

similar detailed relative configurations. Conversely, uncorrelated

layouts have similarity scores around 0.

The yeast PIN
The yeast PIN data used in this research was taken from DIP by

removing multiple links and self-loops [7]. The original yeast PIN

consists of 4625 nodes belonging to 50 disconnected components.

The giant component contains 4524 nodes, 1177 of them are leaf

nodes having only single links. The leaf nodes were excluded

because they have little influence on global connection patterns

but they interfere with the whole views. The resulting network

(shown in Fig. 1a) contains 3347 nodes and 12672 edges (7.6 links

per node on average).

Network randomization
A network is randomized by sufficiently rewiring the edges. In

each trial of rewiring, a pair edges are randomly chosen. The edges

exchange one of their incident nodes unless the exchange creates an

Table 1. Circular layout algorithm.

1 Form a random layout

2 Repeat at most Rmax times

3 Optimize the current layout using QCS

4 Repeat at most Smax times

5 Randomly select a pair of nodes, swap their positions if the f
value is decreased;

6 If Smin swappings have been found in this cycle then exit this
repeat cycle

7 End repeat

8 If no hit is found in above cycle then terminate

9 End repeat

doi:10.1371/journal.pone.0002541.t001
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edge already present in the network or a self-loop. The trial is

repeated 500m (m = number of edges) times. On completion, each

edge is rewired about 1000 times on average. (Note that two edges

are rewired in each successful trial.) Figure 1b shows the giant

component (excluding leaf nodes) of a randomized yeast PIN.

Network clusterization
A network is clusterized by biased edge-rewiring similar to the

randomization procedure but some rewirings may be suppressed if

they result in unfavorable edges which connect nodes from

different cohesive groups. Specifically, if a valid rewiring increases

the number of unfavorable edges by k, the rewiring is realized with

probability w(k),

w kð Þ~ bk, if kw0;

1, otherwise:

(

We use b = 0.1 and perform 10m rewiring trials to generate fully or

partially clusterized networks.

A fully clusterized yeast PIN is generated by a biased edge-

rewiring with the nodes randomly classified into 4 cohesive groups.

After the clusterization, most edges connect nodes within the same

groups and thus the resulting network has 4 clusters, whose giant

component excluding leaf nodes is shown in Fig. 1c.

A partially clusterized yeast PIN is generated with the nodes

randomly classified into 4 groups, three cohesive and one neutral.

In the process of rewiring, only edges between different cohesive

groups are unfavorable; edges starting from the neutral group have

no preferential targets. So the resulting network has partial

clusters. The giant component excluding leaf nodes is shown in

Fig. 1d.

The duplication-divergence (DD) model of yeast PIN
A DD model network is generated by mimicking an evolution

process with gene duplication and function divergence [8,9].

Starting from three connected nodes, the network grows through

node cloning: At each time step, a randomly chosen node is

duplicated to produce a new node. Each link of the original node is

copied with a probability r to the cloned node. If the cloned node

has no link, it is removed from the network. We use r = 0.45 and

choose a generated network that has 4625 nodes and best fits the

degree sequences of the original yeast PIN (with 4625 nodes). The

degree distribution of the model network is very similar to that of

the yeast PIN. The resulting giant component excluding leaf nodes

is shown in Fig. 1e.

The duplication-divergence-with-random-mutation
(DDR) model of yeast PIN

The DDR model is similar to the DD model except a

mechanism to produce new function: In addition to inheriting

(with probability r) links from the original node, the cloned node

has a probability q in each time step to develop a new link with an

existing node. We use r = 0.38, q = 0.56 and generate a network

with 4625 nodes and almost the same number of connections as

the original yeast PIN (with 4625 nodes), although the degree

distribution of the generated network is significantly different from

that of the yeast PIN’s. The giant component excluding leaf nodes

is shown in Fig. 1f.

Results and Discussion

Protein interaction networks (PINs) are a typical kind of

complex biological networks. Extensive studies discovered various

structural properties with important biological implications[10–

13], whereas few methods can intuitively show how the proteins

organizes into such intricate structures. Here we used the yeast

PIN and its variants to demonstrate what global properties can be

visualized through CPD as shown in Fig. 1.

A bright narrowband around the circle is an outstanding feature

displayed by CPD of the yeast PIN (Fig. 1a): Most links are short

and connect closely sitting nodes, which means that most nodes

have a narrow spectrum of partners. Such locality does not divide

the network into obviously separated clusters, forming a giant

component, whereas all nodes are well interconnected through

local links. In CPD, edge distribution is represented by colors: A

brighter region means there are more edges passing through it.

Another important property revealed by the CPD is disassortative

mixing, i.e., hubs (highly connected nodes) tend to connect low

degree partners [12,13], which results in the continuous bright

ring distributed evenly around the whole circumference. Other-

wise hubs will aggregate together and show concentrated brightest

Figure 1 Global views of protein interaction networks by
circular perspective drawings. Each disc image represents a
network whose nodes sit uniformly along the perimeter with minimal
edge lengths. Pixels of the images are rendered colors with brightness
proportional to logarithm of the number of passing-through edges.
Nodes with only one link or disconnected to giant components were
ignored in producing the drawings. See Materials and Methods for
details of the networks. a, The yeast PIN. b, A randomized yeast PIN. c, A
fully clusterized yeast PIN. The 4 clusters are clearly shown by the bright
regions. d, A partially clusterized yeast PIN with a neutral group. e, A DD
model of the yeast PIN. f, A DDR model of the yeast PIN.
doi:10.1371/journal.pone.0002541.g001
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regions as shown in Figs.1b–d, which shows the differences

between the yeast PIN and its biased-randomized variants (See

Methods). In Fig. 1b the concentrated brightest region is identified

on the top left, where some hubs are aggregated. In Fig. 1c four

brightest regions are seen clearly, while partial clusters (Fig. 1d) are

harder to detect than the four clusters (Fig 1c) because of the

overlapping caused by the neutral group [14]. Noting that the

background networks of Figs. 1a–d have exactly the same degree

distribution, we see the large freedom for network structure to vary

under the constraint of degree distribution.

Evolution-inspired models shed lights on inferring mechanisms

from experimental PIN data. They were basically tested by the

ability to reproduce the degree distribution of target PINs. With

CPD, we can check the models comprehensively and intuitively.

Figure 1e is a network generated by the duplication-divergence

(DD) model, which is the simplest model that has only one control

parameter. A bright narrowband is seen around the circle,

although it becomes very thin in the right. This indicates a similar

global connection pattern between the yeast PIN (Fig. 1a) and the

DD model (Fig. 1e), where a giant component exists. The DDR

model, a modified DD model that adds a mechanism for nodes to

develop new random connections, has a more similar look to the

yeast PIN (Fig. 1f) [8,9]. A continuous narrow ring distributed

evenly appears around the whole circumference, where a giant

component exists while hubs are not aggregated so much

(disassortative mixing). This suggests that new interactions

produced by random mutations contribute significantly to the

whole PIN topology. In comparison with the topology of several

typical networks, special characteristics of the yeast PIN can be

captured by using CPD.

We characterized the CPD algorithm, where 100 circular

layouts were calculated for the yeast PIN with 3347 nodes and

12672 edges (a giant component excluding leaf nodes). The

average time for one layout was 53s on a Pentium IV 2.8 GHz

desktop computer, showing the very fast calculation speed. All the

layouts had approximately equaled f values: f = 0.24860.002

(standard deviation). The similarity score between any two layouts

was s = 0.7760.06. This shows that the proposed CPD method

finds near optimal layouts with very similar global configurations

and therefore produces consistent drawings for same networks.

So far several circular layout algorithms have been developed to

distribute network nodes on a ring based on various measures such

as edge crossings, compactness and deviation angles, while they

have not intensively pursued the application to a large-scale

network with thousands of nodes, because the circular ring is too

narrow to accommodate a huge number of nodes[6,15,16].

Compared with such existing methods, the outstanding features

of the presented CPD are that it draws a large-scale network with

thousand of nodes by employing a fast QCS algorithm that

efficiently minimizes the edge lengths and that it provides an

intuitive or global understanding for intricate structures of large-

scale networks, such as modular, DD and DDR structures. These

features of CPD are due to the fact that the overall distribution of

the edges is a major factor to layout the network instead of the

node location.

Supporting Information

Program S1 The CPD program in written in Matlab (ZIP file).

Found at: doi:10.1371/journal.pone.0002541.s001 (0.07 MB ZIP)
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