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Abstract

In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are
thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed
that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link
between network architecture and network activity has been extensively investigated in the last few years from different
perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous
activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between
spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic
connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our
theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is
inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and
other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide
remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between
the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn
suggests new ways of investigating encoding and storage capabilities of neural networks.
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Introduction

A major challenge in current neuroscience is to understand the

emergence of coherent complex activity from the interactions

between neurons and its role in normal and pathological brain

function. Approaches to facing this challenge have become more

urgent in the last few years, as experimental techniques to record

from many neurons simultaneously are being developed and

improved, providing valuable data sets for analysis [1,2]. These

techniques have revealed that, even in the absence of stimulation,

network activity organizes in complex spatiotemporal patterns

[1,3–8] that reflect, at least to some extent, the underlying network

architecture [5,6]. Likewise, recent experimental studies in vitro

and in vivo have shown that cortical networks tend to reproduce

spontaneous patterns consistently, known as cortical songs [8]

because of their reliable temporal modulation. Although comple-

mentary studies suggest that these motifs are fully arbitrary [9],

parallel studies of propagation of up-and-down states have shown

highly stereotypical motifs in cortical circuits locally, leaving open

the functional role of the cortical song and spontaneous activity in

the brain [10]. Together, these results vindicate the necessity to

understand in detail how neural circuitry constrains the repertoire

of activity patterns that a network supports. This goal turns out to

be even more significant, as we realize that encoding capabilities

and storage capacity in a neural network are likely to rely on those

repertoires. In this paper, we make a step toward this goal by

showing both mathematically and in computer simulations how

network connectivity determines the dominant patterns, or modes

of the spontaneous activity.

We are focusing here on a rather microscopic level, where only

the interactions among few cortical columns are investigated.

Several authors have extensively studied the link between network

architecture and network activity at the level of pathways and

connections between brain areas previously [11–16]. Whereas the

philosophy and mathematical framework used in this article

parallel with those of the aforementioned studies, here we

concentrate on the spontaneous activity: in addition to showing

the link between network architecture and spontaneous activity,

we also demonstrate the equivalence between dominant modes

and network attractors.

Results

Using the general model of neural network dynamics described

in Materials and Methods, we have simulated spontaneous activity in

a neural network whose architecture resembles the patchy

structure of horizontal connections in the neocortex of macaques

and other mammals [17]. In particular, the sign and strength of

synaptic connections between a given neuron and the rest of

neurons in the network are approximated by a Gabor function

(Fig. 1A and 1B). Other authors have previously used this synaptic

kernel to model network dynamics in the prefrontal cortex during

working memory tasks [18]. Nonetheless, the analyses below

yielded qualitatively the same results with a Mexican-hat and with
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a Gabor kernel. While the vast literature on synaptic connections

makes this a reduced model, our purpose here is to focus on a

plausible architecture that allows us to illustrate the accuracy of

our theoretical predictions on the relationship between anatomical

connectivity and the patterns of spontaneous activity.

In the absence of stimulation, our network is driven by intrinsic,

random background fluctuations modeled as uncorrelated, white

noise; noise which emerges from fluctuations in channel opening

and closing events and spontaneous synaptic release, among other

sources of biological variability. These random currents trigger

moderate firing rates in single neurons that propagate through the

network as a result of synaptic interactions. This form of

spontaneous activity organizes in complex spatiotemporal pat-

terns. An example of simulated spontaneous activity is provided as

Movie S1 of the Supporting Information. Some snapshots of the movie

are also shown in figure 2. The color scale indicates the

spontaneous firing rates in arbitrary units: red being above firing

baseline (represented in green) and blue below. A significant

feature of these snapshots is that they reveal a striking modularity,

reminiscent of the spatial patterns observed via voltage sensitive

dye imaging in V1 of cats [5]. In effect, red and blue areas

segregate forming domains of approximately the same extension.

These modules vary in time but have a pronounced tendency to

reemerge, as shown in the movie.

Figure 3A shows the power spectral density of traces from three

arbitrarily chosen neurons as well as the average across all neurons.

Single neurons clearly have some oscillatory components revealed by

peaks in the spectral density. However, not all the network is

oscillating with the same frequency as indicated by different positions

of the peaks for different neurons. In fact, on average there is no

preferred frequency (Fig. 3A, black line). As explained below, the

spontaneous activity consists of a summation of network modes

analogue to the vibrations of a drum’s membrane, which can be

represented as the superposition of two-dimensional modes (Bessel

functions) that oscillate in time at different frequencies. In the neural

network, the spatial modes also oscillate at different frequencies, and

a given neuron participates in many of these modes but with different

weights. Therefore, the spectral densities of different neural traces

are typically different as well.

As a first step to uncover the dominant patterns of the simulated

spontaneous activity we calculate the covariance matrix from the

spontaneous activity, which consists of the products of each pair of

neural traces (pixels of the movie) averaged in time (see Materials

and Methods). We then compare the covariance matrix of the

spontaneous activity from the simulations with the covariance

matrix derived analytically from the connectivity matrix in the

mathematical model (see Materials and Methods). Remarkably, a

strong correlation can be seen between the elements of both

matrices (Fig. 3B). Then, we compute the dominant patterns of the

spontaneous activity as the principal components, i.e. as the

eigenvectors of the covariance matrix. We also compute their

relative weight, i.e. the associated eigenvalues. When we do this

from the covariance matrix of the simulated data and from the

covariance matrix derived mathematically from the connectivity

matrix (see Materials and Methods), we obtain a remarkable

agreement (Fig. 3C and D). Note the pronounced band along

the diagonal of the in Fig. 3D, which indicates high similarity

(cross-correlation) between the predicted and the estimated

dominant modes.

In figure 4, the dominant patterns predicted by our theory are

compared with the dominant patterns estimated from the

simulations. Again, we note a good agreement, especially in the

size and distribution of interleaved spots of excitation and

inhibition. These results demonstrate that our theory can predict

the dominant modes of the spontaneous activity just by knowing

the architecture of the network.

As shown in Materials and Methods, the spontaneous network

activity can be expressed as the summation of dominant patterns

(modes) whose amplitudes are modulated in time. This modulation

is represented by the traces in figure 4 on the right, which are

mathematically obtained by projecting the spontaneous activity

onto each dominant pattern (see Materials and Methods). The

oscillatory nature of these traces is quantified in their power

spectral density (Fig. 5A). Although they all fluctuate more strongly

in the low frequencies, different modes do not necessarily oscillate

at the same frequency. The fact that the modes are spatially

extensive and that their temporal modulation is rather regular but

not constrained to a specific time scale explains the emergence of

coherent, complex dynamics in the neural network. In effect, the

patchy structure of the dominant patterns in figure 4 means that

segregated regions fluctuate coherently in time. In addition, these

fluctuations occur in different time scales for different modes.

Thus, the superposition of all these modes modulated in time

Figure 1. Biologically inspired connectivity. A: Synaptic strengths
of an arbitrary neuron located at the center with its neighbors as a
function of distance in two dimensions (Gabor kernel). Positive values
indicate excitatory connections and negative values indicate inhibitory
connections. B: Projection of the synaptic kernel along an axis crossing
the center. Excitatory and inhibitory synapses are spatially periodic,
interleaved and their strength decays with distance.
doi:10.1371/journal.pone.0002148.g001
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results in the complex spatiotemporal patterns of the spontaneous

activity, as recently observed in experimental data [1,4,8,10].

According to the decomposition of spontaneous activity in

modes, one expects that at each point in time a given mode

prevails over the rest, i.e. at some points in time the spontaneous

activity will mostly resemble one of the dominant spatial patterns.

To test this prediction, one can use a ‘‘template matching’’

algorithm, similar to the strategy used to identify repetitive motifs

in cortical songs [8]. The template in our case is one of the

dominant patterns, which is compared with each snapshot of the

spontaneous activity. Interestingly, this approach allows us to

demonstrate the equivalence of the concept of dominant pattern

and the concept of network attractor. In effect, one can think of

the spontaneous activity as a series of random transitions between

attractors of the stochastic network dynamics. To show that the

dominant modes are actually these attractors we estimate their

basin of attraction by applying the aforementioned template

matching algorithm in the following way: we first calculate the

correlation coefficient of the dominant patterns with each snapshot

(see Materials and Methods). In other words, we calculate the

instantaneous similarity between the spontaneous activity and its

dominant patterns. We then check whether it is significant and if

so, we mark that point in time with a black dot. This allows us to

visualize when the state of the network approaches a given

attractor (Fig. 5B) and to quantify the fraction of points in time

when this happens. As expected, the dominant modes have

‘‘larger’’ basins, i.e. stronger attraction, the larger their eigenvalues

are. In fact, the correlation coefficient between the eigenvalues and

the fraction of time spent in the basin of attraction is r = 0.968.

This demonstrates the equivalence between the concept of

principal component or dominant pattern of the spontaneous

activity and the concept of network attractor.

Discussion

Using a general firing-rate model of neural dynamics [19,20],

we have shown how the network architecture determines the

dominant patterns of the spontaneous activity. In particular, we

have described mathematically the relationship between the

connectivity matrix and the principal components of the

spontaneous activity. The examples provided reveal how regular-

ities in the connections lead to spatial patterns that vary in time but

tend to reappear consistently. In the simulations described, these

patterns contain several modules of excited and inhibited domains,

characteristic of modular architecture and spontaneous activity in

the cortex [5,6]. The modules are functional rather than

anatomical, since the domains wax and wane in time.

The relationship between network activity and network

architecture has been extensively studied recently by several

authors, but mostly at a macroscopic level, describing interactions

between brain areas, or in a more general context of complex

network architectures [11–16,21]. Here, in contrast, we have

focused on the microscopic level describing interactions of local

neural groups, in particular, across a few cortical columns. The

mathematical framework used in this article is similar to those used

by other authors investigating complex biological networks

[11,12,21,22]. More specifically, we describe network interactions

in terms of linear stochastic processes along the lines of such

Figure 2. Snapshots of spontaneous activity. The patterns of spontaneous activity display excited (red) and inhibited (blue) spots with respect
to the baseline firing rate (green) that evolve in time (red spots can turn blue and vice versa). The whole movie of the spontaneous activity is
provided as Movie S1 in Supporting Information.
doi:10.1371/journal.pone.0002148.g002
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studies. In this manuscript, however, we have devoted special

attention to the principal components of the spontaneous activity

and we have demonstrated that they represent the basins of

attraction of its stochastic dynamics.

Other groups have previously shown that the complexity of the

architecture determines the complexity of the interactions between

different brain areas [11,12]. In particular, dense local connections

and sparse long-range connections tend to generate large-scale,

complex behavior [11,12]. Moreover, the analysis of large-scale

neuroanatomical data sets has revealed characteristic building blocks

of the network architecture [13]. Combining those findings with the

model presented here, it would be interesting to investigate the

extent to which the dominant patterns of large-scale, spontaneous

activity actually represent structural building blocks.

Here we have shown how to predict dominant patterns in the

spontaneous activity from the network connections. From an

experimentalist’s perspective the inverse problem may be even

more relevant, i.e., whether the network architecture can be

reconstructed from the principal components of the spontaneous

activity. The connectivity can be inferred from the spontaneous

activity but not exactly determined. The limitations for this are

twofold: technical and theoretical. The technical difficulties are

due to the finite size of the data that allow us to calculate only a

few principal components reliably. But even if infinite data sets

were feasible, there is a fundamental limitation to perfectly retrieve

the connectivity matrix. Equation (5) in Materials and Methods shows

the relationship between the network architecture (implicit in A)

and the covariance matrix of the spontaneous activity C, from

which the dominant patterns are calculated. Whereas equation (5)

is linear if we take the elements of C as the unknowns and the

elements of A and Q as parameters, equation (5) is nonlinear if we

take the elements of A as unknowns and the elements of C and Q as

parameters. Due to the nonlinearity, when solving for A, the

solution will not be unique in general. In fact, this is a well-known

result of stochastic theory: the drift matrix (in our case, the

connectivity matrix A) of a linear Langevin process (in our case,

Figure 3. Properties of the spontaneous activity. A: Power spectral density of the arbitrarily chosen neural traces (blue, red, green) and the
average across all neural traces (black). Neurons have some oscillatory behavior in the low frequency band (,5 Hz). B: The elements of the theoretically
predicted covariance matrix and of the estimated covariance matrix coincide remarkable well (blue dots), as shown by a linear regression (red line) that
perfectly overlaps with the identity (y = x, black crosses). C: The eigenvalues of both matrices (blue dots) are accordingly highly correlated (regression in
red; identitiy in black dashed lines). D: The principal components of both matrices are also highly correlated. Note the pronounced band along the
diagonal of their cross-correlation matrix, which indicates high similarity of the predicted and the estimated dominant modes.
doi:10.1371/journal.pone.0002148.g003
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the spontaneous activity) cannot be uniquely retrieved from its

covariance matrix [23,24]. Nonetheless, an elegant way of

overcoming this limitation has been recently proposed in the

context of metabolomic networks [21]: first, some entries of the

connectivity matrix are set as fixed parameters and then, a

parametric solution is found. However, whereas this trick works

efficiently for small networks, it becomes intractable for relatively

large ones. Despite all these limitations, our results show that the

connectivity of the network can indeed be qualitatively inferred. In

effect, by looking at the modular structure of the dominant

patterns one gets an idea of the connectivity kernel. For example,

the spots of center surround inhibition in the dominant patterns of

figure 4 have the size of the central wiggle in figure 1B.

In addition to the resolving power of our model to elucidate

underlying anatomical connectivity from the patterns of spontaneous

activity, it also provides an interpretation of the role of that activity in

framework of neural network dynamics. The concept of attractor

network has dominated computational neuroscience for about three

decades [23,25–29]. The idea that neural dynamics encode and store

representations of stimuli in the form of attractors of the network

dynamics has been fueled by the findings of several experimental

studies in different systems [7,30–33]. Moreover, it has been

proposed recently that the highly consistent, spontaneously-evoked

network up-states observed in cortical slices represent circuit

attractors [1,4]. Here, we have demonstrated that the principal

components of the spontaneous activity can be interpreted as

attractors of the stochastic background activity of the network. In

particular, the eigenvalues of the covariance matrix roughly represent

the fraction of time spent by the network in the basin of attraction

(dwell time) of the associated eigenvector or principal component.

Furthermore, changes in the principal component of the spontaneous

activity during behavioral experiments can be used to quantify

changes in the network connectivity and hence, to uncover Hebbian

memory traces, as recently shown in an insect’s brain in vivo [7].

It is worth mentioning that each spatial pattern (snapshot) of the

spontaneous activity is not necessarily identical to any of the

principal components. From a mathematical point of view,

however, each spatial pattern can be expressed as a linear

combination of principal components, provided that they are not

degenerate, i.e. if all eigenvalues are different. Degeneracy appears

when the connectivity matrix is ‘‘highly symmetrical’’. For

example, several sets of degenerate eigenvalues occur from a

Figure 4. Decomposition of the spontaneous activity in dominant modes. The spontaneous activity can be mathematically described as a
linear superposition of spatial modes (principal components) modulated in time. On the left, we compare some predicted spatial modes with the
observed ones noting a good agreement overall. The blue traces on the right represent the temporal modulation of each pattern. The eigenvalue
associated with the i-th principal component, or equivalently, the mean quadratic amplitude (variance) of that mode in the spontaneous activity is
given by li. The relative variance contained in that mode is expressed as a percentage in parentheses.
doi:10.1371/journal.pone.0002148.g004
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kernel like that in figure 1, which has rotational symmetry. By

construction, the network also displays translation invariance (due

in part to wrap-around boundaries). In reality, however, synaptic

connections display large variability over the main architectural

theme (see e.g., figure 3 in [34]). We have modeled this variability

as 25% random connections on top of the architecture obtained

from the Gabor kernel (see Materials and Methods). This is more than

sufficient to remove degeneracy completely, as shown in Fig. 3C,

where no eigenvalues coincide on the same spot. In principle, since

the set of non-degenerate patterns forms a basis of the ‘‘snapshots

space’’, any arbitrary spatial pattern might be possible at any given

time during the spontaneous activity. However, as mentioned in

the previous paragraph, the spontaneous activity is biased to the

dominant patterns proportionally to their eigenvalues and not any

arbitrary pattern will realize. This implies that the repertoire or

‘‘alphabet’’ with which the network can encode and store

information is constrained by the dominant modes, or equivalent-

ly, constrained by the network architecture.

One can possibly argue that any other basis different from the

basis of principal components may be used to decompose the

spontaneous activity. One may also wonder whether those

alternative basis vectors could also be considered as attractors.

In principle, one could choose another basis to decompose the

spontaneous activity, but it would not be adequate in the sense that

it would not make the relationship between the basis and the

network architecture explicit, as it is the case with the basis of

principal components. To demonstrate this, we have also used a

Fourier basis (see figures in Supporting Information). In particular, we

have first calculated the power spectrum of the spatial frequencies

for each snapshot of the spontaneous activity. Then, we have

averaged the power spectra of all snapshots. Interestingly, the

averaged spectrum clearly reveals an elevated ring (see figure S1),

whose radius roughly corresponds to the reciprocal of the period of

the Gabor kernel, indicating that the Fourier decomposition

captures an important feature of the network connectivity. We

note that the ring does not have a uniform height. This means that

we can rank the dominant spatial frequencies along the ring

according their power. In figure S2, we display the spatial patterns

associated with the six dominant spatial frequencies. However, as

seen in figure S3, the dominant patterns of the Fourier basis

cannot be regarded as attractors because their instantaneous

correlation with the spontaneous activity is negligible. In other

words, the projections of those vectors onto the spontaneous

activity do not quantify the dwell time, which is the idea behind

the concept of attractor. In fact, as seen in figure S3, the network

spends 0% of the time in the basins of the Fourier modes.

Figure 5. Coherent behavior and network attractors. A: Power spectral density of the dominant modes shown in figure 4 in the same order.
The dominant modes are clearly oscillatory with at least one preferred frequency. The superposition of the oscillatory modes endows the
spontaneous activity with coherent behavior in space and time. B: The normalized projection, R of the chosen modes onto the spontaneous activity
yields the instantaneous contribution of each mode. Thus, the spontaneous activity can also be regarded as fluctuations of the network state around
the basins of attraction of different attractors (modes). The black dots represent an instantaneous incursion into the basin of attraction of the
corresponding mode. The percentage indicates the relative amount of time spent in the corresponding basin of attraction, i.e. the attractor’s dwell
time (see Materials and Methods).
doi:10.1371/journal.pone.0002148.g005

Spontaneous Activity Patterns

PLoS ONE | www.plosone.org 6 May 2008 | Volume 3 | Issue 5 | e2148



Here we have modeled the spontaneous activity as a linearly

stable, stochastic system. The assumption of linearity comes from

the observation that the baseline firing rates of neurons in the

absence of stimulation are typically much lower than during

stimulation [7] and far from saturation. In such stochastic systems

(like eq. 3), the stability criterion is that all eigenvalues of the linear

operator (A, in eq. 3) has magnitude less than one. If one or several

modes have eigenvalues which do not fulfill this condition, the

spontaneous activity will grow quickly in time entering the

saturation regime (nonlinearity in equation 1). This kind of

behavior resembles an epileptic seizure and the physiological

mechanisms leading to this instability can be studied to some

extent with our approach. For example, an obvious way of

inducing a seizure in the network consists in reducing the

relaxation parameter, a until one mode of A becomes linearly

unstable. Interestingly, some in vitro preparations of the cortex

display distinct episodes of spontaneous network activity [35].

Thus, in real networks, the parameter a is not strictly constant but

varies in time, although at a slower time scale than that of the

activity fluctuations. In addition, the dimensionality of the

dynamics, i.e. the number of modes that significantly contribute

to the spontaneous activity, increases close to a transition between

episodes [35]. These transitions (or bifurcations) are associated

with changes of neuronal excitability, which are originated in ion

shifts from inside to outside of the neurons and in oxygen

limitations in the brain tissue [35,36].

In this paper we have exclusively focused on the spontaneous

activity of neural networks. At this point, however, we should say a

few words about the behavior of the model in response to

stimulation. In the model used here, a stimulus will drive equation

(1) into saturation of firing rates quickly. This happens because in

various neurons the inhibition and the relaxation rate cannot catch

up with the excitation plus the stimulus drive. The spatial patterns

of saturated firing rates will generally depend on which neurons

are driven and how much (Ii, in equation 1). In particular, since

the dominant modes are built-in in the network architecture, a

spatial input pattern Ii may resonate with the dominant mode that it

most resembles until reaching saturation. Using the jargon of

synergetics [23], the whole network activity will then be enslaved by

that dominant mode.

Materials and Methods

Mathematical model of spontaneous neural activity
We start with a general model of neural network dynamics of

the Wilson-Cowan type [19,20] that describes the variations of

firing rate in the neurons due to synaptic and external currents.

The model is slightly modified to take into account the effect of

intrinsic noise:

dui

dt
~{auizH

X
j

WijujzIizgi

 !
, ð1Þ

where ui represents the activity (firing-rate) of the i-th neuron in the

network; a is the inverse of the relaxation time; Wij is the synaptic

strength between neuron i and j, i.e. the connectivity matrix; Ii is

the external input to the i-th neuron; and gi is a random,

fluctuating input into the i-th neuron (modeled as white noise)

accounting for channel noise, spontaneous synaptic release and

other sources of biophysical variability. The nonlinear function

H(x), typically a sigmoid of hyperbolic-tangent type, limits the

growth of its argument to an asymptotic value which accounts for

the saturation of firing rates in real neurons.

In the absence of stimulation, the external inputs to all neurons

in the network vanish, Ii = 0. Thus, the only driving force are

intrinsic, random fluctuations gi with standard deviation s.

Because those fluctuations are not sufficiently strong to evoke large

variations of the firing rate, the saturation due to the nonlinear

function H can be ignored in the study of spontaneous activity. In

these conditions, the dynamical equations can be easily linearized

around the quiescent state of the network:

dui

dt
~{auiz

X
j

Wijujzsgi, ð2Þ

where we have factorized the last term into s and gi, which now

has unitary standard deviation. In practice, to simulate system (2)

the differential equations are discretized in time with a finite time

step Dt, taking the form

ui tzDtð Þ~ 1{aDtð Þui tð Þz
X

j

Wijuj tð ÞDtzsgi tð ÞDt,

which in vector notation can be rewritten as

~uu tzDtð Þ~A~uu tð Þz~jj tð Þ ð3Þ

using~jj tð Þ:s~gg tð ÞDt, and A;(12aDt) E+WDt, where E;dij is the

identity matrix.

Estimation of dominant patterns from the traces of
spontaneous activity

The dominant patterns can be directly computed from the time

series of spontaneous neural activity obtained either from a model,

like the one exposed above or from actual recordings of neural

activity. To this end, one first calculates the covariance matrix of

the neural traces ui(t)

Cij:Sui tð Þuj tð ÞT,

where the brackets indicate temporal average. Equivalently, in

vector notation the covariance matrix of the spontaneous activity

reads

C:S~uu tð Þ~uu tð ÞTT: ð4Þ

Then, one calculates the eigenvectors and eigenvalues of C. The

covariance matrix C is symmetric by construction and therefore, it

has only real eigenvectors and eigenvalues. The eigenvectors of C

are by definition the principal components of the spontaneous

activity, i.e. the dominant patterns or modes, and they represent

the spatial patterns in which it can be decomposed. In other words,

each snapshot of the spontaneous activity can be represented as a

linear superposition of these modes, being their relative weights

different in each snapshot.

The overall weight of each mode in the spontaneous activity is

given by the magnitude of the associated eigenvalue. This poses an

interesting link between the dominant patterns and the concept of

attractor in neural dynamics, as recently illustrated in the olfactory

system of an insect [7,32]. In effect, it can be shown that the

temporal average of the similarity (projection) of the spontaneous

patterns onto the dominant eigenvector of the covariance matrix,

or first principal component, is maximal. In other words, the

neural activity fluctuates most of the time around the basin of

Spontaneous Activity Patterns
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attraction of the dominant pattern. The amount of time spent

around the basin of attraction of the remaining principal

components is proportional to the magnitude of their eigenvalues.

Mathematical proof of the relationship between
connectivity and dominant patterns

We start with equation (3); multiplying it with its transpose and

averaging in time we obtain

S~uu tzDtð Þ~uuT tzDtð ÞT~AS~uu tð Þ~uu tð ÞTTATzS~jj tð Þ~jj tð ÞTT,

where all terms containing a single product with noise, ~jj tð Þ have

vanished after averaging. As in (4) we now define the covariance

matrix of the spontaneous activity as

C:S~uu tð Þ~uu tð ÞTT~S~uu tztð Þ~uu tztð ÞTT,

where the equality is justified by the stationary character of the

spontaneous activity, i.e. temporal averages are invariant under

translation in time. Note that C is now calculated directly from the

model rather than being estimated from the traces of simulated

neural activity. Then, defining Q as the covariance matrix of the

intrinsic noise

Q:S~jj tð Þ~jj tð ÞTT,

we arrive at a matrix equation relating the covariance matrices

with the network connectivity via A

C~ACATzQ: ð5Þ

Although our derivation is valid for any Q, we can assume for

our purposes that the noise sources are uncorrelated in different

neurons, i.e. Q = (sDt)2 E. Note that in this case, Q is a diagonal,

constant matrix.

Our goal now is to solve for C in (5). To this end, we start

considering the eigen-decomposition of matrix A

A~LDL{1, ð6Þ

where the columns of matrix L are the eigenvectors of A and the

diagonal matrix D contains the associated eigenvalues, l. Note that

the eigenvalues of A are the eigenvalues of W scaled by the factor Dt

and shifted by the constant 12aDt. In a purely deterministic system,

i.e. in the case of ji(t) = 0, the stability of the model with respect to

any finite input pattern Ii(t)?0 is guaranteed if all eigenvalues of A are

negative, which can always be achieved if a is sufficiently large.

However, in the case of the stochastic system (3) considered here,

stability is guaranteed if all the eigenvalues of A have magnitude less

than unity [37,38], which means that the spontaneous activity

cannot grow infinitely in response to noise, but will remain

fluctuating around its mean value.

Since the connectivity matrix W is not symmetric in general,

neither is A, and therefore, A can have complex eigenvalues and

eigenvectors. As a result we need to replace the transpose

operation XT by the conjugate transpose operation X{. Then,

substituting (6) in (5) we obtain

C~LDL{1CL{{D{L{zQ, ð7Þ

where we have used L2{;(L21){ = (L{)21. Multiplying (7) by L

from the left, then by L{ from the right and defining
~CC~L{1CL{{ and ~QQ~L{1QL{{ we get

~CC~D ~CCDz~QQ: ð8Þ

Since D is a diagonal matrix, equation (8) can easily be rewritten

in terms of the matrix components

~CCij~lil
�
j

~CCijz~QQij ,

where the asterisk denotes complex conjugation. Then, solving for
~CCij one has

~CCij~
~QQij

1{lil
�
j

: ð9Þ

Multiplying (9) by L from the left and by L{ from the right we

arrive at the most relevant theoretical result of this paper: the

covariance matrix of the spontaneous activity is determined by the

covariance matrix of the intrinsic noise and the eigenvalues of the

connectivity matrix:

C~LPL{ with Pij~
~QQij

1{lil
�
j

: ð10Þ

Finally, taking into account that the spatial modes of the

spontaneous activity are the eigenvectors of C, we calculate the

eigen-decomposition of the covariance matrix

C~VHV T , ð11Þ

where the columns of V are the eigenvectors and the diagonal

matrix H contains the corresponding eigenvalues (since C is

symmetric, all eigenvalues and eigenvectors are real and in

addition, V is an orthogonal matrix, i.e. V21 = VT). The absolute

value of the eigenvalues indicates the relative importance of the

corresponding eigenvectors in the spontaneous activity of the

network.

Summing up, the modes of the spontaneous activity are fully

determined by the connectivity matrix via the eigenvectors and

eigenvalues of matrix A. This theoretical derivation allows us to

compare the dominant patterns obtained from the covariance

matrix of the time series ui(t), via (4), with the dominant patterns

obtained from the covariance matrix derived from the connectivity

matrix via (10) and (11). As shown in Results, there is a remarkable

agreement between the results of both methods.

Decomposition of the spontaneous activity in dominant
modes

Let~vvk be the k-th eigenvector of the covariance matrix, i.e. the

k-th dominant pattern or mode. The spontaneous activity~uu tð Þ can

be expressed as a linear combination of these modes, which are

pairwise orthonormal, i.e.~vvT
i
:~vvj~dij :

~uu tð Þ~
XN

k~1

ak tð Þ~vvk, ð12Þ
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where N is the number of modes (which coincides with the number

of neurons in the network) the coefficients ak(t) represent the

instantaneous contribution of each mode to the spontaneous

activity and are obtained using ak tð Þ~~vvT
k
:~uu tð Þ. The eigenvalues lk

associated with the dominant modes are the mean squared

amplitude, i.e. the variance, of these coefficients lk~Sa2
k tð ÞT.

Therefore, only the modes with larger eigenvalues are relevant in

practice for expansion (12). The decomposition of the spontaneous

activity in dominant modes is analogue to the decomposition of the

vibrations of a drum’s membrane in vibrating modes, i.e.

cylindrical harmonics (Bessel functions). In general, the decompo-

sition of spatiotemporal neural activity into modes has been used

by other authors in different contexts [35,39].

Dominant modes and network attractors
As mentioned above, the dominant patterns of the spontaneous

activity can be regarded as attractors of the network dynamics. A

link between both concepts is provided by the estimation of their

basins of attraction. To this end, we first calculate the normalized

projection of the principal components on each snapshot of the

spontaneous activity (i.e. the correlation coefficient, r(t)). The

magnitude of this correlation is plotted in figure 4. Specifically, if

the k-th principal component is~vvk, r(t) is given by

r tð Þ~ ~vvT
k
:~uu tð Þffiffiffiffiffiffiffiffiffiffiffi

~vvT
k
:~vvk

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~uuT tð Þ:~uu tð Þ

p ,

and we plot R(t) = |r(t)|. We then calculate the confidence interval

using Fisher’s z-transformation:

z tð Þ~ 1

2
ln

1zr tð Þ
1{r tð Þ :

The confidence interval of the random variable z at each point

in time is given by sz~1
� ffiffiffiffiffiffiffiffiffiffiffiffi

N{3
p

, where N is the dimension of the

vectors~vvk and~uu tð Þ, i.e., the number of neurons. Thus, the fraction

of z(t) samples exceeding sz in absolute value is a measure of the

attraction of the spontaneous activity to the k-th principal

component, i.e. a measure of its basin of attraction. For

visualization purposes, in figure 5B we show the fraction of z(t)

samples exceeding 3sz in absolute value (black dots).

Numerical details of simulations and analyses
All simulations and analyses were performed in Matlab 6.5. The

model consisted of a square network of 30630 = 900 units

(neurons). The elements of the connectivity matrix Wij were first

obtained by convolving the kernel in Fig. 1a with a delta function

of unitary amplitude on the i-th neuron of the network and

considering periodic (wrap around) boundary conditions. Then, a

random connectivity matrix of normally distributed synaptic

weights was added to introduce 25% variability. Finally, the

elements were divided by the norm of the matrix and multiplied by

1.03. This, together with the following parameter choices ensured

the stability of stochastic system (3): a= 1, s= 1, Dt = 0.2.

Our model is adimensional in nature. In order to endow the

model with biological spatiotemporal scales we first notice that the

period of the Gabor kernel must be within the range of 400 to

900 mm [17]. We take the period to be 0.7 mm. Then, we observe

that 10 s of spontaneous cortical traces embrace 6 to 8 peaks of

fluctuating activity [6]. This implies that the units of our

integration time step Dt must be s61022.

Figure 3D displays the correlation between the predicted and

the observed dominants patterns. More technically, if~vvP
i is the i-th

predicted pattern and ~vvO
j is the j-th observed pattern, then the

correlation matrix Rij is defined as:

Rij~
~vvP

i
:~vvO

jffiffiffiffiffiffiffiffiffiffiffi
~vvP

i
:~vvP

i

p ffiffiffiffiffiffiffiffiffiffiffiffi
~vvO

j
:~vvO

j

q ~
~vvP

i
:~vvO

j

~vvP
i

�� ��~vvO
j

��� ��� :

If the predicted and the observed patterns are similar, one

expects larger correlation values along the diagonal of the matrix,

as seen in figure 3D.

Supporting Information

Figure S1 Power spectrum of the spatial frequencies (Fourier

decomposition) averaged across all snapshots of the spontaneous

activity. The dominant Fourier modes are arranged along a ring of

inhomogeneous height, which indicates the relative weight of each

mode in the stochastic network dynamics. The radius of the ring

corresponds to the reciprocal of the period of the oscillation in the

Gabor kernel.

Found at: doi:10.1371/journal.pone.0002148.s001 (1.13 MB TIF)

Figure S2 Spatial patterns with largest power in the Fourier

decomposition of the spontaneous activity. The patterns exhibit

the spatial frequency of the Gabor kernel. Thus, the dominant

Fourier modes capture a relevant feature of the network

architecture.

Found at: doi:10.1371/journal.pone.0002148.s002 (1.70 MB TIF)

Figure S3 Normalized projection of the dominant Fourier

modes onto the spontaneous activity. The projections are

negligible, which means that, contrary to the principal compo-

nents, the Fourier modes cannot be considered as attractors of the

stochastic network dynamics.

Found at: doi:10.1371/journal.pone.0002148.s003 (0.41 MB TIF)

Movie S1 Simulated Spontaneous Activity. The spontaneous

activity organizes in complex spatiotemporal patterns (some

snapshots of the movie are also shown in figure 2). The color

scale indicates spontaneous firing rates in arbitrary units: red being

above firing baseline (represented in green) and blue below. The

spontaneous patterns reveal some spatial modularity, reminiscent

of the spatial patterns observed via voltage sensitive dye imaging in

V1 of cats. In effect, red and blue areas segregate forming domains

of approximately the same extension. These modules vary in time

but have a pronounced tendency to reemerge. Black scale bar:

0.7 mm.

Found at: doi:10.1371/journal.pone.0002148.s004 (9.89 MB

MPG)
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