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Abstract

Background: MicroRNAs (miRNAs) play crucial roles in a variety of biological processes via regulating expression of their
target genes at the mRNA level. A number of computational approaches regarding miRNAs have been proposed, but most
of them focus on miRNA gene finding or target predictions. Little computational work has been done to investigate the
effective regulation of miRNAs.

Methodology/Principal Findings: We propose a method to infer the effective regulatory activities of miRNAs by integrating
microarray expression data with miRNA target predictions. The method is based on the idea that regulatory activity changes
of miRNAs could be reflected by the expression changes of their target transcripts measured by microarray. To validate this
method, we apply it to the microarray data sets that measure gene expression changes in cell lines after transfection or
inhibition of several specific miRNAs. The results indicate that our method can detect activity enhancement of the
transfected miRNAs as well as activity reduction of the inhibited miRNAs with high sensitivity and specificity. Furthermore,
we show that our inference is robust with respect to false positives of target prediction.

Conclusions/Significance: A huge amount of gene expression data sets are available in the literature, but miRNA regulation
underlying these data sets is largely unknown. The method is easy to be implemented and can be used to investigate the
miRNA effective regulation underlying the expression change profiles obtained from microarray experiments.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of 19–24

nucleotides in length that down-regulate gene expression during a

variety of crucial cell processes, including cell proliferation [1],

apoptosis [2], development [3], differentiation [4], and metabo-

lism [5]. Since the discovery of the first miRNA gene (lin-4) in

1993 [6], several hundreds of miRNA genes have been identified

in animals and plants. It is currently estimated that miRNA genes

constitute about 1%–2% of the known genes and up to 30% of

genes may be regulated by miRNAs in eukaryotes [7]. MiRNA

genes can be located in introns or exons of protein-coding genes,

or within the intergenic regions between protein-coding genes.

They can either exist individually or form polycistronic clusters [8–

10]. Mature miRNAs are originated from 70- to 100-nucleotide

hairpin pre-miRNA precursors [9]. Typically, a precursor is

cleaved by RNase III family of endonucleases Drosha and Dicer

into a duplex: one strand of the duplex is degraded, whereas the

other strand functions as mature miRNA [11]. The single-

stranded mature miRNA is then incorporated into a silencing

complex and guided to the 39 un-translated region (39-UTR) of the

target mRNAs via base pairing, leading to the block of translation

or degradation of the target mRNAs [12].

It has been thought that the degree of complementarity between

the miRNA and its target mRNA determines the fate of the bound

target mRNA [13–15]. Perfect pairing induces target mRNA

cleavage, as is the case in most plant miRNAs [16,17]. Imperfect

pairing in the central part of the duplex instead leads to the block

of translation, as seen in the majority of animal miRNAs [18,19].

More recent studies, however, have demonstrated that in both

plants and animals, expression regulation at the mRNA level (via

mRNA degradation or deadenylation) may serve as a common

mechanism for miRNA function. First, animal miRNAs have been

found to mediate mRNA degradation even when the target sites

have incomplete complementarity to them [20–22]. Second,

microarray experiments reveal that overexpression of miRNA in

cells cause the moderate down-regulation of a large number of

transcripts, many of which contain the complementary sequences of

the over-expressed miRNA in their 39-UTRs [23–25]. Conversely,

gene expression analysis from miRNA knockdown animals reveal

that the miRNA recognition motifs are strongly enriched in the 39-

UTRs of up-regulated genes, but depleted in the 39-UTRs of down-

regulated genes [26]. Third, it has been shown that the 39-UTRs of

certain class of ubiquitously expressed genes are specifically depleted

of miRNA target sites [27] and that the endogenous expression of

several highly specific miRNAs is typically negatively correlated

with the mRNA levels of their targets [27–29].

Since the expression regulation at the mRNA level is common

for miRNA functions, it is reasonable to expect that the activities
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of miRNAs can be reflected by the expression levels of their target

mRNAs. As a matter of fact, the systematic negative correlations

between expressions of miRNAs and those of their target

transcripts have been observed in a number of studies as described

above [23–29]. With these observations, a natural question to us is:

can we infer the modification of miRNA effective regulation from

the expressions of their target genes? In this paper, we propose a

method that combines microarray expression data with miRNA

target predictions to infer the relative activities of miRNAs

underlying the gene expression changes. In a typical microarray

expression experiment, the relative expression levels in two

different biological samples (cDNA arrays) or the absolute

expression levels in a single biological sample (oligonucleotide

arrays) are measured simultaneously for tens of thousands of genes.

The expression levels of miRNA are generally not available from

these gene expression data. Thus, the purpose of our method is to

infer the relative miRNA activities, i.e. changes of miRNA

effective regulations between two different conditions, based on

the expression changes of their target genes, which are directly

measured by cDNA arrays or calculated by comparing the

absolute gene expression levels from different oligonucleotide

arrays. Basically, our method examines the trend of expression

changes of target genes of a miRNA. If these target genes tend to

be down-regulated, it indicates that the effective activity of this

miRNA is enhanced between the two conditions. Conversely, a

prevalent up-regulation of these target genes would indicate a

reduction of the miRNA activity. We apply this method to

microarray data measuring gene expression changes in cell lines

transfected with certain miRNAs or anti-miRNAs (miRNA-

specific inhibitors). It shows that the relative activities changes of

the transfected miRNAs and the inhibited miRNAs can indeed be

inferred with high sensitivity and specificity. The method is easy to

be implemented and can be applied to other microarray data to

provide useful information regarding the underlying miRNA

activity regulations.

Results

We apply our method to the microarray expression data from

miRNA transfection experiments performed by Lim et al. [23]. In

this data, using non-transfected Hela cell as reference the relative

expression levels of genes are measured in the HeLa cells at the 12

(12 h) and 24 (24 h) hour after respective transfection with two

wild-type miRNAs (miR-1 and miR-124), two mutant miRNAs

(124mut5-6 and 124mut9-10) and two chimeric miRNA (chimiR-

124/1 and chimiR-1/124), which results in a total of 12 expression

change profiles. We applied our method to these 12 expression

change profiles to examine whether the activity enhancement of

the transfected miRNAs can be detected. By integrating the

expression data with the miRNA target prediction data, we infer

the activity change scores (AC scores) with statistical significances

for 211 human miRNAs in each of the 12 expression change

profiles. More detailed description about the data, the definition of

AC score, and the computational procedure can be found in

section ‘‘Materials and Methods’’. The AC score is a measure of

the inferred relative activities of miRNAs between two different

conditions. In other words, it estimates the capability of these

miRNAs to down-regulate expressions of their target genes. A

positive AC score indicates activity enhancement of the corre-

sponding miRNA, whereas a negative AC score indicates activity

reduction. The complete results for 211 human miRNAs in these

12 expression change profiles are shown in the supplementary

Table S1.

Relative activities of miRNAs in miRNA transfected HeLa
cells

In Figure 1, we show the distribution of the AC scores for these

211 human miRNAs using box-plots, in which miR-1 and miR-

124 are marked as red circles and blue rectangles, respectively. As

shown, the regulation of miR-1 (Figure 1A) and miR-124

(Figure 1B) in their transfection microarray profiles are both

detected by our method. In the miR-1 transfection data, the AC

score of miR-1 is 12.37 at 12 h and 10.37 at 24 h. In the miR-124

transfection data, the AC score of miR-124 is 14.16 at 12 h and

16.11 at 24 h. These four AC scores are the highest among the

211 scores inferred from the corresponding miRNA transfection

experiment, with q-values of 0 according to the results from 10,000

permutations.

Figure 1C indicates that switch of bases at position 5 and 6

(124mut5-6) substantially reduces the ability of miR-124 to down-

regulate its target genes. In the 124mut5-6 transfection experi-

ment, the AC score of miR-124 is 25.89 at 12 h (q = 0.0084) and

25.22 at 24 h (q = 0.10), suggesting slight reduction instead of an

enhancement in regulatory activity. It seems that the regulatory

activity of miR-124 is completely abolished as a consequence of

base switch between positions 5 and 6. In contrast, switching bases

between positions 9 and 10 (124mut9-10) exhibits less reduction of

regulatory activity. As shown in Figure 1D, at 24 h the AC score

for miR-124 in 124mut9-10 transfected HeLa cells is 14.15 (q = 0),

which is comparable to 16.11 (q = 0) in the wild-type miR-124

transfected HeLa cells. However, the AC score of miR-124 at 12 h

after the 124mut9-10 transfection is much lower (5.28, q = 0.063).

This indicates that expression of the target genes of miR-124 is

only partially down-regulated at 12 h due to the lower regulatory

activity of 124mut9-10. Therefore, our results demonstrate that

the silencing or down-regulation abilities of both 124mut5-6 and

124mut9-10 are reduced compared to miR-124. Furthermore,

positions 5–6 of the miRNA are more crucial than positions 9–10.

Figure 1E and 1F show that the 59-ends of the miRNAs are

dominant over the 39-ends in down-regulating target genes. As

shown, transfection of the chimaeric miRNA chimiR-1/124,

composed of 59-end of miR-1 and 39-end of mir-124, down-

regulates the expression of the target genes of miR-1; whereas

transfection of the chimaeric miRNA chimiR-124/1, composed of

59-end of miR-124 and 39-end of mir-1, down-regulates the

expression of the target genes of miR-124. These results are

consistent with previous studies which demonstrated that the

miRNA-target RNA interaction is restricted to the 59-end of the

miRNA sequence and that the perfect complementarity between

the miRNA 2–8 bases and the targeted RNA is essential for target

recognition [30–33].

In Figure 2, we use the expression change profile at 24 h after

miR-124 transfection as an example to illustrate how our method

works. Figure 2A shows the g(i) function in Equation (1) (black

curve) and f(i) functions in Equation (2) for miR-124 (red curve)

and four randomly selected miRNAs (green curves). The

definitions of g(i) and f(i) functions can be found in ‘‘Materials

and Methods’’. If the activity of a miRNA does not change, f(i)

would increase in a random fashion. However, if the activity of a

miRNA does change, say in a down-regulated way, f(i) would

increase rapidly. The function g(i) serves as a control for the

comparison with f(i). As shown in Figure 2A, the f(i) function for

miR-124 exhibits a curve which deviates far from the curve of g(i)

function, since the genes with high binding affinities to the miRNA

tend to be down-regulated and therefore are enriched at the

bottom of the sorted expression change profile e9. However, the f(i)

functions of these randomly selected miRNAs are indistinguishable

from the g(i) function. Thus, the maximum deviation of f(i) from

Inference of miRNA Regulation
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g(i), i.e. the pre-score, for miR-124 is much larger than those of the

four randomly selected miRNAs, as shown in Figure 2B.

Interestingly, we find that over-expression of miR-1 or miR-124

can cause the activity changes of some other miRNAs, which are

mostly down-regulated. For example, after miR-124 transfection,

the activity of miR-32 is down-regulated with an AC score of

210.05 (q = 0) at 12 h and 29.57 (q = 0) at 24 h. These results

support the notion that miRNAs regulate each other and form a

regulatory network like transcription factors [34]. An alternative

explanation, however, is that the large amount of exogenous

miRNA introduced by miR-1 or miR-124 transfection may

interfere with the processing and maturation of endogenous

miRNAs and lead to their down-regulation.

We also applied our method to the shuffled expression change

profiles, in which the gene names in the microarray data are

shuffled, or in other word, mis-labeled randomly. In the shuffled

data, we are unable to identify any miRNA with significant activity

change at 0.30 significance level (q,0.30), suggesting a high

specificity of our method.

Robustness with respect to false miRNA target
predictions

It is known that in silico miRNA target prediction is usually not

accurate. Depending on the cut-off setting, the false positive rate

and/or the false negative rate of the target predictions could be

fairly high. Nonetheless, our method achieves accurate inference
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Figure 1. Distribution of AC scores for 211 known human miRNAs in (A) miR-1 (B) miR-124 (C) 124mut5-6 (D) 124mut9-10 (E)
chimiR1/124 and (F) chimiR124/1 transfection data. The AC scores for miR-1 and miR-124 are marked as red circles and blue rectangles,
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of miRNA activity modification in the miRNA transfection data as

shown above. To investigate the robustness of our method to the

false miRNA target predictions, we introduce additional errors to

the miRNA target prediction data and examine whether our

method is still able to identify the activity enhancement of the

transfected miRNAs. By setting the cut-off value of binding energy

to 212, the miRanda algorithm predicted 1076 regulatory target

genes for miR-1 (transcripts corresponding to the same gene are

combined). We divide the genes into a target gene set and a non-

target gene set of miR-1. To introduce additional prediction

errors, we randomly select 5%, 10%, 20%, 30%, 40% and 50%

genes from the target gene set, set their miR-1 binding scores to 0s

and assign their original binding scores to an equal number of

randomly selected non-target genes. In other words, we swap the

binding sores of a certain percentage of genes in miR-1 target and

non-target gene sets. We then calculate the AC score of miR-1 in

the expression change profile at 12 h and 24 h after miR-1

transfection based on the perturbed binding affinity data. For each

percentage, we repeat the above procedure 100 times. The

resulting average AC scores of miR-1 at each perturbing

percentage and their p-values are shown in Figure 3.

As shown in Figure 3, the average AC scores decrease gradually

with the increase of perturbing percentage. The activity change of

miR-1, however, can still be detected even when the perturbing

percentage increases to as large as 30%. Considering that the

original miRNA binding data already contain some prediction

errors, we conclude that our method is robust to the false positive

predictions in the predicted miRNA binding affinity data.

Continuous versus discretized miRNA-target binding
score data

In our method, we directly utilize the continuous binding scores

of miRNAs to their targets. To identify miRNAs with significant

activity changes, other strategies can be used: define the target

gene set for each miRNA and then (1) perform gene set

enrichment analysis (GSEA) [35] or (2) use the Wilcoxon test to

compare the expressions of target genes with non-target genes. To

show the advantage of using continuous binding scores, we

discretize the binding affinity data by setting the binding scores

over a cut-off value to 1 and those below the cut-off value to 0.

When discretized binding scores are used, our method is

essentially similar to the GSEA method. We apply our method

to the discretized binding affinity data and the expression change

profiles. Figure 4 shows the results based on the discretized binding

score data with different cut-off values. As shown, the results based

on continuous binding scores outperform those based on

discretized data.

We also use the Wilcoxon test to examine the significance of

down-regulation of target genes (binding score $12) for each

miRNA. It turns out that the down-regulation of the target genes

of the transfected miRNA can be detected, but the specificity is

relatively low. For example, in the expression change profile at

12 h after miR-1 transfection, the p-value of miR-1 by the

Wilcoxon test is 0.0021, indicating the down-regulation of miR-1

target genes. However, there are 20 other miRNAs with more

significant p-values, the lowest being 4.2e-11. In the expression

change profile at 24 h after miR-1 transfection, the p-value of

miR-1 is 0.061 and as many as 46 miRNAs have more significant

p-values with the lowest at 7.2e-11. Therefore, our method, which

is based on the continuous miRNA-target binding score data,

achieves more accurate results than those methods based on

miRNA target gene set analysis.

Other MiRNA transfection/inhibition data sets
In addition to the data described above, we apply our method to

two other microarray data sets from miRNA transfection or

inhibition experiments. The first data set is from the miRNA

transfection experiment [24]. This data set is different from the
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Figure 3. Average AC scores and p-values for miR-1 in the miR-1 transfection profile at 12 h (A and B) and 24 h (C and D) based on
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previous one in two aspects. First, it takes a time course design,

and measures gene expressions at 7 time points from 4 h to 120 h

after miRNA transfection. Second, it uses one-channel Affymetrix

microarrays to measure absolute expression levels of genes. In this

data set, two time-course microarray experiments are included:

one for miR-124 transfection and the other for the negative

control transfection. Comparison of gene expressions in these two

time courses at all time points results in 7 expression change

profiles, which reflect expression changes caused by miR-124

transfection at different time points. We calculate the AC scores

and their significances for each of the 211 miRNAs in these

profiles. In Figure 5, we show the inferred relative activities of

miR-124 across the time course after its transfection. As shown,

moderate activity enhancement of miR-124 is observed at 4 h and

8 h with AC scores of 7.96 (q = 9.4E-4) and 6.15 (q = 0.026),

respectively. In the rest time points (up to 120 h after transfection),

we detect significant enhancement of miR-124 activity, with the

highest AC score of 15.75 (q = 0) achieved at 12 h. The complete

results for this data set can be found in the supplementary Table

S2.

In the second data set, the effects of over-expression and

inhibition of two human miRNAs, miR-16 and miR-106b, are

investigated using the two-channel Agilent microarrays [25]. We

apply our method to this data set and the complete results can be

found in the supplementary Table S3. We detect the significant

activity enhancement of miR-16 and miR-106b in Hela cells

transfected with the corresponding miRNA, with the AC scores for

miR-16 and miR-106b are 19.08 (q = 0) and 21.31 (q = 0),

respectively. Of more importance, in the HeLa cells where the

endogenous miR-16 and miR-106b levels are specifically inhibited

by 29-O-methyl-modified oligonucleotides (anti-miR), we detect

the activity reduction of these two inhibited miRNAs. The AC

scores of miR-16 and miR-106b are respectively 216.00 (q = 0)

and 210.30 (q = 0) in the miRNA inhibition experiments. As

suggested by these results, our method is able to detect the activity

change of miRNAs in both gain-of-function (miRNA transfection)

and loss-of function (miRNA inhibition) experiments.

Discussion

In this study, we propose a computational method to infer

miRNA effective activity by integrating their binding affinities to

target genes with gene expression changes measured by micro-

array experiment. With this method, we successfully detect activity

enhancement of the miRNAs transfected to HeLa cells with high

sensitivity and specificity. It should be noted that expression

changes of the target genes for a miRNA reflects its effective

regulatory activity change rather than expression change. This is

one of the advantages of our method, since the expression level of

a miRNA may not reflect its ability to down-regulate target genes.

First, miRNA precursors need to be processed to become mature

miRNA and post-transcriptional regulation may play important

roles in controlling miRNA activities [36]. Second, in some cases

such as cancer, mutation of miRNA sequences may cause activity

changes without substantially changing the expression levels. For

these reasons, it may be more useful to measure or infer miRNA

activity changes instead of measuring their expression changes.

Unfortunately, some miRNA quantification methods such as

miRNA microarray cannot effectively discriminate the expression

levels of pre-miRNAs from those of mature miRNAs [37,38].

Thus the miRNA expression levels measured by these methods do

not reflect the actual regulatory activities of mature miRNAs.

Furthermore, the number of large-scale miRNA profiling data is

still limited, whereas a huge amount of microarray gene expression

data are available from the public database such as Stanford

Microarray Database (SMD) [39] and Gene Expression Omnibus

(GEO) [40]. Our method may be implemented to these data sets
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and provide insight into miRNA activity regulation for further

experimental investigation.

In this study, the target genes for miRNAs were predicted using

miRanda algorithm [41]. The self-consistency in our analysis of

the miRNA transfected HeLa cells suggests the reliability of the

miRanda predictions. Other than the miRanda algorithm, several

other target prediction methods have also been proposed such as

TargetScan [30], DIANA-MicroT [42], and PicTar [43]. We do

not study the effect of different miRNA target prediction methods,

since it is beyond the focus of this paper. As shown, our method is

robust with respect to the possible false predictions in the miRNA-

target binding score data. However, we expect further improve-

ment of the results by our method if more accurate miRNA target

gene prediction is available.

Our method relies on the connection between activity of a given

miRNA and expression levels of its target genes. Although recent

studies indicate that expression regulation at the mRNA level may

be a common mechanism for miRNA function in both plants and

animals, the debate about the regulatory mechanisms of animal

miRNAs is far from being closed. It is possible that for some

animal miRNAs translation repression is the major mechanism for

target gene suppression. In this case, our method may not be able

to detect the activity changes of these miRNAs based on gene

expression data. Another limitation of our method is that different

miRNAs are considered independently during the activity

inference. But miRNA regulation may involve interactive activity

between multiple miRNAs. How to take into account the

synergistic miRNA regulation would be an interesting direction

in the future studies.

In summary, we propose a method to infer effective activities of

miRNA from microarray gene expression data and miRNA target

predictions. This method can detect the activity enhancement of

transfected miRNAs as well as the activity reduction of inhibited

miRNAs with high sensitivity and specificity based on gene

expression data. Since a huge amount of microarray expression

data is available, we expect this method can be applied to infer

miRNA regulations in many biological and medical research.

Materials and Methods

Overview
We originally use a similar method to infer activity changes of

transcription factors by integrating microarray data with ChIP-

chip data or motif discovery data [44]. Since transcription factor

and miRNA share a common logic in gene expression regulation

[34], in this paper we revise the method and apply it to infer the

relative activities of miRNAs by combining gene expression

profiling with miRNA target predictions. In a typical expression

change profile, the expression changes of tens of thousands

transcripts are measured simultaneously under two different

conditions, i.e. mutant versus wild type. To infer the relative

activity of a miRNA, we examine expression changes of its target

transcripts: if they tend to be down-regulated, then the activity of

this miRNA is likely to be enhanced; conversely, if they tend to be

up-regulated, then the activity of this miRNA is likely to be

repressed. Unfortunately, the complete list of target transcripts of

miRNAs is usually not available from experiments. But a number

of computational approaches have been suggested to predict

miRNA targets, such as TargetScan [30], miRanda [41], DIANA-

microT [42], RNAhybrid [45], and PicTar [43]. These approach-

es search the 39-UTR sequences of mRNAs for potential miRNA

binding motifs that have binding affinities to the miRNA over a

cut-off value. In our method, we do not use a stringent cut-off

value to determine target gene sets for miRNAs. In contrast, we

utilize the predicted binding affinity scores directly, for the

magnitude of binding affinities itself is informative as has been

shown by [24].

Human miRNA target prediction
In plants, miRNAs are highly complementary to their binding

sequences and therefore miRNA target prediction is relatively easy

[46]. In animals, a number of miRNA target prediction

approaches have been suggested in the past few years [30,41–

43,45,47]. In this paper, we utilize the data predicted by miRanda

algorithm [41,47], which include the target predictions for 211 of

known miRNAs in human. The complete data set is available from

the miRNAMap database at http://mirnamap.mbc.nctu.edu.tw/

html/downloads.html [48]. The miRanda algorithm is based on

sequence complementarity between the mature miRNA and its

target site, binding energy for the miRNA-target duplex, and the

evolutionary conservation of the target site sequence and position

in aligned UTRs of homologous genes found in human, mouse

and rat [41]. This algorithm was used to scan the human miRNA

sequences against the 39-UTRs of all the human transcripts for

potential target sites. Each predicted miRNA-target duplex is

assigned a binding energy (a negative value) with the cut-off value

being set to 212, namely, only those sites with binding energies

less than 212 were considered to be the target sites.

The predicted binding energy reflects the binding potential of

the miRNA to the target site: a lower binding energy indicates a

higher binding potential. Based on this data, we generate a

binding score matrix B = (bij)N6M, where M is 211, the number of

known human miRNAs, and N is 4896, the number of genes that

contain at least one target site of the 211 miRNAs. The binding

score bij is the sum of absolute values of binding energies for all the

target sites of miRNA j within the 39-UTR of gene i. If gene i

contains no target site of miRNA j, we set bij to zero. Some human

genes may correspond to multiple mRNA transcripts and in this

case the binding scores of these transcripts are averaged.

Gene expression data in miRNA transfected cells
In this paper, three independent miRNA transfection data sets

are used, which are originally generated by Lim et al. [23], Wang

et al. [24], and Linsley et al. [25], respectively. To investigate the

influence of miRNAs on gene expressions, Lim et al. transfected

exogenous miRNAs into the HeLa cells and measured gene

expression changes of genes in the transfected cells versus non-

transfected cells using two-channel Agilent microarrays [23]. This

data set is available from the GEO database with the accession

number GSE2075 [40].

In total, the effect of six miRNAs were examined in the data,

including two wild-type miRNAs (miR-1 and miR-124), two

mutant miRNAs of miR-124 (124mut5-6 and 124mut9-10), and

two chimeric miRNAs (chimiR-124/1 and chimiR-1/124). The

two mutant sequences of miR-124 were designed by switching

bases at positions 5 and 6 (124mut5-6) and at positions 9 and 10

(124mut9-10), respectively. ChimiR-124/1 and chimiR-1/124

were two hybrid miRNAs. ChimiR-124/1 consists of the 59-

segment (10 bases) of miR-124 and the 39-segment (12 bases) of

miR-1, while chimiR-1/124 consisted of the 59-segment (10 bases)

of miR-1 and the 39-segment (11 bases) of miR-124. These six

miRNAs were transfected separately into HeLa cells and

expression changes for more than 20,000 transcripts were

measured at the 12 (12 h) and 24 (24 h) hours after transfection,

resulting in 12 expression change profiles. In this data set some

transcripts correspond to the same gene, namely, they have the

same gene symbol. By averaging the measurements of transcripts

corresponding to common genes, we finally obtained the relative
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expression levels of 15,223 different genes for each expression

profile.

In the second data set, gene expressions were profiled in miR-

124 transfected as well as non-transfected HepG2 cells at 7 time

points using the Affymetrix GeneChips [24]. We compared the

expression profiles in transfected cells with those in non-

transfected cells at each time point to obtain 7 expression change

profiles. That is, these expression change profiles measure the

relative expression levels (log ratios) of genes in miR-124 over-

expressed cells with respect to non-transfected controls. The third

data set contains four expression change profiles, which measure

the relative expression levels of genes in miR-16 and miR-106b

over-expressed and inhibited Hela cells using the two channel

Agilent microarrays (non-transfected cells as controls) [25]. For

both of these two data sets, multiple measurements for the same

transcripts were averaged to represent the relative expression levels

of genes.

Inferring relative activities of miRNAs from gene
expression data

To calculate the relative activities of miRNAs, we examine the

expression changes of all genes between two different conditions

measured by microarray experiments, which is denoted as

‘‘expression change profile’’ in this article. The expression changes

of genes are directly measured by cDNA arrays or calculated by

comparing absolute gene expression levels captured by pairs of

oligonucleotide arrays. Given an expression change profile

e = (e1,e2, …, eN) (e.g. expression changes of genes in mutant versus

wild-type cells, in which ei is the log ratio of gene i) and a binding

score matrix B = (bij)N6M (e.g. the above described binding score

matrix for known human miRNAs), where N and M are the total

number of genes and miRNAs respectively, our method aims to

identify the miRNAs that are associated with the gene expression

changes in e. The basic idea is to examine the expressions of target

genes of miRNA: if the target genes tend to be down-regulated, we

infer its activity to be enhanced; conversely, if the target genes tend

to be up-regulated, we infer its activity to be repressed.

For each miRNA, we calculate a score, termed the activity

change score (AC score), which reflects the activity change of the

miRNA. Suppose that we extract the binding scores corresponding

to the current considered miRNA from the matrix B, and denote it

as b = (b1, b2, …, bN). To calculate the AC score, we first sort the

expression vector e in a decreasing order and denote the sorted

expression vector as e9 = (e(1), e(2), …, e(N)). Accordingly, we

rearrange the binding vector b into b0~ bi1 ,bi2 , . . . ,biNð Þ, where

(i1, i2, …, iN) are the indices of the ranked genes in e9. Note that bil

and e(l) correspond to the same gene il.

Second, we combine the two vectors e9 and b9 into a non-

decreasing function f(i) defined as follows:

f ið Þ~
Pi

l~1 e lð Þbil

�� ��
PN

l~1 e lð Þbil

�� �� , ð1Þ

where 1#i#N. Meanwhile we define another increasing function

g(i) based only on e9 as

g ið Þ~
Pi

l~1 e lð Þ
�� ��

PN
l~1 e lð Þ
�� �� : ð2Þ

If the activity of a miRNA does not change, genes with high and

low binding affinities to the miRNA would locate randomly in the

ranking list e9, and f(i) would increase in a stochastic manner.

However, if the activity of a miRNA does change, for example in a

down-regulated manner, genes with high binding affinities would

rank high in e9, and f(i) would increase rapidly. The function g(i)

serves as a control for comparison with f(i).

Third, we search for the index imax that achieves the maximum

deviation between f(i) and g(i), that is, imax~ arg max
i~1,2,...,N

g ið Þ{f ið Þj j.
Then a pre-score is defined as

ps�~g imaxð Þ{f imaxð Þ: ð3Þ

Fourth, the pre-score is treated as a statistic and permutations are

performed to obtain its distribution under the null hypothesis: no

association between e and b. The binding vector b9 is permutated K

times, resulting in K permuted binding vectors b(1), b(2), …, b(K). For

each of the permutated binding vectors, we calculate a permutated

pre-score and thereby we obtain a permutated pre-score vector

denoted as psperm = (ps1, ps2, …, psK). The vector psperm represents the

distribution of the pre-score under the null hypothesis and will be

used for two purposes: (1) normalizing the pre-score and (2)

assessing the significance of the activity change of a miRNA (to be

described in the next section).

Since the pre-scores of different miRNAs may have different

distributions under the null hypothesis, they are not directly

comparable. Therefore, we normalize the pre-score into the AC

score defined as the following:

AC~
ps�{MEAN pspermð Þ

SD pspermj jð Þ ð4Þ

where MEAN(psperm) is the mean of psperm and SD(|psperm|) is the

standard deviation of the absolute values of psperm. In General, the

permutated pre-score has a bimodal distribution as shown in

Figure 6. It can be shown that if the expression change profile e is

symmetric with respect to zero, the permutated pre-score would

also have a symmetric distribution. In most microarray data, the

symmetric assumption for the expression change profile e is

approximately satisfied and therefore we use SD(|psperm|) to

combine the standard deviations of the permutated pre-scores in

the positive and negative sides. Certainly, the symmetry is not

perfect: the distribution of the pre-scores may skew to one side. We

use MEAN(psperm) to correct the skewness, which is usually close to

zero. In practice, the AC score achieves a good normalization for

the pre-scores of different miRNAs. The AC score can be either

positive or negative: a positive value indicates an overall down-

regulation of the target genes of a miRNA and thereby the

enhanced activity of the miRNA. Conversely, a negative value
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Figure 6. Distribution of the pre-scores for miR-124 in 10,000
permutated data sets.
doi:10.1371/journal.pone.0001989.g006
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indicates an overall up-regulation of the target genes of a miRNA

and thereby the reduced activity of the miRNA.

The AC score is a generalization of the enrichment score in

gene set enrichment analysis (GSEA), which was proposed to

identify gene sets associated with expression change profiles [35].

A target gene set of a miRNA, can be regarded as a degenerated

binding score profile, in which binding scores above and below a

specified threshold are set to 1 and 0, respectively. In this situation,

our method is similar to the GSEA method. More explanations

and applications of the method in the context of transcription

inference can be found in [44,49].

Significance evaluation of AC scores
The significances for the AC scores can also be assessed based

on the above described permutation results. We define the p-value

as the percentage of permutations that result in equal or more

extreme pre-scores than the one from the original data. That is,

the p-value for ps* is defined as

p~

# k : psk
§ps�f g

K
, ps�§MEAN pspermð Þ

# k : psk
ƒps�f g

K
, ps�vMEAN pspermð Þ,

8<
: ð5Þ

where MEAN(psperm) is the mean of psperm and K is the number of

permutations.

Since usually hundreds of miRNAs are examined simultaneous-

ly for each expression profile, multiple testing corrections need to

be considered. Therefore, we calculate the false discovery rate

(FDR) based on the permutations using a similar method

introduced in GSEA [35]. The AC scores for each miRNA are

calculated in both the original data, denoted as ACS(r) for the rth
miRNA, and the permutated data, denoted as ACS(r, k), for the rth
miRNA in the kth permutation. We then consider the histogram of

all ACS(r, k) over all r and k, and use this null distribution to

compute an FDR q value for a given AC score ACS(r) = ACS*. If

ACS*$0, the FDR is the ratio of the percentage of all (r, k) with

ACS(r, k)$0, whose ACS(r, k)$ACS*, divided by the percentage of

miRNAs with ACS(r)$0, where ACS(r)$ACS*, and similarly if

ACS*,0.

Software availability
The C++ program for the method is available for downloading

at http://leili-lab.cmb.usc.edu/yeastaging/projects/microrna/.

Supporting Information

Table S1 AC scores, p-values and q-values for 211 human

miRNAs in expression profiles from miRNA transcfection

experiments performed by Lim et al. [23].

Found at: doi:10.1371/journal.pone.0001989.s001 (0.16 MB

XLS)

Table S2 AC scores, p-values and q-values for 211 human

miRNAs in expression profiles from miRNA transcfection time

course experiments performed by Wang et al. [24].

Found at: doi:10.1371/journal.pone.0001989.s002 (0.10 MB

XLS)

Table S3 AC scores, p-values and q-values for 211 human

miRNAs in expression profiles from miRNA transcfection and

inhibition experiments performed by Linsley et al. [25].

Found at: doi:10.1371/journal.pone.0001989.s003 (0.13 MB

XLS)
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