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Shijun Wang1¤, Máté S. Szalay2, Changshui Zhang1, Peter Csermely2*

1 Department of Automation, Tsinghua University, Beijing, China, 2 Department of Medical Chemistry, Semmelweis University, Budapest, Hungary

Abstract

Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with
the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains
rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular,
small-word, scale-free and modular network models in repeated, multi-agent Prisoner’s Dilemma and Hawk-Dove games.
Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote
cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level
of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and
random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling
the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of
learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play
a prominent role in the evolution of self-organizing, complex systems.
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Introduction

Cooperation is necessary for the emergence of complex,

hierarchical systems [1–5]. Why is cooperation maintained, when

there is a conflict between self-interest and the common good? A

set of answers emphasized agent similarity, in terms of kin- or

group-selection and compact network communities, which is

helped by learning of successful strategies [2,3]. On the other

hand, agent diversity in terms of noise, variation of behavior and

innovation, as well as the changing environment of the agent-

community all promoted cooperation in different games and

settings [3,6–8].

Small-world, scale-free or modular network models, which all

give a chance to develop the complexity of similar, yet diverse

agent-neighborhoods, provide a good starting point for the

modeling of the complexity of cooperative behavior in real-world

networks [9–13]. However, the actual level of cooperation in

various games, such as the Prisoner’s Dilemma or Hawk-Dove

games is very sensitive to the topology of the agent network model

[14–16, Electronic supplementary material S1 – ESM1 – Table

S1.1]. In our work we applied a set of widely used network models

and examined the stability of cooperation after repeated games

using the reinforcement learning strategy adoption rule, Q-

learning. To examine the surprising stability of cooperation

observed, when using Q-learning, we approximated the complex

rules of Q-learning by designing a long-term versions of the best-

takes-over and other strategy adoption rules as well as introducing

a low level of randomness to these rules. We found that none

of these features alone results in a similar stability of cooperation

in various network models. However, when applied together, long-

term (‘learning’) and random (‘innovative’) elements of strategy

adoption rules can make cooperation relatively stable under

various conditions in a large number of network models.

Our results have a wide application in various complex systems

of biology from the cellular level to social networks and

ecosystems.

Results

Sensitivity of cooperation on network topology
As an illustrative example for the sensitivity of cooperation on

network topology, we show cooperating agents after the last round

of a ‘repeated canonical Prisoner’s Dilemma game’ (PD-game) on

two, almost identical versions of a modified Watts-Strogatz-type

small-world model network [13,17]. Comparison of the top panels

of Figure 1 shows that a minor change of network topology

(replacement of 37 links from 900 links total) completely changed

both the level and topology of cooperating agents playing with a

best-takes-over short term strategy adoption rule. We have

observed a similar topological sensitivity of cooperation in all

combinations of (a) other short-term strategy adoption rules; (b) a

large number of other network topologies; (c) other games, such as

the extended Prisoner’s Dilemma or Hawk-Dove games (ESM1

Figures S1.1 and S1.6).
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Q-learning stabilizes cooperation in different network
topologies

On the contrary to the general sensitivity of cooperation to the

topology of agent-networks in PD-games using the short-term

strategy adoption rule shown above, when the long-term,

reinforcement learning strategy adoption rule, Q-learning was

applied, the level and configuration of cooperating agents showed

a surprising stability (cf. the bottom panels of Figure 1). Just

oppositely to the short-term strategy adoption rule shown on the

top panels of Figure 1, the Q-learning strategy adoption rule (a) is

based on the long-term experiences of the agents from all previous

rounds allowing some agents to choose a cooperative strategy

despite of the current adverse effects, and (b) is an ‘innovative’

strategy adoption rule [3] re-introducing cooperation even under

conditions, when it has already been wiped out from the network-

community completely [18,19].

Extending the observations shown on Figure 1 we decided to

compare the level of cooperation in PD-games on small-world and

scale-free networks at various levels of temptations (T, the

defector’s payoff, when it meets a cooperator) in detail. The top

panel of Figure 2 shows that the cooperation level of agents using

the best-takes-over strategy adoption rule rapidly decreased with a

gradual increase of their temptation to defect. This was generally

true for both small-world, and scale-free networks leaving a

negligible amount of cooperation at T-values higher than 4.5.

However, at smaller temptation levels the level of cooperation

greatly differed in the two network topologies. Initially, the small-

world network was preferred, while at temptation values higher

than 3.7, agents of the scale-free network developed a larger

cooperation. The behavior of agents using the Q-learning strategy

adoption rule was remarkably different (top panel of Figure 2).

Their cooperation level remained relatively stable even at

extremely large temptation values. Moreover, the cooperation

Figure 1. A long-term learning adoption rule, Q-learning improves and stabilizes cooperation of agents forming various small-
world networks in Prisoner’s Dilemma games. The modified Watts-Strogatz small-world network was built on a 15615 lattice, where each node
was connected to its eight nearest neighbors. The rewiring probabilities of the links placed originally on a regular lattice were 0.01 (left panels) and
0.04 (right panels), respectively. For the description of the canonical repeated Prisoner’s Dilemma game, as well as the best-takes-over (top panels)
and Q-learning (bottom panels) strategy adoption rules see Methods and the ESM1. The temptation level, T was 3.6. Networks showing the last round
of 5,000 plays were visualized using the Kamada-Kawai algorithm of the Pajek program [46]. Dark blue dots and diamonds correspond to cooperators
and defectors, respectively. The Figure shows that both the extent and distribution of cooperators vary, when using the best-takes-over strategy
adoption rule (see top panels), while they are rather stable with the Q-learning strategy update rule (see bottom panels).
doi:10.1371/journal.pone.0001917.g001

Learning Cooperative Networks
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levels of agents using Q-learning had no significant difference, if

we compared small-world and scale-free networks. This behavior

continued at temptation values higher than 6 (data not shown). We

have observed the same differences in both the extent of

cooperation at extremely high temptations (or gains of hawks

meeting a dove in the Hawk-Dove game) and the topological

sensitivity of cooperation in all combinations of (a) other short-

term strategy adoption rules; (b) a large number of other network

topologies; (c) other games, such as the extended Prisoner’s

Dilemma or Hawk-Dove games (ESM1 Figures S1.2 and S1.6).

Long-term strategy adoption rules improve but do not
stabilize cooperation in different networks

Next we wanted to see, if other long-term strategies besides Q-

learning can also promote cooperation between agents. In Q-

learning agents consider a long-term experience learned in all the

past rounds of the play. Therefore, we modified the best-takes-over

strategy adoption rule allowing the agents to use accumulative

rewards of their neighbors in all past rounds instead of the reward

received just in the last round. In agreement with our expectations,

both on small-world and scale-free networks this long-term

strategy adoption rule outperformed its short-term version

allowing a larger number of agents to cooperate – especially at

high temptation values. Importantly, the differences between

cooperation levels observed in small-world and scale-free networks

were even greater, when we applied the long-term strategy

adoption rule compared to its short-term version (middle panel of

Figure 2). We have received very similar results in all combinations

of (a) other short- and long-term strategy adoption rule pairs; (b) a

large number of other network topologies; (c) other games, such as

the extended Prisoner’s Dilemma or Hawk-Dove games. Long-

term learning strategy adoption rules also promoted cooperation

(albeit at lower efficiency than in case of complex network

structures), when we used networks re-randomized after each play,

or randomly picked agents (ESM1 Figures S1.3–S1.6). As a

summary, we conclude that long-term strategy adoption rules

(‘learning’ instead of simple imitation) allow a larger cooperation,

but do not stabilize the cooperation-fluctuations inflicted by the

different topologies of the underlying networks, which leaves the

remarkable topological stability of the Q-learning strategy

adoption rule still unexplained.

Low level of randomness of the strategy adoption rules is
needed to stabilize cooperation level in different network
topologies

Next we tested, if the innovative elements of the Q-learning

strategy adoption rule may contribute to the stability of

cooperation in various network topologies. For this, we construct-

ed an ‘innovative’ version of the long-term version of the best-

takes-over, ‘non-innovative’ strategy adoption rule by adding a low

level of randomness instructing agents to follow the opposite of the

selected neighbor’s strategy with a pre-set Pinnovation probability (see

Methods). Cooperation levels achieved by the innovative long-

term best-takes-over strategy adoption rule are shown on the

bottom panel of Figure 2. At temptation values smaller than

T = 3.8 the innovative long-term version of the best-takes over

strategy adoption rule outperformed Q-learning, which resulted in

Figure 2. Long-term learning elements of strategy update rules
help, while a low level of randomness relatively stabilizes
cooperation in Prisoner’s Dilemma games played on various
networks. Small-world (SW, filled, red symbols) networks were built as
described in the legend of Figure 1. The Barabasi-Albert-type scale-free
networks (SF, open, blue symbols) contained 2,500 nodes, where at
each construction step a new node was added with 3 new links
attached to the existing nodes. For the description of the canonical
repeated Prisoner’s Dilemma game, as well as that of the best-takes-
over (triangles, all panels), the Q-learning (rectangles, top panel) the
best-takes-over long (circles, middle panel), and the best-takes-over
long innovative (crosses, Pinnovation = 0.0002, bottom panel) strategy
adoption rules, see Methods and the ESM1. For each strategy adoption
rules and T temptation values 100 random runs of 5,000 time steps
were executed. The figure shows that long-term, ‘learning-type’

elements of strategy update rules help cooperation in Prisoner’s
Dilemma games played on various networks. A low level of randomness
(also called as ‘innovation’ in this paper) brings the level of cooperation
closer in different network topologies.
doi:10.1371/journal.pone.0001917.g002
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a larger proportion of cooperating agents (cf. top and bottom

panels of Figure 2). However, at high temptation values Q-

learning proved to be more efficient in maintaining cooperation.

Most importantly, cooperation levels in small-world and scale-free

networks were much closer to each other, when using the long-

term innovative strategy-adoption rule, than either the ‘only long-

term’, or short-term versions of the same strategy adoption rule

(Figure 2). At high temptation values cooperation levels of long-

term innovative strategy adoption rules on small-world and scale-

free networks were converging to each other and even to the

cooperation level observed, when using the Q-learning strategy

adoption rule. We have received very similar results in

combinations of (a) other innovative short- and long-term strategy

adoption rules; (b) a large number of other network topologies; (c)

other games, such as the extended Prisoner’s Dilemma or Hawk-

Dove games (ESM1 Figures S1.7 and S1.8). According to the

expectations [8], the stabilizing role of the randomness in the

strategy adoption rules depended on the actual value of the pre-set

Pinnovation probability, and showed an optimum at intermediary

Pinnovation levels, where the actual value of optimal Pinnovation

depended on the strategy adoption rule and network topology.

The effect of changes in Pinnovation was much more pronounced in

case of scale-free networks than at small-world networks, which is

a rather plausible outcome, since the larger irregularity of scale-

free networks makes the re-introduction of extinct strategies a lot

more crucial (ESM1 Figure S1.8).

We have shown so far that long-term, learning strategy adoption

rules help the development of cooperation, while ‘innovative’

strategy adoption rules make the cooperation level more

independent from the actual network topology. Figure 3 illustrates

how the cooperative network topologies were expanded, when we

used long-term learning and ‘innovative’ versions of the best-takes-

over strategy adoption rule as well as Q-learning at a high level of

temptation, which made cooperation especially difficult. The

application of the best-takes-over strategy adoption rule resulted in

non-zero cooperation only sporadically. Cooperation levels using

the long-term best-takes-over strategy adoption rule varied greatly,

and still had several network configurations with zero cooperation.

On the contrary, the two ‘innovative’ long-term learning strategy

adoption rules had a much higher than zero cooperation in almost

all networks tested, and the cooperation level remained fairly

stable using a great variety of network topologies. This was

especially true for Q-learning, which gave a stable level of

cooperation even at regular networks (Figure 3), which result in a

high instability of cooperation (see ESM1 Table S1.1). We have

received very similar results in extended Prisoner’s Dilemma and

Hawk-Dove games (ESM1 Figures S1.9 and S1.10).

Discussion

As a summary, our simulations showed that long-term learning

strategy adoption rules promote cooperation, while innovative

elements make the appearance of cooperation less dependent from

the actual network topology in two different games using a large

number of network topologies in model networks. We must

emphasize that the term ‘learning’ is used in our paper in the sense

of the collection and use of information enriching and diversifying

game strategy and behavior, and not in the restricted sense of

imitation, or directed information-flow from a dominant source

(the teacher) pauperizing the diversity of game strategies. The help

of learning in promoting cooperation is already implicitly involved

in the folk theorem, which opens the theoretical possibility for the

emergence of cooperation at infinitely repeated games [3,20].

Learning, communication, negotiation, reputation-building mech-

anisms have all been shown to promote cooperation in various

simulations as well as in games with groups of a variety of living

organisms, including animals and humans (ESM1 Table S1.2).

With the current work we have extended these findings showing

that agents can markedly improve their cooperation, when they

are allowed to consider long-term experiences either of their own

(Q-learning) or their neighbors (other long-term strategies used),

and this ‘shadow of the past’ [21] acts similarly at a great variety of

network topologies.

We use the term ‘innovation’ in the sense of irregularities in the

selection of adoption rules of game strategy. Therefore, ‘innova-

tion’ may be caused by errors, mutations, mistakes, noise,

randomness and temperature besides the bona fide innovation of

conscious, intelligent agents. Our term, ‘innovation’ allows the

change of the strategy adoption rules, therefore allows (increases)

the evolvability [22] of our model system. Innovative strategies

help to avoid ‘herding’, when agents start to use a uniform strategy

and behavior forming synchronous clusters (ESM1 Figures S1.11,

S1.12 and data not shown). Innovation increases game diversity

and complexity, which, similarly to the stabilizing effect of weak

links in a large variety of static networks, may significantly stabilize

network dynamics (probably by helping the convergence of

possible outcomes; [23]). Irregularities in network topology, noise,

stochastic resonance, stochastic focusing and innovative strategies

were shown to promote cooperation in various simulations as well

as in games of primates and humans (ESM1 Table S1.3).

However, the innovation-driven relative stabilization of coopera-

tion in various network topologies is a novel finding reported here.

Cooperation helps the development of complex network

structures [4,5,24]. Network dynamics and evolution lead to a

large variety of link re-arrangements [25,26]. Network evolution is

full of stochastic ‘errors’, and often results in the development of a

higher average degree [25], which makes cooperation more

difficult [15,16]. The highly similar cooperation levels of scale-free

networks with different average degrees and of many other

network topologies of model networks (Figure 3, ESM1 Figures

S1.9 and S1.10) show that innovative long-term learning strategy

adoption rules may provide a buffering safety-net to avoid the

deleterious consequences of possible overshoots and errors in

network development on cooperation. Our simulations showed

(Figure 2, ESM1 Figures S1.2 and S1.6) that the help of innovative

long-term learning is especially pronounced at conditions, where

the relative cost of cooperation is the highest making cooperation

most sensitive to the anomalies of network evolution [15]. This

extreme situation is more easily reached, when the whole system

becomes resource-poor, which makes all relative costs higher.

Resource-poor networks develop a set of topological phase

transitions in the direction of random R scale-free R star R
fully connected subgraph topologies [27]. This further substanti-

ates the importance of our findings that long-term, innovative

learning allows a larger ‘cooperation-compatible’ window of these

topologies, thus helps to avoid the decomposition of network

structure in case of decreasing system resources due to e.g. an

environmental stress. Further work is needed to show the validity

of our findings in real-world networks as well as in combination

with network evolution.

Our current work can be extended in a number of ways. The

complexity of the game-sets and network topologies offers a great

opportunity for a detailed equilibrium-analysis, similarly to that

described by Goyal and Vega-Redondo [28]. The cited study [28]

allows a choice of the interacting partners (an option denied in our

model), which leads to another rich field of possible extensions,

where the network topology is changing (evolving) during the

games such as in the paper of Holme and Ghoshal [29]. Similarly,

Learning Cooperative Networks
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Figure 3. Long-term learning and innovative elements of strategy adoption rules, when applied together allow cooperation in a
large number of model networks. (Top middle panel) The small-world (spheres) and scale-free (cones) model networks were built as described in
the legends of Figures 1 and 2. The rewiring probability, p of the links of the original regular lattices giving small-world networks was increased from
0 to 1 with 0.05 increments, the number of edges linking each new node to former nodes in scale-free networks was varied from 1 to 7, and the
means of shortest path-lengths and clustering coefficients were calculated for each network. Cubes and cylinders denote regular (p = 0) and random
(p = 1.0) extremes of the small-world networks, respectively. For the description of the canonical repeated Prisoner’s Dilemma game, as well as the
best-takes-over (green symbols); long-term learning best-takes-over (blue symbols); long-term learning innovative best-takes-over (magenta
symbols) and Q-learning (red symbols) strategy adoption rules used, see Methods and the ESM1. For each network 100 random runs of 5,000 time
steps were executed at a fixed T value of 3.5. (Left and right panels) 2D side views of the 3D top middle panel showing the proportion of cooperators
as the function of the mean length of shortest paths or the mean clustering coefficient, respectively. (Bottom middle panel) Color-coded illustration
of the various network topologies used on the top middle panel. Here the same simulations are shown as on the top middle panel with a different
color-code emphasizing the different network topologies. The various networks are represented by the following colors: regular networks – blue;
small-world networks – green; scale-free networks – yellow; random networks – red (from the angle of the figure the random networks are behind
some of the small-world networks and, therefore are highlighted with a red arrow to make there identification easier). The top middle panel and its
side views show that the best-takes-over strategy adoption rule (green symbols) at this high temptation level results in a zero (or close-to-zero)
cooperation. As opposed to this, the long-term best-takes-over strategy adoption rule (blue symbols) raise the level of cooperation significantly
above zero, but the individual values vary greatly at the different network topologies. When the long-term strategy adoption rule is combined with a
low level of randomness (magenta symbols) the cooperation level stays in most cases uniformly and its variation becomes high greatly diminished. Q-
learning stabilizes cooperation further even at regular networks, which otherwise give an extremely variable outcome.
doi:10.1371/journal.pone.0001917.g003
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a detailed analysis of link rearrangement-induced perturbations,

avalanches like in the paper of Ebel and Bornholdt [30] as well as

exploration of a number of other topological re-arrangements

would also significantly extend the current results. Such topology-

changes may include

N hub-rewiring including the formation and resolution of ‘rich-

clubs’, where hub-hub contacts are preferentially formed

[31,32];

N emergence of modularity beyond to our data in ESM1 Figure

S1.4;

N appearance and disappearance of bridge-elements between

modules;

N changes of modular overlaps and module hierarchy, etc.

Tan [33] showed that cooperation helps faster learning. This,

when combined with our current findings may lead to a self-

amplifying cycle between cooperation and learning, where

cooperation-induced learning promotes cooperation. Emerging

cooperation alleviates a major obstacle to reach a higher level of

network hierarchy and complexity [4]. In social networks learning

establishes trust, empathy, reputation and embeddedness [34–37],

and the benefits of learning by multiple generations are

exemplified by the development of traditions, norms and laws.

These give the members of the society further reasons for

withholding their individual selfishness, thereby reaching a higher

network complexity and stability. We believe that learning and

innovation (in forms of repeated, interaction-driven, or random

network remodeling steps, respectively or using the Baldwin-effect,

see ESM1 Discussion) help the evolution of cooperation between

agents other than human beings or animals, including proteins,

cells or ecosystems [23,38], and were crucial in the development of

multi-level, self-organizing, complex systems.

Methods

Games. In both the Hawk-Dove and the Prisoner’s Dilemma

games, each agent had two choices: to cooperate or to defect. In

the repeated, multi-agent Hawk-Dove game the benefit of

defectors is higher than that of cooperators, when they are at

low abundance, but falls below cooperator benefit, when defectors

reach a critical abundance [12,13]. On the contrary, in the

Prisoner’s Dilemma game defection always has a fitness advantage

over cooperation. The canonical parameter-set of the Prisoner’s

Dilemma game (R = 3, P = 1, S = 0, the T, temptation value varies

between 3 to 6; 3 is not included; where R is the reward for mutual

cooperation, P is the punishment for mutual defection, S and T

are the payoffs for the cooperator and defector, respectively, when

meeting each other) restricts cooperation more, than the

parameter set of the extended (also called as ‘weak’) Prisoner’s

Dilemma game (R = 1, P = 0, S = 0 with T values ranging from 1 to

2; [11–13]). (When we tried the parameter set of R = 1, P = 0.2,

S = 0.1 with T values ranging from 1.0 to 2.0, we have received

very similar results; data not shown.)

In the Hawk-Dove games (or in the conceptually identical

Snowdrift and Chicken games [13,39,40]) each agent had two

choices: to defect (to be a hawk) or to cooperate (to be a dove).

When a hawk met a dove, the hawk gained G benefits, whereas the

payoff for the dove was zero. Two hawks suffered a (G2C)/2 cost

each upon encounter, where C.G was the cost of their fight.

When two doves met, the benefit for each dove was G/2. If not

otherwise stated, the cost of injury (C, when a hawk met a hawk)

was set to 1. The value of G varied from 0 to 1 with the increments

of 0.1. If we want to compare the above, usually applied

nomenclature of the Hawk-Dove games with that of the Prisoner’s

Dilemma games, R = G/2, P = (G2C)/2, S = 0 and T = G.

In Hawk-Dove games T.R.S.P, in the extended (also called

‘weak’) Prisoner’s Dilemma game T$R.P$S, while in the

canonical Prisoner’s Dilemma game T.R.P.S. This makes the

following order of games from less to more stringent general

conditions allowing less and less cooperation: Hawk-Dove

game.extended Prisoner’s Dilemma game.canonical Prisoner’s

Dilemma game. Due to this general order, we showed the results

of the canonical Prisoner’s Dilemma game in the main text, and

inserted the results of the two other games to the Electronic

Supplementary Material S1 (ESMS1).

In our simulations each node in the network was an agent, and the

agent could interact only with its direct neighbors. Agents remained

at the same position throughout all rounds of the repeated games,

and they were neither exchanged, nor allowed to migrate. If not

otherwise stated, games started with an equal number of randomly

mixed defectors and cooperators (hawks and doves in the Hawk-

Dove game), and were run for 5,000 rounds (time steps). The payoff

for each agent in each round of play was the average of the payoffs it

received by playing with all its neighbors in the current round. In our

long-term learning strategy adoption rules introduced below, the

accumulative payoff means the accumulation of the average payoffs

an agent gets in each round of play. Average payoff smoothes out

possible differences in the degrees of agents, and in several aspects

may simulate real-world situations better than non-averaged payoff,

since in real-world situations agents usually have to observe a cost of

maintaining a contact with their neighbors [39–41]. Moreover,

average payoff helps the convergence of cooperation levels as the

rounds of the game (time steps) proceed, what we indeed observed in

most of the cases (with a few exceptions noted in the text), and helps

to avoid ‘late-conversions’ occurring mostly in scale-free networks

after 10,000 or more time steps using non-averaged payoffs. With

this method it was enough to calculate the proportion of cooperators

as the average ratio of cooperators of the last 10 rounds of the game

(if not otherwise stated) for 100 independent runs.

Strategy adoption rules. In Prisoner’s Dilemma and Hawk-

Dove games our agents followed three imitation-type, short-term

strategy adoption rules, the ‘pair-wise comparison dynamics’ (also

called as ‘replicator dynamics’), ‘proportional updating’ and ‘best-

takes-over’ (also called as ‘imitation of the best’) strategy adoption

rules [13]. We call these rules strategy adoption rules and not

evolution rules to avoid the mis-interpretation of our games as

cellular automata-type games, where agents are replaced time-to-

time. In our games no replacement took place, therefore these games

were not evolutionary games in this strict sense. All strategy adoption

rules had synchronous update, meaning that in each round of play

the update took place after each agent had played with all their

neighbors. To avoid the expansion of parameters with the

differential placements of various agents in complex network

structures all agents used the same strategy adoption rule in the

agent-network. In the three strategy adoption rules we applied

initially (‘best-takes-over’, ‘pair-wise comparison dynamics’ and

‘proportional updating’) all agents were myopic, and made their

decisions based on the average payoffs gained in the previous round.

Pair-wise comparison dynamics strategy adoption

rule. In the ‘pair-wise comparison dynamics’ strategy adoption

rule [13] for any agent i, a neighboring agent j was selected

randomly, and agent i used the strategy of agent j with a probability

of pi. In our experiments the probability was determined as

pi~f Gi{Gj

� �
~

Gj{Gi

dmax
if Gj{Giw0

0 otherwise

(
,
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where dmax = (G+C)/2 (for Hawk-Dove games) or dmax = max(T, R)

(for Prisoner’s Dilemma games), which was the largest gap of gain

between two agents in one round of play. Gi and Gj were the average

payoffs received by agent i and j respectively in the current round of

play.
Proportional updating strategy adoption rule. For the

‘proportional updating’ strategy adoption rule [13] agent i and all

its neighbors competed for the strategy of agent i with the

probability pi, which was determined as pi~
GiP

n
Gn

,

i,n[ N ið Þ|if g where N(i) was the neighborhood of agent i and

Gi was the average payoff received by agent i in the current round

of play. Since p is a probability, C was added to each Gi to avoid

negative values. For Prisoner’s Dilemma games, because the

reward for an agent is always greater than or equal to zero, there

was no need to increase the value of Gi.
Best-takes-over strategy adoption rule. In the ‘best-takes-

over’ strategy adoption rule (also called as imitation of the best

strategy adoption rule, [13]) agent i adopted the strategy of that

agent selected from i and its neighbors, who had the highest

average payoff in the last round of play.

Q-learning strategy adoption rule. As a reinforcement

learning [19] strategy adoption rule, we used Q-learning [18],

where agents learned an optimal strategy maximizing their total

discounted expected reward in the repeated game. In Q-learning

we assumed that the environment constituted a discrete Markov

process with finite states. An agent chose action at from a finite

collection of actions at time step, t. The state of the environment

changed from state st to st+1 after the action of the agent, and the

agent received the reward rt at the same time. The probability of

state transition from st to st+1 when the agent chose action at was

prob s~stz1jst,at½ �~P st,at,stz1½ �:

The task of the agent was to learn the optimal strategy to

maximize the total discounted expected reward. The discounted

reward meant that the rewards received by the agent in the future

were worth less than that received in the current round. Under a

policy p denoting how the agent selected the action at its actual

state and reward, the value of state, st was

Vp stð Þ~R p stð Þð Þzc
X

stz1[S

P st,at,stz1½ �Vp stz1ð Þ,

where R(p(st)) is the expected reward of state st under policy p and

c(0,c,1) is the discount factor.

The theory of Dynamic Programming [19] guarantees that

there is at least one optimal stationary policy, p*, which can be

written as

V � stð Þ~Vp� stð Þ~ max
at[A

R p stð Þð Þzc
X

stz1[S

P st,at,stz1½ �Vp� stz1ð Þ
( )

:

The task of Q-learning was to learn the optimal policy, p, when

the initial conditions of both the reward function and transition

probabilities were unknown. If the environment model (reward

model and transition probabilities of states) is known, then the

above problem can be solved by using Dynamic Programming.

Watkins and Dayan [18] introduced Q-learning as incremental

Dynamic Programming. The idea of Q-learning is to optimize a

Q-function, which can be calculated iteratively without the

estimate of environment model. For this having a policy, p, we

defined the Q-value as:

Q s,að Þ~R p sð Þð Þzc
X
s0[S

P s,a,s0½ �Vp s0ð Þ:

Q-learning consisted of a sequence of distinct stages or episodes.

The Q value of state-action pair (st, at) can be learned through the

following iterative method:

Qt st,atð Þ~ 1{atð ÞQt{1 st,atð Þzat rtzcVt{1 stz1ð Þ½ �,

where Vt{1 stz1ð Þ~ max
a[A

Qt{1 stz1,að Þf g and at controls the

learning and convergence speed of Q-learning.

In repeated multi-agent games, the state of each agent was

affected by the states of its direct neighbors. Those neighbors

constituted the environment of the agent. The reward of the agent

i after taking action at(i) was defined as:

rt ið Þ~ 1

ki

X
j[N ið Þ

ST
t ið ÞMSt jð Þ,

where M was the payoff matrix, St(i) was a column vector indicating

the state of agent i at round t, ki was the number of neighbors of agent

i and N(i) was the set contains all the direct neighbors of agent i. The

values of elements of St(i) were 0 or 1 and 1 indicated that agent i was

in the corresponding state. In such a repeated multi-agent game, Q-

learning meant that each agent tried to optimize its total discounted

expected reward in the repeated game. The optimal strategy was

approximated by an iterative annealing process. For this for each

agent, the selection probability (Boltzmann-probability) of action ai

at time step t was defined as

prob aið Þ~
eQ st,aið Þ=TP

ak[A

eQ st,akð Þ=T
,

where T was the annealing temperature. In our experiments we

selected the discount factor, ct = 0.5, since in the initial experiments

we found that this value is helpful to achieve high levels of

cooperation. The initial annealing temperature was set to 100 in

Hawk-Dove and extended Prisoner’s Dilemma games, while it was

raised to 10,000 in canonical Prisoner’s Dilemma games to extend

the annealing process [42]. In all cases the annealing temperature

was decreased gradually by being divided by t in each round of the

game till it reached a low bound of 0.001. In order to control the

convergence speed of Q-learning, a= 1/(1+TimesVisited(s, a)) where

TimesVisited(s, a) was the number of times that the state-action pair (s,

a) had been visited at time step t. In this way a decreased gradually

with the time.

Long-term learning and innovative strategy adoption

rules. Long-term learning strategy adoption rules were

generated by considering the accumulative average payoffs

instead of instantaneous average rewards in the update progress

during each round of play for all strategy adoption rules used. In

both short term and long-term innovative strategy adoption rules,

agent i used the opposite strategy of the selected neighbor (for

proportional updating and best-takes-over strategy adoption rules,

the neighborhood included agent i itself) in the last round of play

with probability of Pinnovation, which was 0.0001 in case of Hawk-

Dove and extended Prisoner’s Dilemma games, while 0.0002 in

case of canonical Prisoner’s Dilemma games, if not otherwise

stated (like in the legend of ESM1 Figure S1.8). In innovative
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strategy adoption rules agent i adopted the strategy of the selected

neighbor with a probability of 12Pinnovation.
Network construction. In our work we used a set of widely

adopted model networks to simulate the complexity of real-world

situations. Generation of the Watts-Strogatz-type small-world

model network [17] was modified according to Tomassini et al.

[13] to avoid the heterogeneity in node degrees, which arose

during the Watts-Strogatz-type rewiring process changing the

regular lattice to a small-world network. Such heterogeneity was

shown to have a rather big influence on the level of cooperation

[13,43]. At the generation of the Barabasi-Albert-type scale-free

network [44], we started from an initial fully connected graph of

‘m’ nodes (where ‘m’ ranged from 1 to 7), and added the new

nodes with ‘m’ novel links as specified at the individual Figure

legends. In the modular networks described by Girvan and

Newman [45] each network had a scale-free degree distribution,

contained 128 nodes, and was divided into 4 communities. The

average degree was 16. Modularity (community structure) was

gradually decreased at ‘levels’ 1, 5, 10 and 16, where ‘level 1’

meant that for each node in the network, the expected number of

links between a node and the nodes which were in other

communities was 1 (e.g. low compared to the average degree of

16). With increasing ‘level’ the community structure gradually

decreased.
Network visualization. At the visualization the coordinates

of the small-world networks with a rewiring probability of p = 0.01

were used for the p = 0.04 networks to avoid the individual

variations of the Pajek-figures [46] and to help direct comparison.

With 15615 agents the final representations of cooperators

showed a moderate variability. This was almost negligible, when

50650 agents were used (data not shown). However, 15615

agents gave a better visual image than the crowded, bulky 50650

version. Therefore, we opted to include this variant to Figure 1.

We have selected those figures from the results of 15615 agent

games, which best represented the 50650 versions.

Supporting Information

Electronic Supplementary Material S1 This supporting

information extends the major findings of the paper to two

different games (the extended Prisoner’s Dilemma Game and the

Hawk-Dove/Snowdrift game) and a wide parameter set, and gives

additional methods, discussion and references.

Found at: doi:10.1371/journal.pone.0001917.s001 (0.74 MB

PDF)
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