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Abstract

Background: Gene transcription patterns associated with activation of oncogenes Myc, c-Src, beta-catenin, E2F3, H-Ras,
HER2, EGFR, MEK, Raf, MAPK, Akt, and cyclin D1, as well as of the cell cycle and of androgen signaling have been generated
in previous studies using experimental models. It was not clear whether genes in these ‘‘oncogenic signatures’’ would show
coordinate expression patterns in human prostate tumors, particularly as most of the signatures were derived from cell
types other than prostate.

Principal Findings: The above oncogenic pathway signatures were examined in four different gene expression profile
datasets of human prostate tumors (representing ,250 patients in all), using both Q1-Q2 and one-sided Fisher’s exact
enrichment analysis methods. A significant fraction (,5%) of genes up-regulated experimentally by Myc, c-Src, HER2, Akt, or
androgen were co-expressed in human tumors with the oncogene or biomarker corresponding to the pathway signature.
Genes down-regulated experimentally, however, did not show anticipated patterns of anti-enrichment in the human
tumors.

Conclusions: Significant subsets of the genes in these experimentally-derived oncogenic signatures are relevant to the
study of human prostate cancer. Both molecular biologists and clinical researchers could focus attention on the relatively
small number of genes identified here as having coordinate patterns that arise from both the experimental system and the
human disease system.
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Introduction

Cancer is a disease characterized by DNA damage and

widespread deregulation of cell signaling and gene transcription.

Genes with roles in cancer can be broadly grouped into

oncogenes, tumor supressors, and DNA damage-associated genes.

Oncogenes promote cancer by over-expression or hyper-activa-

tion. The molecular pathways leading to oncogenesis and tumor

progression are diverse [1]. Much progress has been made in the

past 30 years in defining these pathways at the level of signal

transduction involving protein-to-protein interaction. However,

signal transduction leads through the chain of events to

transcriptional regulation of a specific set of genes [1]. With the

advent of global gene expression profiling technology within the

last ten years, we can now more readily examine oncogenic

pathways at the level of gene transcription. Through the use of

experimental models such as cell cultures or transgenic mice, one

may turn up the expression or activity of a specific gene and

observe which genes are regulated as a result.

Here an oncogenic pathway signature will be defined to mean a

set of genes that show a specific pattern of up- or down-regulation

when a given pathway associated with oncogenesis is activated.

Oncogenic signatures observed experimentally have potential use

for inferring pathway deregulation in human tumors. In a seminal

study by Lamb et al. [2], a set of genes induced by cyclin D1 in an

in vitro model were found to be co-expressed as a group with cyclin

D1 mRNA in multiple expression profile datasets of human

tumors of various types. In a recent study by Bild et al. [3], gene

signatures of Myc, Ras, E2F3, Src, and beta-catenin defined in vitro

were used to predict Ras mutation status in human lung tumors

and to predict the response of a panel of breast cancer cell lines to

Src or Ras inhibitors. In another study by Creighton et al. [4], a

signature of the MAP kinase pathway was defined from gene

expression profiles of ErbB-2 (HER2), EGFR, Raf, and MEK in

MCF-7 cells; this MAPK signature was found to share extensive

similarities with signatures of ER-negative human breast cancer,

which commonly has hyper-activated MAPK.

The oncogenic pathway signatures described above were

generated from gene expression profiling of breast cell cultures.

One question addressed here was which signatures could be

considered relevant to human cancers of a different cell type from

breast, in other words, whether genes associated with a given
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pathway in an experimental model show patterns of expression in

human tumors that would be consistent with that pathway

association. In the case of the Lamb cyclin D1 signature, human

tumors of various cell types (including breast and prostate) that had

high levels of cyclin D1 were found to express high levels of genes

in the cyclin D1 signature [2]. This present study explored

whether oncogenic signatures from other studies followed similar

patterns in human prostate cancer. The focus of this study was in

prostate cancer, as it is the most commonly occurring cancer in

males in the United States, and as there were several profile

datasets of human prostate cancer that were publically available.

Here, mRNA signatures of oncogenes Myc, c-Src, beta-catenin,

E2F3, H-Ras, HER2, EGFR, MEK, Raf, MAPK, Akt, and cyclin

D1, along with signatures of the cell cycle and of androgen

signaling, were collected from eight previously published studies.

As there have been multiple profiling studies of human prostate

tumors [5–8], one can look for gene expression patterns that are

common across independent datasets [9]. These oncogenic

signatures were therefore examined in four different profile

datasets of prostate tumors. As mentioned above, the aim of this

study was to determine if these experimentally-defined oncogenic

pathway signatures were relevant to human prostate cancer. The

specific hypothesis tested was that human prostate tumors with

(relatively) high mRNA levels of a given oncogene should also

show high levels of the group of genes found over-expressed in the

experimental setting when the same oncogene is turned up. One

important outcome of this analysis was a catalog of the genes from

a given experimentally-derived pathway signature that also had

expression patterns considered relevant to the human tumors,

which provides a resource for future functional studies.

Results

A collection of gene transcription signatures of
oncogenic pathways from various studies

Using gene expression profile datasets of cell culture and mouse

models from previously published studies (listed in Table 1), gene

signatures of 14 different oncogenic pathways were defined. These

signatures are described in Table 2 and shown graphically in

Figure 1. The pathways represented by these signatures were the

following: (1) Myc, c-Src, beta-catenin, E2F3, and H-Ras, from the

study by Bild et al. [3]; (2) erbB-2 (HER2), EGFR, MEK, Raf, and

MAPK from Creighton et al. [4]; (3) the cell cycle from Whitfield et

al. [10]; (4) androgen receptor (AR) signaling, from Deprimo et al.

[11]; (5) AR signaling, from Chen et al. [12]; (6) Myc, from Coller

et al. [13]; (7) cyclin D1, from Lamb et al. [2]; and (7) Akt, from

Majumder et al. [14]. The unique named genes involved in each of

these signatures are listed in Supplementary Data File S1.

For each oncogenic signature, one set of genes were up-

regulated and another set were down-regulated in response to

activation of the associated pathway. Statistical criteria for defining

each signature are given in the Methods section. Where selecting

genes from profile data is a balance between false negatives and

false positives, the selection cutoffs is this study leaned towards

having fewer false negatives and more gene information. The p-

value cutoffs used to define each signature were, in a sense,

arbitrarily chosen, the idea being that a ‘‘sizable’’ number of genes

(on the order of a few to several hundred) were desired to represent

each pathway. Because of the wide spectrum of experimental

systems, conditions, laboratories, and array platforms represented

among all of the profile datasets, it was not possible to analyze all

of the datasets in the same way and to use a single p-value cut off

(e.g. p,0.01 for each comparison). There are many possible

alternative methods and thresholds for defining the oncogenic

signatures that might have been used and which could have been

considered equally valid. The author believes that any reasonable

analytic approach for defining signatures that yielded numbers of

genes comparable to those in Table 2 would have resulted in the

same overall patterns of enrichment being observed between the

signatures and the human tumors.

Different oncogenic pathways may regulate common genes.

The oncogenic signatures in this study were compared with each

other to see which pairs of signatures shared significant gene

overlap. These signature-to-signature associations are shown

graphically in Figure 1I (focusing only on the set of genes up-

regulated in each signature). A significant overlap of 40 genes

between the set up-regulated by Myc in the Bild dataset (993

unique named genes) and the set up-regulated in the Coller dataset

(252 genes) was observed (expected 18 genes, one-sided Fisher’s

exact p,1E-06, using as the reference population the entire set of

14130 genes represented among any of the array platforms), which

shows good agreement between signatures of the same pathway

generated independently by different labs using different experi-

mental systems. Similarly, significant overlap was observed

between the Deprimo and Chen sets of androgen-inducible genes

(87 genes overlapping between 259 and 559 genes, respectively,

one-sided Fisher’s exact p,1E-57).

Furthermore, significant overlap was observed between signa-

tures representing different pathways. The overlap between the

Creighton erbB-2, EGFR, Raf, and MEK signatures had been

noted previously [4], and was defined as a common MAPK

signature. The overlap between the Bild Ras signature and the

Creighton MAPK-associated signatures makes sense, as Ras is also

a key intermediate of the MAPK pathway. In addition, the

signature genes for cell cycle regulator E2F3 in the Bild data

overlapped significantly with the set of genes correlated with cell

cycle progression in the Whitfield data. Other signature-to-

signature associations appear novel and intriguing, such as an

association between the Akt pathway and the MAPK-associated

pathways (Figure 1I). It is important to note that different

signatures may share common genes, yet show widespread

differences at the same time. For example, the Creighton

MAPK-associated signatures shared a common MAPK signature,

yet each of these signatures also had a distinct expression pattern

from the other signatures (Figure 1B). The complete lists of

corresponding genes overlapping among the various signatures are

provided as Supplementary Data File S2.

Genes up-regulated experimentally by Myc, c-Src, HER2,
Akt, or androgen are co-expressed in human prostate
tumors with Myc, c-Src, HER2, Akt, or PSA, respectively

The oncogenic pathway signatures of Table 2 and Figure 1 were

derived from a number of experimental models, several of these

signatures being derived from breast cell cultures in particular. An

important question was whether these signatures would be

relevant to the study of human prostate cancer, or would simply

represent tissue-specific or model-specific effects on gene expres-

sion. Previously, cyclin D1-regulated genes from the Lamb profile

dataset and Myc-regulated genes from the Coller dataset were

each shown to be coordinately expressed with CCND1 and MYC

mRNA expression, respectively, in various tumor datasets [2,15].

Here, the entire collection of oncogenic signatures from Table 2

was examined in each of four different expression profile datasets

of primary human prostate cancers (PCA) from previous studies

[5–8] (listed in Table 1), representing 253 individual prostate cases

in all (Glinsky et al. dataset: 79 tumors, Yu: 60, Lapointe: 62,

Singh: 52). Seven individual genes represented in the human

datasets were of particular interest: KLK3 (which encodes prostate-

Pathways in Prostate Cancer
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specific antigen, or PSA), MYC, SRC (which encodes c-Src),

ERBB2, EGFR, CCND1, and AKT1. Each of these genes is an

oncogene commonly over-expressed in cancers, with the exception

of KLK3, a well-known gene target of androgen signaling. The

hypothesis tested below with each of these seven genes was that

prostate tumors with high expression (relative to other tumors) of

either an oncogene or a biomarker of an oncogenic pathway

would also show high expression of a significant number of genes

up-regulated experimentally in the corresponding pathway

signature. Additionally, these tumors with relatively high oncogene

levels might show under-expression of a significant number of

genes down-regulated in the pathway signature.

For each of the seven oncogenes mentioned above, the genes

most correlated (i.e. similar) in expression to the given oncogene

Table 1. Public gene expression profile datasets used in this study.

Study data source array platform # probes
# unique
(human) genes

Oncogenic signature datasets

Whitfield, et al. [10] SMD spotted cDNA 43896 14130

Deprimo, et al. [11] SMD spotted cDNA 33721 12934

Chen, et al. [12] GEO (GSE846) Affymetrix U133A 22283 12768

Coller, et al. [13] Broad Institute Affymetrix HUM6000-1,2,3,4 7252 3139

Bild, et al. [3] GEO (GSE3151) Affymetrix U133 Plus 2 54675 18134

Creighton, et al. [4] GEO (GSE3542) Affymetrix U133A 22283 12768

Lamb, et al. [2] Broad Institute Affymetrix HuGeneFL 7069 4990

Majumder, et al. [14] Broad Institute Affymetrix 430A 22691 11120

Prostate tumor datasets

Glinsky et al. [5] Oncomine Affymetrix U133A 22283 12768

Yu et al. [6] Oncomine Affymetrix U95Av2 12625 8762

Lapointe et al. [7] SMD spotted cDNA 43844 14310

Singh et al. [8] Broad Institute Affymetrix U95Av2 12625 8762

SMD–Stanford Microarray Database (http://genome-www5.stanford.edu)
GEO–Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
Broad Institute (http://www.broad.mit.edu/egi-bin/cancer/datasets.cgi)
Oncomine (www.oncomine.org)
doi:10.1371/journal.pone.0001816.t001

Table 2. Oncogenic pathway gene signatures surveyed in prostate cancer (PCA).

Oncogenic
pathway Study Model system

Number of unique
genes (up)

Number of unique
genes (down) FDR

cell cycle Whitfield, et al. [10] synchronized HeLa cell cultures 763 NA ,1%

androgen Deprimo, et al. [11] treatment of LNCaP prostate cells with R1881 259 23 54%

Chen, et al. [12] treatment of LNCaP prostate cells with R1881 559 761 1%

Myc Coller, et al. [13] conditional Myc-estrogen receptor fusion protein
in human primary fibroblast cells

252 238 9%

Bild, et al. [3] adenovirus infection of human primary mammary
epithelial cells (HMECs)

993 1369 1%

Ras Bild, et al. [3] ibid. 1777 2286 ,1%

E2F3 Bild, et al. [3] ibid. 2029 1867 ,1%

beta-catenin Bild, et al. [3] ibid. 976 1884 1%

Src Bild, et al. [3] ibid. 1566 1995 ,1%

erbB-2 Creighton, et al. [4] stable transfection of MCF-7 breast cancer cells 1315 1364 7%

MEK Creighton, et al. [4] ibid. 1238 1182 7%

EGFR Creighton, et al. [4] ibid. 734 940 11%

Raf Creighton, et al. [4] ibid. 618 988 11%

MAPK Creighton, et al. [4] ibid. 124 271 ,1%

cyclin D1 Lamb, et al. [2] adenovirus infection of MCF-7 breast cancer cells 206 109 22%

Akt Majumder, et al. [14] transgenic mouse prostate over-expressing human AKT1 770 775 1%

doi:10.1371/journal.pone.0001816.t002
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were determined in each of the four prostate datasets. Gene

correlates of the oncogene were tested for enrichment of each of

the 16 oncogenic pathway signature gene sets of Table 2. As each

pathway signature had a set of genes up-regulated and another set

down-regulated in response to pathway activation, the ‘‘up’’ genes

were evaluated for enrichment separately from the ‘‘down’’ genes.

The test of enrichment used here was the rigorous, rank-based

‘‘Q1-Q2’’ statistic of Tian et al. [16] (schematic in Figure 2A),

which demonstrated significance of enrichment over what may be

expected using a randomly-generated set of pathway signature

genes (the ‘‘Q1’’ hypothesis) or using a random ordering of

reference oncogene values in the human tumor dataset (the ‘‘Q2’’

hypothesis). Besides the seven oncogenes of interest, other genes,

such as genes encoding MAPK or beta-catenin, were represented

by pathway signatures, though many of these other genes are

typically mutated or hyper-activated in cancer, rather than over-

expressed.

Results of the enrichment analysis are shown in Figure 2B. A

major advantage in evaluating four independent prostate tumor

datasets is that one may identify consistent patterns appearing in

Figure 1. Gene expression patterns indicative of oncogenic pathway deregulation. RNA profiling datasets were collected from various
published studies (described in Table 2) in which a particular pathway was activated in an experimental model. Expression patterns are represented
as a color map. Each row represents a gene; each column represents a sample. The level of expression of each gene in each sample is represented
using a yellow–blue color scale (yellow: high expression). Pathways represented are the following: (A) Myc, c-Src, beta-catenin, E2F3, and H-Ras, from
the study by Bild et al. [3]; (B) erbB-2 (HER2), EGFR, MEK, Raf, and MAPK from Creighton et al. [4]; (C) the cell cycle from Whitfield et al. [10]; (D)
androgen receptor (AR) signaling, from Deprimo et al. [11]; (E) AR signaling, from Chen et al. [12]; (F) Myc, from Coller et al. [13]; (G) cyclin D1, from
Lamb et al. [2]; (H) Akt, from Majumder et al. [14]. (I) Graphical representation of the significance of gene overlap (by one-sided Fisher’s exact test,
using as the reference population the entire set of 14130 genes represented among any of the array platforms) between the various pathway
signatures (focusing here on the sets of genes up-regulated in each signature).
doi:10.1371/journal.pone.0001816.g001

Pathways in Prostate Cancer

PLoS ONE | www.plosone.org 4 March 2008 | Volume 3 | Issue 3 | e1816



multiple datasets. Numerous patterns of enrichment were found in

three of the four datasets examined (though none were found in all

four). The major finding of the enrichment analysis was that genes

up-regulated experimentally by Myc, c-Src, HER2 (erbB-2), Akt,

or androgen were consistently co-expressed in human PCA with

Myc, c-Src, HER2, Akt, or PSA, respectively. Associations of the

Figure 2. Patterns of enrichment involving selected oncogenes (KLK3 i.e. PSA, MYC, SRC, ERBB2, EGFR, CCND1 i.e. cyclin D1, and AKT1)
and their corresponding pathway signature genes. (A) Schematic overview of Q1-Q2 enrichment analysis. Enrichment is defined as a
significant number of genes in the experimental set being located at or near the top of a population of genes rank-ordered by a given metric applied
to the human tumor dataset. (B) Results of enrichment analysis in four different gene expression profile datasets of human prostate tumors [5–8].
Patterns of consensus among the various datasets (i.e. patterns observed in at least 2 or 3 datasets) are also represented. For each oncogene-to-
pathway association, a red square indicates that genes in the pathway were enriched within the top genes most correlated with the oncogene. Anti-
enrichment (blue square) indicates that genes in the pathway overlapped with the genes most anti-correlated with the oncogene. Associations
between a given gene and its corresponding oncogenic pathway signature are highlighted with black outline.
doi:10.1371/journal.pone.0001816.g002
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cyclin D1 and EGFR pathway signatures with expression of

CCND1 and EGFR, respectively, were also observed in two of the

four tumor datasets. Many of the gene sets from different

oncogenic signature pathways shared significant overlap

(Figure 1I), yet, interestingly, each pathway set associated uniquely

with its corresponding oncogene; for example, the EGFR and

erbB-2 signatures had many genes in common (Figure 1B), yet the

EGFR signature genes did not associate with mRNA patterns of

erbB-2 in the human data, and vice versa (Figure 2B). Another

notable finding is that genes down-regulated in a given oncogenic

signature did not show anticipated patterns of anti-enrichment.

The Q1Q2 enrichment analysis of Figure 2B was a ranked-

based approach, where genes that were even weakly correlated

with the reference gene of interest could partially contribute to a

significant association (see ref [16] for details). Therefore, an

alternative enrichment method, the classical one-sided Fisher’s

exact test, was also considered. For each of the androgen, Myc,

Src, HER2, EGFR, cyclin D1, and Akt pathways, the top genes

overlapping between the oncogenic signature and the correlates of

the corresponding oncogene or biomarker in the human tumors

were tabulated. The numerical results of the tabulation are given

in Table 3, and the lists of genes overlapping between the

experimental and human datasets for each pathway signature are

given in Supplementary Data File S3. For Table 3 and

Supplementary Data File S3, positive correlation between a gene

and the given oncogene within the human tumors was defined as

showing statistical significance (p,0.05, Pearson’s correlation, two-

sided) in at least three out of the four prostate profile datasets.

Genes listed in Supplementary Data File S3 were therefore both in

the given pathway signature (as defined in Table 2) and

individually correlated with the corresponding oncogene or

biomarker in the human tumors.

Except for the EGFR signature, there was non-random overlap

between the set of genes in the experimentally-defined signature

and the set of genes correlated in the human tumors with the

reference oncogene or biomarker corresponding to the signature.

For example, of the 559 genes in the Chen androgen signature

(448 of which were represented in at least three prostate tumor

datasets), 29 were correlated (p,0.05) with KLK3 in at least three

out of the four prostate tumor datasets; by chance, nine were

expected, and so the amount of actual overlap was quite significant

(p = 1.2E-08). The overlap was not significant for the EGFR

signature and was marginally significant (p = 0.02) for the cyclin

D1 signature. The results of the Fisher’s exact enrichment analysis

(Table 3) appear consistent with the results of the Q1Q2

enrichment anlysis (Figure 2B), where the EGFR and CCND1

analyses were significant in only two of the four datasets; relatively

few genes (28) were individually correlated with EGFR mRNA in

at least three human tumor datasets, and genes that were

correlated in only two datasets would not have been included in

the Fisher’s exact analysis.

Discussion

In this study, several gene signatures of oncogenic pathways

defined experimentally were found to be coordinately expressed

with the single oncogene or biomarker corresponding to the

pathway in human prostate tumors. These results demonstrate

these signatures to be relevant to the study of human prostate

cancer. These findings apply mainly for the sets of genes up-

regulated in the signatures, as the down-regulated genes by and

large did not show expected correlation patterns (Figure 2B). The

gene-to-signature correlations of interest were observed in three of

the four prostate tumor profiles datasets, but none were found in

all four. The fact that no consistent patterns were found in all four

datasets is curious but could be explained by a number of reasons,

which could range from the technical (e.g. a ‘‘bad’’ gene probe or

chip artifact in one dataset) to the biological (e.g. different patient

cohorts being represented in different datasets). It should be

emphasized that any association made between a gene and its

corresponding signature for any one dataset was quite robust, the

significance values testing against 1000 randomly-generated gene

signature and 1000 permutations of the reference oncogene values

(see Methods). This study does underscore the value of the meta-

analysis approach, as patterns that may be missed in one profile

dataset could be repeatedly found in other datasets.

In general, experimental data might be expected to show

changes in gene expression that are merely artifacts of the model

system, while human tumor data alone can show patterns of

correlation but do not readily demonstrate cause-and-effect in the

way experimental models can. For a given pathway, the

intersection of the set of genes up-regulated by experimental

activation of the pathway with the set of genes showing anticipated

patterns of expression in human tumor tissue specimens would be

a set of genes of potential interest to researchers. For the Myc, c-

Src, HER2, EGFR, cyclin D1, Akt, and androgen pathways, this

study provides the set of genes relevant to each pathway both

Table 3. Number of genes overlapping between oncogenic signatures and human tumor correlates.

Oncogenic signature Signature genes* Prostate tumor genes** Expected overlap Actual overlap# P-value##

androgen_up_Chen 428 176 9 29 1.2E-08

Myc_up_Bild 475 150 8 33 7.9E-12

Src_up_Bild 767 116 11 23 0.0003

erbB-2_up_Creighton 1011 307 37 91 1.3E-17

EGFR_up_Creighton 560 28 2 1 0.85

cyclin_D1_up_Lamb 203 77 3 8 0.02

Akt_up_Majumder 512 262 20 47 3.6E-08

*Number of signature genes represented in at least three out of four prostate profile datasets.
**Number of genes positively correlated with corresponding oncogene/biomarker (see Figure 2A) in human prostate tumors (Criterion: p,0.05 in at least three out of

four profile datasets).
#Lists of overlapping genes included in Supplementary Data File S3.
##By one-sided Fisher’s exact test, using, as the reference population, the set of unique genes common to both the oncogene signature array platform and any three of

the prostate tumor array platforms (Chen, Creighton: 8500; Bild: 8402; Lamb: 4731; Majumder: 6560).
doi:10.1371/journal.pone.0001816.t003
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experimentally and pathologically (Table 3 and Supplementary

Data File S3). Molecular biologists who study any one of these

pathways may select candidate gene targets of these pathways

uncovered by this study and validate the expression patterns both

in experimental models (models using prostate cells in particular)

and in human prostate tumor specimens.

It is understood that a particular pathway may be deregulated

through a number of different genes [1], and so a measure of the

‘‘end point’’ of a signaling pathway at the transcription level may

prove to be a better indicator of pathway deregulation over any

single gene. The intersection of human and experimental profile

data provides sets of genes that could possibly be used in a clinical

diagnostic assay to infer which pathways are deregulated in patient

tumors. RT-PCR assays using RNA from paraffin-embedded

tissues have been developed [17], and so it would be technically

feasible to develop an RT-PCR-based, multi-gene assay for the

status of various pathways in a given tumor, using genes selected

from the results of this study.

The analysis presented here implicates over-expression of Myc,

Akt, c-Src, or erbB-2/HER2 with activation of their associated

pathways in at least a subset of prostate tumors. The roles of Myc

and Akt in prostate cancer initiation and progression have received

much study [18,19,14]. The c-Src oncogene has apparently not

received much attention in prostate cancer and is better known in

other cancers such as colon [20]. However, a truncated version of

the c-Kit prostate was recently found in primary prostate tumors,

which was correlated with activation of the Src pathway [21]. The

role of erbB-2 is prostate cancer has been controversial, and there

have been conflicting results over whether the gene is amplified or

over-expressed [19]. This present study indicates that there is a

sub-population of prostate cancer patients that express erbB-2 and

have its pathway activated; such patients could possibly benefit

from current anti-erbB2 therapies, such as Herceptin, currently in

use in breast cancer.

Other recent molecular profiling studies (in addition to those

referenced above) have demonstrated that gene expression

patterns derived from experimental models are also observable

in human tumors. For instance, transgenic mice over-expressing

Myc shared many of the expression patterns observed in human

prostate tumors having high MYC expression [22]; a mouse model

of Kras2-mediated lung cancer shared expression patterns with

human lung tumors harboring k-ras mutation [23]; and an SV40

T/t-antigen cancer gene signature activated in transgenic mouse

tumors with aberrant p53, Rb, or BRCA1 expression was

associated with poor prognosis in human breast, prostate, and

lung carcinomas [24]. In this context, the present study represents

a validation of the idea that gene expression patterns derived

experimentally can be relevant to the study of human cancer at the

transcriptomic level.

Materials and Methods

Gene expression profile datasets
The gene expression profile datasets described here were

publicly available [2–8,10–14] (Table 1). Gene expression values

were log-transformed. For the Chen androgen dataset [12],

expression values within the AR+ group of samples were

transformed to standard deviations from the mean; values within

the vector group of samples were separately transformed.

Treatment of the Coller et al. dataset [13] is described in ref

[15]. Human prostate tumor datasets were transformed to

standard deviations from the median. For the Lapointe et al.

cDNA microarray dataset [7], gene probes with missing values in

at least half of the tumor specimens were removed from

consideration. From the 66 PCA profiles described in the study

by Yu et al. [6], 60 were available for this study (collection for this

dataset was facilitated by A.M. Chinnaiyan and the Oncomine

team); the ‘‘adjacent tissue’’ (AT) profiles from the Yu study were

not considered here. Expression values were visualized as heat

maps using the Cluster [25] and Java TreeView software [26].

Definition of oncogenic pathway signatures
Two-sample t-tests determined significant differences in gene

expression between groups of samples. Criteria for selection of

genes in each oncogenic pathway signature was as follows: (1) Myc

signature from Bild dataset, p,0.001, comparing the Myc group

with GFP control; Bild Ras signature, p,0.00001; Bild E2F3

signature, p,0.001; Bild beta-catenin signature, p,0.001; Bild Src

signature, p,0.0001; erbB-2 (HER2) signature from Creighton

dataset, p,0.01, comparing HER2 group with MCF7/lt-E2

control; Creighton EGFR signature, p,0.01; Creighton MEK

signature, p,0.01; Creighton Raf signature, p,0.01; Creighton

MAPK signature, described in ref [4]; Whitfield cell cycle

signature, described in ref [10]; androgen receptor (AR) signaling

from Deprimo dataset, p,0.01, comparing R1881-treated LNCaP

samples with EtOH controls, and a minimum average red/green

ratio of 1.8 in R1881 samples; AR signaling from Chen dataset,

p,0.001 for Pearson’s correlation with log of R1881 concentra-

tion; Coller Myc signature, described in ref [15]; Lamb cyclin D1

signature, p,0.01 for Pearson’s correlation with CCND1 mRNA

expression across all samples; Majumder Akt signature, p,0.001,

comparing AKT-Tg mouse prostate with wild-type (placebo-

treated groups). False Discovery Rate (FDR) was computed for

each oncogenic signature, using the method of [27]; the number of

probes on the array was multiplied by the nominal p-value and

divided by the number of probes in the oncogenic signature (FDR

values listed in Table 2).

Enrichment analyses
In order to determine whether a specified group of experimen-

tally-derived genes (e.g. genes induced in the Myc signature) had a

coordinated association with a molecular phenotype of interest in

human tumors (e.g. prostate tumors with high MYC expression

relative to the other tumors), Q1-Q2 analysis was carried out

essentially as described in [16]. Briefly, the common population of

genes represented in the given human tumor profile dataset were

ranked based on Pearson’s correlation with the oncogene of

interest (using only the primary PCA profiles and not profiles from

metastatic or benign tissues). For genes in the experimental set of

interest, the t-scores for the correlation coefficients in the ranked

list were summed up; the significance of this sum was determined

both by 1000 randomly selected gene sets (the Q1 hypothesis) and

1000 random permutations of the values for the reference gene

(i.e. the oncogene used to rank the other genes) in the tumor

dataset (the Q2 hypothesis). The sum of t-scores from the actual

datasets were expressed as standard deviations from the mean of

either the Q1 permutation results or the Q2 permutation results,

with two-sided significance p-values determined assuming normal

distributions of the permutation results. The higher of the Q1 and

Q2 p-values determined enrichment (with both Q1 and Q2

required to move in the same direction).

The Entrez Gene identifier was used in mapping genes across

the array datasets. For the prostate tumor datasets, where a gene

was represented multiple times on a given platform, the ‘‘best’’

probe for the gene was selected in a manner not biased towards

the direction of relative expression changes (the probe with the

largest average signal intensity for the prostate tumor Affymetrix

datasets, the probe with the least missing values across samples for
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the prostate cDNA microarray dataset). For the oncogenic

signature gene sets, where a gene was represented by multiple

array probes, the gene was represented at most once in a given set

(it was possible within a signature for a given gene to be

represented in both the ‘‘up’’ lists and the ‘‘down’’ lists by different

probes, though this was the case for only a handful of genes).

Where the probe selected to represent the reference oncogene or

biomarker for ranking the entire gene population failed to show a

significant association with the corresponding oncogenic signature,

alternative probes representing the oncogene were tried.

Supporting Information

Supplementary Data File S1 Lists of unique named genes in

each of the oncogenic pathway signatures of Table 2

Found at: doi:10.1371/journal.pone.0001816.s001 (2.53 MB

XLS)

Supplementary Data File S2 Lists of the corresponding genes

overlapping among the various oncogenic signatures.

Found at: doi:10.1371/journal.pone.0001816.s002 (3.42 MB

XLS)

Supplementary Data File S3 For each of the androgen, Myc,

Src, HER2, EGFR, cyclin D1, and Akt pathways, lists of genes

overlapping between the oncogenic signature and correlates of the

corresponding oncogene or biomarker in human prostate tumors.

Found at: doi:10.1371/journal.pone.0001816.s003 (1.41 MB

XLS)
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