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Abstract

S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as
well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-
grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects
are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in
both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated
MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor
phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the
vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was
observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced
angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic
resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased
osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8
expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells
and in osteoclast formation.
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Introduction

S100A7 (also known as psoriasin) is a small calcium binding

protein of 11 kDa molecular weight, first described as an mRNA

expressed in psoriatic skin lesions [1]. It is a member of the S100

family of the EF-hand type of calcium binding proteins. The

S100A7 protein is known to be expressed in various tumors having

squamous differentiation as a major component with or without

accompanying inflammation (eg, squamous cell carcinoma of the

skin [2,3], lung [4], cervix, bladder [5] and breast as well as

adenocarcinoma of the breast [6]. S100A7 was identified as a

differentially expressed gene in ductal carcinoma in-situ (DCIS)

but not in invasive breast carcinomas, suggesting its potential role

in tumor progression. Expression of S100A7 has been shown to be

correlated with HER+, high-grade tumors [6]. The high

expression level of S100A7 in poorly differentiated and lymph

node positive breast tumors suggests that it may predict poor

clinical outcome and a high risk of recurrence or progression in

DCIS [7]. Although S100A7 has been reported to play a role in

breast cancer, the molecular mechanisms of its effects are not well

known. Recent studies have suggested that EGF may regulate

S100A7 expression [8].

EGF and its related family member, HER2/Neu, are

commonly expressed in breast cancers, including in 60% of

invasive breast cancers. Overexpression of HER2 was previously

linked to DCIS [9]. In addition, overexpression of EGF was

correlated with tumor progression and extensive metastasis in

breast cancers [10], and other malignancies [11]. Breast

carcinomas with squamous differentiation are a distinct subgroup

of breast tumors with a high frequency of EGF receptor positivity

[12]. EGFR is a 170 kDa Type 1 transmembrane glycoprotein

containing an extracellular ligand-binding domain, transmem-

brane domain, and a cytoplasmic tail, which includes a tyrosine

kinase domain and docking sites for binding [13].

Tumor angiogenesis plays an important role in tumor growth

and metastasis. In the past two decades, numerous positive and

negative regulators of angiogenesis have been described, the most

recent one being VEGF. High VEGF levels have been detected in

S100A7-overexpressing cells and these levels were correlated with

increased tumor angiogenesis in human breast tumors [14].

The bone is the first site of metastasis in 25–50% of breast cancer

cases and osteolytic lesions are present in 70–80% of patients with

stage IV breast cancer [15,16]. Histological analysis and scanning

microscopy have revealed that bone destruction is mediated by
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osteoclasts. Tyrosine kinase inhibitors of EGFR have been shown to

efficiently block the in vitro and in vivo activation of this receptor, and

to significantly inhibit tumor growth in experimental animal

models. Tumor cells, osteoclasts, stromal cells and the extracellular

matrix are components required for the initiation and development

of bone metastasis. Tumor cells activate osteoclasts via PTHrP, IL-

6, IL-1, and TNF-a. PTHrP-independent factors like IL-11 and IL-

8 also contribute to osteolytic activity [17]. Moreover, IL-8 is a

major osteolytic factor and potent activator of bone destruction

accompanying metastatic bone disease [18].

Our study for the first time reveals that S100A7 may regulate

EGF-induced EGFR phosphorylation and other downstream

signaling molecules. We found that S100A7-downregulated breast

cancer cells exhibited a reduction in EGF-induced chemotaxis and

invasion on matrigel-coated transwells. Furthermore, we showed

that S100A7 reduced the number and size of osteoclasts formed in

vitro and the size of osteolytic lesions observed in vivo. We also noted

decreased angiogenesis in matrigel assays utilizing S100A7-

downregulated cells. This is a novel report indicating the role of

S100A7 in EGFR signaling and osteoclast resorption.

Results

Growth factors regulate S100A7 expression
Recently, it has been shown that S100A7 is associated with an

increase in EGF mRNA levels [8]. However, not much is known

about growth factor effects on S100A7 expression in malignant

breast tissues. Thus, we analyzed the effect of EGF on S100A7

expression in MCF-7 and MDA-MB-468 breast cancer cell lines.

EGF increased the expression of S100A7 in a dose-dependent

manner in both MCF-7 cells (Figure 1A) and MDA-MB-468 cells

(Figure 1B). Peak effect was seen between 70–100 ng/ml of EGF.

S100A7 silencing by S100A7 shRNA inhibits EGF-induced
cell migration and invasion

To investigate the involvement of S100A7 in the EGF-mediated

effects on migration and invasion, we used stable S100A7-shRNA-

downregulated cells (Figure 2A), as previously reported [14]. We

observed a reduction in both EGF-induced cell migration on

fibronectin-coated plates in Boyden chambers (Figure 2B) and

invasive activity on matrigel-coated plates (Figure 2C). The

migration of the S100A7-downregulated cells towards EGF was

significantly reduced (by 40%) as compared to the vector-

transfected controls.

S100A7 mediates EGFR/HER2 cell signaling through
distinct and specific phosphorylation of tyrosine residues
and downstream cascading events

In order to evaluate the role of S100A7 in EGF-mediated

signaling, we compared EGFR phosphorylation as well as the

activities of various downstream signaling molecules in S100A7-

vector control and S100A7-downregulated cell lines. Previously, it

was shown that on ligand binding, EGFR activation involves

homo- and hetero-dimerization with other EGFR family members

(such as HER2), transphosphorylation of receptors, and activation

of a number of different downstream signaling pathways [19–21].

EGFR expression has also been linked to activation of ErbB2 in

human breast cancers [22]. In our study, phosphorylations of

EGFR Tyr1173 and HER2 Tyr1248 (Figure 3A), EGFR Tyr1173

(Figure 3B), and Tyr1068 (data not shown) were reduced in

S100A7-downregulated cells as compared to empty vector-

transfected cell lines following treatment with increasing concen-

trations of EGF. A peak effect on phosphorylation was observed

between 70–100 ng/ml of EGF. EGFR expression combined with

c-Src overexpression can initiate oncogenic transformation and

marked migratory and invasive behavior in human breast cancer

cells [23]. We observed a decrease in Src phosphorylation at

Tyr416 in EGF-stimulated S100A7-downregulated cells as

compared to the control cells (Figure 3C). Moreover, since the

tyrosine phosphatase SHP2 acts as an important positive regulator

of EGFR signaling and is associated with signals initiated by

receptor tyrosine kinases, we next evaluated SHP2 phosphoryla-

tion in the EGF-stimulated S100A7-downregulated cell lines as

compared to the empty vector controls. SHP2 phosphorylation at

Tyr542 was reduced in the S100A7-downregulated cells

(Figure 3D). These results indicate that S100A7 alters EGF

downstream signaling pathways.

S100A7 downregulation reduces angiogenesis in a
matrigel plug assay

It has been shown that S100A7 overexpression increases VEGF

expression levels (8) and that downregulation of S100A7 decreases

the expression of VEGF [14]. In addition, a correlation was

observed between high S100A7 expression and the angiogenic

marker CD31 in samples derived from human breast cancer [14].

Thus, we examined the effect of S100A7 on angiogenic potential

in SCID mice by using a matrigel plug assay. After 4 weeks, the

matrigel plugs were either fixed for histology or extracted for

hemoglobin. Evaluation of the matrigel plugs revealed a decrease

in the number of blood vessels in the plugs from the S100A7-

downregulated cells versus the control plugs, as detected by CD31

staining (Figure 4A). The inhibited blood vessel formation also

resulted in a significant decrease in blood volume in the S100A7-

downregulated cells containing the plugs, as measured by

hemoglobin assays (Figure 4B).

Downregulation of S100A7 decreases bone osteolysis
It has been shown that downregulation of S100A7 expression

markedly decreases in vivo tumorigenicity and lung metastasis [14].

Figure 1. EGF stimulation enhances S100A7 expression in
breast cancer cells. 70–80% confluent MCF-7 cells (A) and MDA-MB-
468 cells (B) were washed twice and rinsed with PBS followed by 18 hrs
of serum starvation. The cells were then stimulated with various
concentrations of epidermal growth factor (EGF) for 30 minutes at 37uC.
The cells were lysed and S100A7 expression was analyzed by Western
blotting with anti-S100A7 antibody, as indicated. Equal protein loading
in each lane was checked by stripping the blots and probing with b-
Actin antibody (A and B, lower panels). The experiments were repeated
thrice with identical results.
doi:10.1371/journal.pone.0001741.g001

S100A7, EGF-Induced Signaling
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However, the involvement of S100A7 in the development of

metastatic bone lesions and osteoclast formation at the site of

metastasis is not known. Breast cancer cells that metastasize to the

bone commonly cause osteolytic lesions, which are mediated by

osteoclasts. Direct injection of cancer cells into mouse bone has

been used as a model to analyze bone metastasis in renal

carcinoma [24] and prostate cancer [25]. Here, we employed the

orthotopic bone implantation model to analyze the formation of

osteolytic lesions in mice. Intra-tibial injections in mice were

carried out as described in Materials and Methods. We observed

osteolytic lesions as well as destruction of the cortex, with tumors

Figure 2. S100A7 knocked-down MDA-MB-468 cells show a
decrease in EGF-induced migration and invasion. (A) MDA-MB-
468 cells were transfected with vector control or S100A7-shRNA, as
described in Materials and Methods. S100A7 expression in these cells
was analyzed by Western blotting with anti-S100A7 antibody (upper
panel). Equal protein loading in each lane was checked by stripping the
blot and probing with b-Actin antibody (lower panel). (B) Control and
S100A7 shRNA-transfected MDA-MB-468 cells were subjected to a
chemotaxis assay towards EGF (20 ng/ml) using the modified Boyden
chamber assay, as described in Materials and Methods. The lower
surface of the insert was stained with the Diff-Quik Stain kit and cells
were counted in an average of 5 high-power fields (HPF; 206).
Experiments were done in triplicate and repeated three times with
similar results. *p,0.05 (C) Control and S100A7 shRNA-transfected
MDA-MB-468 cells were subjected to an invasion assay using matrigel-
coated transwell plates (BD Biosciences). Chemotaxis towards EGF
(20 ng/ml) was then analyzed, as described in Materials and Methods.
The cells on the insert were stained with the Diff-Quik Stain kit and total
cell numbers were counted (106). Experiments were done in triplicate
and repeated thrice with similar results. *p,0.05.
doi:10.1371/journal.pone.0001741.g002

Figure 3. S100A7 downregulation decreases the phosphoryla-
tion of EGFR/HER2, Src and SHP2 in MDA-MB-468 cell lines.
Vector control and S100A7-shRNA stably-transfected MDA-MB-468 cell
lines were starved overnight and stimulated with various concentra-
tions of EGF (0 to 100 ng/ml) for 30 minutes at 37uC. The cells were
then lysed and the lysates were analyzed by Western blotting with p-
EGFR Tyr1173/p-HER2 Tyr1248 (A, upper panel) or p-EGFR Tyr1173 (B,
upper panel) antibodies. The protein levels were monitored by
stripping the blots with anti-EGFR antibody (A and B, lower panels).
Vector-transfected controls and S100A7 shRNA-transfected stable MDA-
MB-468 cell lines were starved overnight for 17 hours and stimulated
with various concentrations of EGF (0 to 100 ng/ml) for 15 minutes at
37uC. The cells were then lysed and the lysates were analyzed by
Western blotting with p-Src Tyr416 (C, upper panel) or p-SHP2 Tyr542
antibody (D, upper panel). The protein levels were monitored by
stripping the blots with total Src and SHP2 antibodies, as indicated (C
and D, lower panels).
doi:10.1371/journal.pone.0001741.g003

S100A7, EGF-Induced Signaling
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extending into the soft tissue in all three mice injected intra-tibially

with the S100A7-control cells (Figure 5, Panels A1 and A2). The

cortex on both sides was intact in mice injected with the S100A7-

downregulated cells (Figure 5, Panels B1 and B2). H & E

sectioning showed loss of the trabecular meshwork in the proximal

tibia in the control group as compared to the S100A7-

downregulated group (Figure 5: Panels C1 and C2, respectively).

This result suggests that S100A7 may play a role in tumor-induced

bone resorption.

S100A7 downregulation decreases osteoclast formation
in transwell assays

Since we observed reduced osteolytic lesions in mice injected

with S100A7-downregulated cells, we analyzed the role of S100A7

in osteoclast formation. Osteoclasts are known to mediate

osteolytic lesions at the sites of metastatic tumors. Precursor

osteoclasts, prepared from bone marrow cultures (as described in

Materials and Methods), were placed in 24-well plates and inserts

containing vector control or S100A7-shRNA-downregulated

breast cancer cells (56104 cells) were placed in the wells. Addition

of RANKL without breast cancer cells served as a control. We

observed a marked increase in osteoclast formation and fusion as

measured by the number and size of TRAP+ multinucleated (.3

nuclei) giant cells in the S100A7 control cells as compared to the

downregulated cells (Figure 6A and B).

Reduced IL-8 expression is present in S100A7-
downregulated cell lines

Tumor cells secrete IL-8 which is known to stimulate the

formation of osteoclasts from hematopoietic precursors in the bone

marrow, resulting in increased osteoclastic bone resorption [18].

Furthermore, metastatic cells isolated from bone have been shown

to produce greater amounts of IL-8 [17]. Therefore, we analyzed

IL-8 production in the conditioned media of control and S100A7-

downregulated cell lines. We observed a statistically significant

decrease in IL-8 levels in the conditioned media of S100A7-

Figure 4. S100A7-downregulation decreases angiogenesis. (A)
Effect of S100A7 on blood vessel formation in matrigel plugs containing
MDA-MB-468 cell lines. 250 ml of Growth factor-reduced Matrigel Matrix
High Concentration (BD Biosciences) was mixed with 66106 cells
(250 ml of vector control or 250 ml of S100A7-downregulated cells) and
implanted subcutaneously into SCID mice (two sites per mouse). After
4 weeks, one matrigel plug from each mouse injected with vector
control or S100A7-shRNA cells was fixed in Tissue Tek and snap-frozen.
The sections were stained for CD31 antibody by immunohistochemistry.
(B) The other plug was grounded and the supernatant was analyzed for
hemoglobin content using the Hemoglobin Assay Kit (Sigma Diagnos-
tics). The results are interpreted as the blood volume per unit weight of
matrigel (* p,0.05).
doi:10.1371/journal.pone.0001741.g004

Figure 5. S100A7 downregulation decreases osteolytic lesions
in vivo. Cells were directly introduced into the tibias of 4 week-old
mice, as described in Materials and Methods. Micro-CT scanning of live
mice was done using a GE eXplore Micro-CT scanner (GE Healthcare Ltd,
UK) at 93 mm resolution, 6 weeks after injection. The tibias were
dissected out and scout view radiographs were taken with a micro-CT40
scanner at 12 mm resolution obtained from SCANCO Medical AG
(Switzerland). There were osteolytic lesions, destruction of the cortex
and extension of the tumor into the soft tissue in the mice injected with
the control S100A7 cells (Panels A1 and A2). The cortex of the mice
injected with the S100A7-downregulated cells was intact (Panels B1 and
B2). Tibias were excised and processed for conventional histological
examination. S100A7 control mice showed tumor-induced osteolysis
(Panel C1), and the osteolysis was evident in all three injected mice as
compared to mice injected with the S100A7-downregulated cells (Panel
C2) (H & E staining, 206). The letter ‘T’ in panel C1 represents tumor.
The experiments were repeated twice with identical results.
doi:10.1371/journal.pone.0001741.g005

S100A7, EGF-Induced Signaling
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downregulated cells as compared to S100A7 vector control cells

(Figure 6C).

Discussion

S100A7 is a member of the S100 family of proteins, which have

been associated with preinvasive DCIS. Persistent expression of

S100A7 occurs in some invasive cancers and is associated with poor

prognostic factors [6]. Persistent S100A7 expression also occurs in a

subset of invasive breast carcinomas and is linked to worse clinical

outcome [26]. S100A7 has been shown to be overexpressed in

breast cancers at sites of necrosis in tumor tissues [6,8], as well as in

the nasal fluid during allergic inflammatory reactions [27].

Although S100A7 has been reported to increase EGF mRNA

levels in MDA-MB-231 cells [8], not much is known about its role in

EGF-induced EGFR signaling. In the present study, we have shown

that S100A7 modulates EGFR-induced phosphorylation, migration

and functional effects. We also characterized EGFR’s influence on

S100A7 expression and its role in the EGF-induced metastasis and

invasion of breast cancer cells.

Our experiments show the importance of S100A7 in EGF-

induced and EGFR-mediated expression, signaling and migration.

Figure 6. S100A7-downregulated cells decrease osteoclast formation and IL-8 expression levels. Osteoclast precursors were prepared
(as described in Materials and Methods), plated in 24-well plates and allowed to stand for 5–6 hours. (A) Inserts containing 56104 vector control cells,
the S100A7 shRNA (downregulated) cells or RANKL without breast cancer cells (internal positive control) were then placed on the wells and the
numbers of TRAP+ multinucleated cells generated under each condition were counted at the end of 48 hours. Each culture was done in triplicate.
The experiments were repeated thrice with similar results. (B) The number of multinucleated fused osteoclast cells (A) in an average of triplicate wells
is represented in the histogram. Results are expressed as the mean6SEM (*p,0.05). (C) Vector control and S100A7 shRNA-transfected stable MDA-
MB-468 cell lines were grown to 80% confluence and supernatants were analyzed for IL-8 expression by ELISA. IL-8 expression was significantly less
(*p,0.02) in the S100A7-downregulated cells as compared to the vector-transfected controls.
doi:10.1371/journal.pone.0001741.g006

S100A7, EGF-Induced Signaling
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We have seen increased expression of S100A7 in two breast cancer

cell lines following EGF stimulation. We observed a significant

inhibition of EGF-induced migration on fibronectin-coated plates

in S100A7-downregulated cell lines. There was also decreased

EGF-directed invasion on matrigel-coated transwells. The results

are in agreement with previous studies which reported a 1.4-fold

increase in invasiveness in S100A7-overexpressing MDA-MB-231

clones [28]. However, different results were reported by other

investigators [14] who observed an increase in the migration and

invasion of S100A7-downregulated cells as compared to vector

control cells. The absence of growth factors or serum in the above

experiments could explain the differences in cell migration and

invasion observed in those studies.

EGFR-mediated signaling has been correlated with disease

stage and the development of tumor metastasis in breast cancer.

We have observed that S100A7 regulates EGF-induced signaling.

We noted a decrease in EGFR/HER2 phosphorylation at

Tyr1068, Tyr1173, and Tyr1248 (HER2) sites in S100A7-

downregulated MDA-MB-468 cells as compared to empty

vector-transfected control cells upon EGF stimulation. Tyr1173

corresponds to the main site of EGFR autophosphorylation and

has been shown to be critical for the tyrosine kinase activity of

EGFR as well as its ability to mediate actions in response to EGF

[29]. Tyr1068 and Tyr1248 are considered to be major in vitro

autophosphorylation sites of EGFR and HER2, respectively [30].

Furthermore, Tyr1173 (EGFR) is known to be involved in radio-

resistance and has also been shown to phosphorylate key

intracellular molecules like GAB1, SHC and PLC-c, which play

a role in cell survival and migration in concert with HER2

receptors. Both HER2 and EGFR tyrosine kinase activation are

known to predict the efficacy of trastuzumab-based therapy in

patients with metastatic breast cancer [31].

The SHP2 tyrosine phosphatase acts as an important positive

regulator of EGFR signaling [32]. We observed a dose-dependent

decrease in SHP2 phosphorylation (at Tyr542) in EGF-stimulated

S100A7-downregulated cell lines as compared to empty vector

controls (Figure 3D). Tyr542 is the major Grb2 binding site in

tyrosyl-phosphorylated SHP2. Phosphorylation of SHP2 at

Tyr542 has been reported to stimulate its activity by 3-fold [33].

It has also been shown that SHP2 is necessary for ErbB2 to

activate c-Src. Elevated Src expression is frequently observed in

human breast cancer tissues compared with benign breast tumors

or adjacent normal breast tissues and this elevated Src activity has

been correlated with high grade, high proliferation and HER2

positivity in DCIS [34] as well as with poor metastasis-free survival

in invasive breast cancers [35,36]. Reduction in the amount of c-

Src and subsequently that of EGFR activity has been shown to

decrease invasion [37]. We have seen decreased phosphorylation

of c-Src at Tyr416 in S100A7-downregulated cell lines as

compared to vector-transfected controls. Tyr416 of Src is located

in the kinase domain and phosphorylation of Src at this site

enhances its catalytic activity. Thus, these data support a role for

S100A7 as a modulator of the growth effects of EGF, which may

have clinical implications in a subset of breast carcinomas where

EGFR is overexpressed.

Suppression of EGFR signaling by EGFR inhibitors is known to

reduce the incidence of prostate cancer metastasis to the bone in

nude mice models [25]. The bone is a common site of metastases

from breast, prostate, renal and thyroid cancers. Tumor growth in

the bone depends on osteoclastic activity, which increases bone

resorption and releases growth factors sequestrated in the bone

matrix [38]. Most (,85%) of breast cancer lesions are osteolytic in

nature [39], in contrast to bone secondaries from prostate cancer

which are osteosclerotic. Tumor cells induce these lesions directly

by secreting factors that increase mature osteoclasts in the bone or

indirectly through stromal cells, which secrete growth factors and

cytokines causing the differentiation of precursors to active

osteoclasts [16,40]. Since the MDA-MB-468 cell line is not highly

metastatic, it did not produce bone metastasis or gross visible lung

metastasis on intravenous injections in our study. Therefore, we

injected vector control cells and S100A7-downregulated cells into

the tibia of mice to determine if S100A7 is involved in the

osteoclast resorption of bone. We observed significant lytic lesions

in the tibia with destruction of the cortex on CT imaging in

control mice and few lytic lesions in mice injected with the

S100A7-downregulated cells. The marrow and trabecular bones

were destroyed in the proximal tibia of the control mice as

compared to the tibia from mice with S100A7-downregulation,

where the marrow cavity and trabecular bones remained intact.

This suggests that S100A7 may play an important role in the

formation of osteolytic lesions and hence in the metastasis of breast

cancer cells to bone.

The development and progression of osteolytic lesions in the

bone is a complex phenomenon involving tumor cell interaction

with different cell types of the bone microenvironment [41]. We

used an in vitro model involving osteoclast activation by breast

cancer cells to confirm our in vivo findings. Human osteoclast

precursors, isolated from mouse bone marrow, were differentiated

into TRAP+ multinucleated cells, which were larger in size and

number in the S100A7-control breast cancer cells as compared to

the S100A7-downregulated cells in transwell assays. Breast cancer

cells are able to synthesize many growth factors and cytokines that

can lead to the activation of osteoclasts [38]. Several cytokines

have been implicated in the invasiveness of breast tumors [42].

Low expression of IL-8 was seen in the supernatants of S100A7-

downregulated cells. High IL-8 expression has been correlated

with increased invasiveness and angiogenesis. Expression of

IL-8 was also correlated with increased bone metastasis in a

population of breast cancer cells [18], and tumors isolated

from bone metastatic sites were reported to show high IL-8

secretion [43]. The latter was mediated through COX-2. In

addition to the above in vivo findings, IL-8 has been demonstrated

to have direct stimulatory effects on human osteoclastogenesis and

bone resorption [17]. Breast cancer cells with high VEGF

expression also have high IL-8 expression levels [44], which

correlates with our data showing increased tumor growth and

aggressiveness in S100A7-control cell lines as compared to

S100A7-downregulated cell lines. Our in vitro results support our

in vivo findings of increased osteolytic lesions in the S100A7 control

group.

We observed that S100A7 expression was associated with

increased blood vessel density in mouse models of human breast

cancer. We demonstrated a reduction in angiogenesis in vivo as

determined by decreased microvascular density in the histological

sections of matrigel plugs containing S100A7-downregulated cells

and high-concentration growth factor-reduced matrigel as com-

pared to the S100A7-vector control cells when injected into mice.

Our in vivo findings concur with a previous study which reported

that S100A7-downregulated tumors have reduced VEGF expres-

sion in vitro as compared to vector-transfected control cells, and

that human breast cancer tissues with decreased S100A7

expression levels have reduced CD31 staining [14]. Inhibition of

blood vessel formation resulted in a significant decrease in blood

volume in the S100A7-downregulated plugs. This was due to the

reduced size of the tumor. However, when we compared blood

volume per gram of tissue, the volume was decreased by 60% in

the plugs from mice with S100A7-downregulation. Increased

microvascular density has been correlated with active EGFR,

S100A7, EGF-Induced Signaling
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tumor-type, tumor grade, and VEGF expression but not with

HER2 expression in breast tumors [45]. ErbB2 has been shown to

increase VEGF protein production in cancer cell lines, xenografts,

and in human cancers [46].

S100A7 serves as an important growth regulatory protein in

primary breast malignancies and could possibly control the cellular

responses to EGF partly via the EGFR-dependent actions of EGF.

We have found that epidermal growth factor regulates S100A7

expression. S100A7 mediates events that regulate EGF-induced

migration. Loss of S100A7 expression alters the phosphorylation

state of receptors and inhibits growth factor-induced cell motility

and invasion on fibronectin-coated plates and matrigel-coated

chambers. In addition, downregulation of S100A7 decreases

angiogenesis in matrigel assays. There were definitive osteolytic

lesions observed in mice injected with control cells as compared to

those injected with the S100A7-downregulated cells, and our in

vitro data on the increased size and number of TRAP+ osteoclasts

supports the above results. Furthermore, cytokine analysis revealed

increased expression of IL-8, an osteolytic factor, in the

supernatants of control cells as compared to S100A7-downregu-

lated cells. This study suggests that S100A7 plays an important

role in EGFR-mediated signaling and osteoclast formation in

breast cancer.

Materials and Methods

Cell culture and reagents
MCF-7 and MDA-MB-468 cells were obtained from American

Type Culture Collection (ATCC). The MCF-7 and MDA-MB-

468 cells were grown in DMEM with 10% fetal bovine serum and

with 1% penicillin/streptomycin. Stable S100A7-downregulated

MDA-MB-468 cells and vector control cells were obtained from

Dr. Kornelia Polyak from Dana-Farber Cancer Institute (Boston,

MA) and were maintained in McCoy’s medium with 10% FBS,

1% penicillin/streptomycin, and 2 mg/ml of puromycin. MCF-7

cells were maintained in DMEM media with 10% FBS, and 1%

penicillin/streptomycin. The cells were grown in a humidified

atmosphere of 5% CO2 at 37uC. Cells were seeded in 75 cm2

flasks with 15 ml of growth medium, unless otherwise mentioned.

All our experiments were done using MDA-MB-468 cell lines

except for Figure 1A, where MCF-7 cell lines were used.

Antibodies were obtained as follows: anti-p-Tyr-EGFR1173/p-

Tyr1248, p-Tyr-Src 416, p-Tyr-SHP2, and b-Actin were all

obtained from Cell Signaling Technology Inc (Danvers, MA) and

anti-p-Tyr-EGFR1173 as well as anti-EGFR were from Santa

Cruz Biotechnology (Santa Cruz, CA). Antibody to S100A7 was

from Imgenex Corp (San Diego, CA). EGF was obtained from

Peprotech Ltd (Rocky Hill, NJ).

Stimulation of cells
MCF-7 and MDA-MB-468 cell lines were grown in 6-well

plates until 80% confluent. The cells were then washed twice with

phosphate-buffered saline (PBS) and were subsequently starved in

0.5% serum overnight at 37uC. The serum-starved cells were

stimulated with various concentrations of EGF at 37uC for

30 minutes. At the end of the stimulation, cells were washed

with PBS and lysed in modified radioimmune precipitation assay

buffer (RIPA) (50 mM Tris-HCl, pH 7.4, 1% Nonidet P-40,

150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, 10 mg/ml

aprotinin, 10 mg/ml leupeptin, 10 mg/ml antipain, 10 mg/ml

chymostatin, 100 mg/ml TI, 10 mg/ml pepstatin, 10 mM sodium

vanadate, 10 mM sodium fluoride and 10 mM sodium pyrophos-

phate). The lysate was used immediately or stored at 280uC until

further use.

Immunoblotting
For the immunoblotting, aliquots of cell extracts containing

equal amounts of protein were resolved by 4–12% sodium dodecyl

sulphate electrophoresis (SDS-PAGE) (Invitrogen, Carlsbad, CA)

and electroblotted onto nitrocellulose membranes (Bio-Rad,

Hercules, CA).

Cell migration assays
Briefly, MDA-MB-468 cells were washed twice in PBS with

0.5% serum and then resuspended in 0.5% serum containing

McCoy’s medium. A 24-well plate containing 8 mm porosity

inserts (Costar Corporation, Kennebunk, ME) was used for this

experiment to detect MDA-MB-468 cell chemotaxis. The inserts

were precoated with fibronectin (25 mg/ml), and McCoy’s

Medium (600 ml) containing EGF (20 ng/ml) was added to the

bottom well. A volume of 150 ml (containing 16105 MDA-MB-

468 cells) from each sample was loaded onto the upper well. The

plates were next incubated for 8 hours at 37uC in 5% CO2. After

incubation, the porous inserts were removed carefully, then cells

on the inner surface were wiped with a cotton swab and cells on

the lower surface of the membrane were stained with the Diff-

Quik Stain kit (Dade Diagnostics, Puerto Rico). The surface was

allowed to dry and the number of migrated cells was counted in at

least seven different fields. The results are expressed as the percent

of migrated cells as compared to the control (untreated cells). Each

experiment was performed three times in triplicate.

Chemoinvasion assay
Briefly, MCF-7 cells were detached from the plates with 10 mM

EDTA in PBS, washed twice, and then suspended at 2.56106

cells/ml in McCoy’s medium containing 0.5% FBS. A 24-well

plate containing a matrigel coating (Becton Dickinson Biosciences)

was used for this experiment. Cells (150 ml) from each sample were

loaded onto the upper well. The lower well contained 600 ml of

0.5% FBS McCoy’s medium containing growth factor (EGF,

20 ng/ml). The plates were incubated for 16 hours at 37uC in 5%

CO2. After incubation, the inserts were removed carefully and the

cells were fixed and stained using the Diff-Quik Stain kit (Dade

Diagnostics). The results are expressed as the percent of migrated

cells as compared to the control (untreated cells).

Culture for osteoclast formation and Transwell assays
Bone marrow cells were obtained from 6 week-old mice after

flushing the long bones and passage of the cells through a 40 mm

nylon mesh. The cells were then washed and incubated in tissue

culture dishes at 37uC in 5% CO2 in the presence of M-CSF

(10 ng/ml). After 24 hours in culture, the nonadherent cells were

collected and layered onto Histopaque 1088 (Sigma Aldrich Inc.).

Cells at the gradient interface were collected, washed, and plated

in 24-well tissue culture plates at 5.06105 cells/well. After 6 hours,

transwell inserts (8 mm pore size, Corning) containing S100A7

vector control cells or S100A7-downregulated cells (56104 cells/

well) were placed in wells containing precursor osteoclasts.

Treatment with RANKL (20 ng/ml) without breast cancer cells

served as a positive control. TRAP staining was performed with

the Leukocyte Phosphatase Kit (Sigma Aldrich Inc.).

Animal model of metastasis
Female CB-17 SCID mice (4 weeks-old) were obtained from

Charles River Laboratories (Boston, MA) and maintained in a

specific pathogen-free barrier animal facility for 1 week prior to

the start of the experiments. MDA-MB-468 cells (S100A7-

expressing control cells and S100A7-downregulated cells) were
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grown to 70% confluence, and the culture medium was changed

to that without antibiotics 24 hours prior to harvesting. Single

suspensions of cells expressing S100A7 (vector control) or S100A7-

downregulated cells were harvested from the subconfluent cultures

by exposure to 0.25% trypsin and 0.02% EDTA. Trypsinization

was stopped by the addition of medium containing 10% FBS

(without antibiotics). Cells were kept at 4uC until use (0–1 hour).

Cell concentration and viability (Trypan blue exclusion, .90%

viability) were determined by a hemocytometer. SCID mice were

anesthetized using Avertin (2.5%), 0.02 mg/kg of bodyweight.

The animal was then shaven over the lower end of the femur and

upper half of the tibia and the injection site prepped with betadine

scrub followed by the use of a 70% alcohol wipe. A 1-cm skin

incision was made on the antero-medial part of the leg and the

muscle was moved using blunt forceps. The bone was drilled using

a microdrill (Roboz Surgical Instruments) with a 0.06 mm caliber

point (vWR Laboratories). Single suspensions of cells expressing

S100A7 or S100A7-downregulated cells (56104) in a final volume

of 10 ml were injected into the upper 1/3 of the tibia at a tilted

angle of 45u in the two groups of mice. To prevent leakage of the

cells into surrounding muscles, the injection site was sealed with

surgical bone wax (vWR Laboratories). The wax was allowed to

solidify and the skin was sutured back using black silk. The animals

tolerated the procedure well and no anesthesia-related deaths

occurred during the procedure. One mouse, which acquired a

postoperative infection at the suture site, was treated with betadine

washes and daily dressings with triple antibiotic ointment, and

recovered well. Buprenorphine was used as an analgesic (0.05 mg/

kg/body weight subcutaneously) twice daily for 3–4 days. Mice

from both groups were anesthetized by inhalation using 1.5%

isofluorane in 98.5% oxygen, and Micro-CT scanning was done

using a GE eXplore Micro-CT scanner (GE Healthcare Ltd, UK)

at 93 mm resolution 6 weeks after injection. The mice were then

euthanized using CO2 inhalation, the tibias were dissected out and

scout view radiographs taken with a micro-CT40 scanner at

12 mm resolution from SCANCO Medical AG (Switzerland).

Tumor harvesting and preparation
The mice were euthanized by CO2 inhalation on the 8th week

and the tibias were resected from both groups of mice, and then

placed in 4% paraformaldehyde at 4uC for 2 days. Micro-CT

scanning with high resolution was done on the bones to confirm

the results of the in vivo imaging, which was done at low resolution.

After the scanning, tumors from both groups of mice were

transferred to decalcifying solution for 7 days at room tempera-

ture. Preparation and staining of frozen sections of the tibias were

done at our Institute’s microscopic histology core facility. The

paraffin sections were analyzed by H & E staining.

Angiogenesis assay
4 week-old CB-17 SCID mice were purchased from Charles

River Laboratories. Growth factor-reduced matrigel was obtained

from BD Biosciences (Bedford, MA), and thawed overnight at 4uC.

The required amount was appropriately calculated and the

remaining aliquots were stored at 280uC. The gel was mixed at

a ratio of 56106 cells for 500 ml of matrigel. The mixture was

implanted subcutaneously into two sites at the midline and the

needle was retained for 1–2 minutes to allow the plug to solidify.

The needle was subsequently removed by slow rotation to ensure

that the matrigel did not flow out. After 3 weeks, the mice were

anesthetized using Avertin (2.5%), 0.02 mg/kg of bodyweight and

the matrigel plug was removed. Mice were euthanized with CO2,

and then 0.5 ml to 2 ml of blood was collected from the heart and

placed into heparin-coated tubes for estimation of systemic

hemoglobin. One plug was removed, dipped in embedding

medium (Tissue Tek) and snap-frozen on dry ice. Immunohisto-

chemistry for CD31 was done on the embedded specimens at the

microscopy histology core facility at our Institute. The other plug

was weighed and dissolved in physiological saline (0.9% NaCl).

The tissue was grounded using a Wheaton tissue grinder and the

supernatant was analyzed for hemoglobin content using a

Hemoglobin Assay Kit (containing Drabkin’s reagent) from Sigma

Diagnostics. The results were interpreted as blood volume per unit

weight of matrigel.

Cytokine analysis
The conditioned medium was centrifuged at 14,000 rpm/min

at 4uC to allow the cells and debris to settle down. The upper Lths

of the sample was removed and analyzed for human IL-8 using an

ELISA kit (R & D Systems).

Statistical analysis
The results are expressed as the means +/2 S.D. of data

obtained from three experiments performed in triplicate. Statis-

tical significance was determined using the Student’s t-test.
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Molecular cloning, occurrence, and expression of a novel partially secreted

protein ‘‘psoriasin’’ that is highly up-regulated in psoriatic skin. J Invest

Dermatol 97: 701–12.

2. Moubayed N, Weichenthal M, Harder J, Wandel E, Sticherling M, et al. (2007)

Psoriasin (S100A7) is significantly up-regulated in human epithelial skin

tumours. J Cancer Res Clin Oncol; 133: 253–61.

3. Alowami S, Qing G, Emberley E, Snell L, Watson PH (2003) Psoriasin (S100A7)

expression is altered during skin tumorigenesis. BMC Dermatol; 3: 1.

4. Webb M, Emberley ED, Lizardo M, Alowami S, Qing G, et al. (2005)

Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation

and mammary tumorigenesis. BMC Cancer; 5: 17.

5. Ostergaard M, Rasmussen HH, Nielsen HV, Vorum H, Orntoft TF,

et al. (1997) Proteome profiling of bladder squamous cell carcinomas:

identification of markers that define their degree of differentiation. Cancer

Res; 57: 4111–117.

6. Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, et al. (1999) Psoriasin

(S100A7) expression and invasive breast cancer. Am J Pathol; 155: 2057–66.

7. Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, et al. (2003)

Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res; 1:

362–75.

8. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, et al. (2005) The S100A7-

c-Jun activation domain binding protein 1 pathway enhances prosurvival

pathways in breast cancer. Cancer Res; 65: 5696–702.

S100A7, EGF-Induced Signaling

PLoS ONE | www.plosone.org 8 March 2008 | Volume 3 | Issue 3 | e1741



9. Liu E, Thor A, He M, Barcos M, Ljung BM, et al. (1992) The HER2 (c-erbB-2)

oncogene is frequently amplified in situ carcinomas of the breast. Oncogene; 7:
1027–32.

10. Khazaie K, Schirrmacher V, Lichtner RB (1993) EGF receptor in neoplasia and

metastasis. Cancer Metastasis Rev; 12: 255–74.
11. Radinsky R, Risin S, Fan D, Dong Z, Bielenberg D, et al. (1995) Level and

function of epidermal growth factor receptor predict the metastatic potential of
human colon carcinoma cells. Clin Cancer Res; 1: 19–31.

12. Silva AR (2006) Remarkably high frequency of EGFR expression in breast

carcinomas with squamous differentiation Int J Surg Pathol; 14: 268; author
reply 269.

13. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, et al. (2003)
Epidermal growth factor receptor: mechanisms of activation and signaling. Exp

Cell Res; 284: 31–53.
14. Krop I, Marz A, Carlsson H, Li X, Bloushtain-Qimron N, et al. (2005) A

putative role for psoriasin in breast tumor progression. Cancer Res; 65:

11326–34.
15. Harvey HA (1997) Issues concerning the role of chemotherapy and hormonal

therapy of bone metastases from breast carcinoma. Cancer; 80: 1646–51.
16. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast

cancer. Breast Cancer Res Treat; 32: 73–84.

17. Bendre M, Gaddy D, Nicholas RW, Suva LJ (2003) Breast cancer metastasis to
bone: it is not all about PTHrP. Clin Orthop Relat Res; S39-45.

18. Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, et al. (2002)
Expression of interleukin 8 and not parathyroid hormone-related protein by

human breast cancer cells correlates with bone metastasis in vivo. Cancer Res;
62: 5571–79.

19. Brandt BH, Roetger A, Dittmar T, Nikolai G, Seeling M, et al. (1999) c-erbB-2/

EGFR as dominant heterodimerization partners determine a mitogenic
phenotype in human breast cancer cells. Faseb J; 13: 1939–49.

20. Carpenter G (2000) The EGF receptor: a nexus for trafficking and signaling.
Bioessays; 22: 697–707.

21. Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, et al. (1996)

ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications
for breast cancer. Embo J; 15: 254–64.

22. Di Giovanna MP, Stern DF, Edgerton SM, Whalen SG, Moore D, et al. (2005)
Relationship of epidermal growth factor receptor expression to ErbB-2 signaling

activity and prognosis in breast cancer patients. J Clin Oncol; 23: 1152–60.
23. Dimri M, Naramura M, Duan L, Chen J, Ortega-Cava C, et al. (2007) Modeling

breast cancer-associated c-Src and EGFR overexpression in human MECs: c-

Src and EGFR cooperatively promote aberrant three-dimensional acinar
structure and invasive behavior. Cancer Res; 67: 4164–72.

24. Weber KL, Doucet M, Price JE, Baker C, Kim SJ, et al. (2003) Blockade of
epidermal growth factor receptor signaling leads to inhibition of renal cell

carcinoma growth in the bone of nude mice. Cancer Res; 63: 2940–47.

25. Angelucci A, Gravina GL, Rucci, Millimaggi D, Festuccia C, et al. (2006)
Suppression of EGF-R signaling reduces the incidence of prostate cancer

metastasis in nude mice. Endocr Relat Cancer; 13: 197–210.
26. Emberley ED, Niu Y, Njue C, Kliewer EV, Murphy LC, et al. (2003) Psoriasin

(S100A7) expression is associated with poor outcome in estrogen receptor-
negative invasive breast cancer. Clin Cancer Res; 9: 2627–31.

27. Bryborn M, Adner M, Cardell LO (2005) Psoriasin, one of several new proteins

identified in nasal lavage fluid from allergic and non-allergic individuals using 2-
dimensional gel electrophoresis and mass spectrometry. Respir Res; 6: 118.

28. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, et al. (2003) Psoriasin
interacts with Jab1 and influences breast cancer progression. Cancer Res; 63:

1954–61.

29. Bertics PJ, Chen WS, Hubler L, Lazar CS, Rosenfeld MG, et al. (1988)

Alteration of epidermal growth factor receptor activity by mutation of its

primary carboxyl-terminal site of tyrosine self-phosphorylation. J Biol Chem;

263: 3610–17.

30. Lombardo CR, Consler TG, Kassel DB (1995) In vitro phosphorylation of the

epidermal growth factor receptor autophosphorylation domain by c-src:

identification of phosphorylation sites and c-src SH2 domain binding sites.

Biochemistry; 34: 16456–66.

31. Hudelist G, Kostler WJ, Czerwenka K, Kubista E, Attems J, et al. (2006) Her-2/

neu and EGFR tyrosine kinase activation predict the efficacy of trastuzumab-

based therapy in patients with metastatic breast cancer. Int J Cancer; 118:

1126–34.

32. Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and

cancer. Nat Rev Cancer; 6: 307–20.

33. Lu W, Gong D, Bar-Sagi D, Cole PA (2001) Site-specific incorporation of a

phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in

cell signaling. Mol Cell; 8: 759–69.

34. Wilson GR, Cramer A, Welman A, Knox F, Swindell R, et al. (2006) Activated

c-SRC in ductal carcinoma in situ correlates with high tumour grade, high

proliferation and HER2 positivity. Br J Cancer; 95: 1410–14.

35. Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, et

al. (1992) Characterization of protein tyrosine kinases from human breast

cancer: involvement of the c-src oncogene product. Cancer Res; 52: 4773–78.

36. Hennipman A, van Oirschot BA, Smits J, Rijksen G, Staal GE (1989) Tyrosine

kinase activity in breast cancer, benign breast disease, and normal breast tissue.

Cancer Res; 49: 516–21.

37. Lotz M, Wang HH, Cance W, Matthews J, Pories S (2003) Epidermal growth

factor stimulation can substitute for c-Src overexpression in promoting breast

carcinoma invasion. J Surg Res; 109: 123–29.

38. Pederson L, Winding B, Foged NT, Spelsberg TC, Oursler MJ (1999)

Identification of breast cancer cell line-derived paracrine factors that stimulate

osteoclast activity. Cancer Res; 59: 5849–55.

39. Guise TA, Kozlow WM, Heras-HerzigA, Padalecki SS, Yin JJ, et al. (2005)

Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer;

5 Suppl: S46–53.

40. Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in

breast carcinoma. Cancer; 97: 834–39.

41. Roodman GD (2001) Biology of osteoclast activation in cancer. J Clin Oncol; 19:

3562–71.

42. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, et al.

(2007) Oestrogen receptor negative breast cancers exhibit high cytokine content.

Breast Cancer Res; 9: R15.

43. Singh B, Berry JA, Vincent LE, Lucci A (2006) Involvement of IL-8 in COX-2-

mediated bone metastases from breast cancer. J Surg Res; 134: 44–51.

44. Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, et al. (2004)

Different signalling pathways regulate VEGF and IL-8 expression in breast

cancer: implications for therapy. Eur J Cancer; 40: 2509–18.

45. Vogl G, Bartel H, Dietze O, Hauser-Kronberger C (2006) HER2 is unlikely to

be involved in directly regulating angiogenesis in human breast cancer. Appl

Immunohistochem Mol Morphol; 14: 138–45.

46. Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, et al. (2006) ErbB2

increases vascular endothelial growth factor protein synthesis via activation of

mammalian target of Rapamycin/p70S6K leading to increased angiogenesis

and spontaneous metastasis of human breast cancer cells. Cancer Res; 66:

2028–37.

S100A7, EGF-Induced Signaling

PLoS ONE | www.plosone.org 9 March 2008 | Volume 3 | Issue 3 | e1741


