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Abstract

It has been hypothesized that the net expression of a gene is determined by the combined effects of various transcriptional
system regulators (TSRs). However, characterizing the complexity of regulation of the transcriptome is a major challenge.
Principal component analysis on 17,550 heterogeneous human microarray experiments revealed that 50 orthogonal factors
(hereafter called TSRs) are able to capture 64% of the variability in expression in a wide range of experimental conditions
and tissues. We identified gene clusters controlled in the same direction and show that gene expression can be
conceptualized as a process influenced by a fairly limited set of TSRs. Furthermore, TSRs can be linked to biological
functions, as we demonstrate a strong relation between TSR-related gene clusters and biological functionality as well as
cellular localization, i.e. gene products of similarly regulated genes by a specific TSR are located in identical parts of a cell.
Using 3,934 diverse mouse microarray experiments we found striking similarities in transcriptional system regulation
between human and mouse. Our results give biological insights into regulation of the cellular transcriptome and provide a
tool to characterize expression profiles with highly reliable TSRs instead of thousands of individual genes, leading to a
.500-fold reduction of complexity with just 50 TSRs. This might open new avenues for those performing gene expression
profiling studies.
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Introduction

Biological systems have a layered complexity and it is known

that a cell’s activity is modulated by a network of co-regulated gene

clusters.[1] Such modules are characterized by clusters of

transcriptionally correlated genes, most often with related

functions.[2] A number of studies using clustering algorithms

based on similar expression patterns provided valuable clues about

which strongly expressed genes are co-regulated in a small, specific

set of experimental conditions.[1–3]

However, clustering algorithms are less effective when applied

to large datasets of heterogeneous material. Basic clustering

algorithms assign each gene to a single cluster of co-regulated

genes, whereas it is hypothesized that the net expression of a gene

is determined by the combined effects of various transcriptional

system regulators (TSRs).[4–6] In addition, each level of

transcriptional regulation may only be active in certain phenotypes

and the remaining phenotypes will contribute to noise.[6] In

contrast, principal component analysis (PCA) on a large

heterogeneous set could enable us to use correlation structures of

not only strong but also weakly expressed genes and could provide

a global picture of the dynamics of gene expression on various

transcriptional regulation levels. It could allow individual genes to

be classified into groups that are similarly controlled by a specific

TSR.

Unraveling the complexity of regulation of the transcriptome is

a major challenge; as in principle an infinite number of TSRs

could be needed to control the expression of thousands of genes

ultimately leading to the large diversity seen in cellular

phenotypes. In this study we identified a structure of transcrip-

tional regulation by analyzing 17,550 heterogeneous microarray

experiments. We found that the number of orthogonal factors

needed to explain most of the variability in expression is fairly

limited, even in a wide range of experimental conditions, tissues

and even across species. Furthermore, using several different

models, we show that these TSRs have biological relevance and
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yield reliable summary measurements of gene expression that are

applicable to different tissue types as well as organisms.

Results
Transcriptional system regulators

Insight into the complexity of the regulation of the transcrip-

tome was revealed by PCA on the expression correlation matrix of

13,032 genes in 17,550 human miscellaneous expression arrays.

PCA demonstrated that 64% of the variance in expression of

13,032 genes was explained by only 50 orthogonal factors, called

TSRs, which means a .500-fold reduction in complexity (Fig. 1A).

Similar results were observed in mice where 50 TSRs explained

71% of the variance in expression of 9,062 genes in 3,934 arrays

(Fig. 1A). Moreover, Figure 1A shows that the pattern of the

percentage explained variance per TSR is highly similar between

human and mouse. Tables S1 and S2 give factor loadings for the

first 50 TSRs in human and mouse, respectively.

Reliability of TSRs
To evaluate whether the identified TSRs depend on the specific

set of selected microarray experiments, the human microarray

data were randomly split into two halves and then two sets (A and

B) of TSRs were generated, each using only half of the samples.

Figure 1B contains a heat map showing correlation coefficients

between TSRs generated in sets A and B. TSR1 generated in

set A and TSR1 in set B correlated significantly (R = .999;

P,1.0610216), indicating highly similar control of identical genes

by TSR1 in both sets. Furthermore, the diagonal line in Figure 1B

shows that TSRs generated in both sets were highly similar in their

control of identical genes. For a few TSRs, the relative position in

the order they were found was seen to be switched, but the same

directions of variation were identified. These results indicate that

the TSRs were reliably identified and were not artifacts due to

sample selection. To further investigate whether the identified

TSRs were not artifacts due to gene selection, we applied the split-

half method to each TSR. Figure 1C shows the split-half

correlations for the first 50 TSRs, which were high (.0.91),

indicating their high internal consistency. In sum, the identified

TSRs were robust and not artifacts due to selection of genes and/

or tissues.

Biological significance of TSRs
To validate that the identified TSRs are not merely mathemat-

ical constructs but contain biological coherence and to gain more

biological insight into the regulation of the transcriptome, we

performed Gene Set Enrichment Analysis (GSEA). The hypothesis

is that our identified TSRs are related to known biologically

related gene clusters represented by GO ontologies. Here we

describe the GSEA results for the first, second and fiftieth TSR as

examples. GSEA results for the first 25 TSRs are available in the

supplementary data online. Among the genes most strongly

influenced by TSR1, TSR2 and TSR50, many GO ontologies

were significantly enriched (n = 488, n = 1157 and n = 119,

respectively). Figure 2 shows the most significant biological

processes per TSR according to the GO ontology classification

on either side of it. The graphs show the enrichment score as a

function of the index in the list (x-axis) of genes ranked according

to the correlation between their expression and a TSR score

(factor loading). Red graphs with a ‘mountain-like shape’ illustrate

a specific GO ontology predominantly containing top ranked

genes. In contrast, green graphs with a ‘valley-like shape’ illustrate

a specific GO ontology predominantly containing bottom ranked

genes. When genes belonging to a specific GO ontology are not

top or bottom ranked but randomly distributed in the ranked list

the graph will have a ‘zigzag’ shape. Furthermore, Figure 2 shows

that TSRs have the capacity to influence the expression of genes

involved in specific biological processes in opposite directions, e.g.

TSR1 regulates genes belonging to GO ontology ‘progression

through M phase’ vs. ‘ion transport’, TSR2 genes belonging to GO

ontology ‘cell cycle checkpoint’ vs. ‘the cell morphogenesis’ and

TSR50 genes belonging to GO ontology ‘striated muscle

contraction’ vs. ‘complement activation’. Biological processes

represented by GO ontologies can theoretically be influenced by

more then one TSR; the contrast seen in TSR1 ‘progression

through M phase’ vs. ‘ion transport’ was also seen in TSR3 for

example. All enrichments for GO ontologies representing these six

biological processes were highly significant; P,1028. In addition,

the encoded proteins of genes controlled in opposite directions (i.e.

top vs. bottom ranked genes) by a TSR are generally located in

other compartments of a cell (e.g. Golgi, mitochondrion, nucleus,

etc.), as shown for TSR1 in Figure 3 for example. Panel A shows

Figure 1. Explained variance and reliability of the first 50 transcriptional system regulators (TSRs). Panel A shows the explained
variance for the first 50 TSRs in human and mouse. The percentage explained variance is depicted for each TSR. The cumulative percentage explained
variance for the first 50 TSRs is 64% in human and 71% in mouse. Panel B shows a heat map where each box represents the Pearson correlation
coefficient between TSRs generated from sets A and B, each using half of the data. Correlation coefficients of 0 and 1 are represented by black and
red, respectively. Panel C shows the split-half correlations for the first 50 TSRs. (A TSR is a weighted sum of genes and a so-called TSR score can be
calculated for each sample. In the split-half method, genes of a TSR score are split into two random parts and the resulting partial TSR scores are
correlated (Pearson).)
doi:10.1371/journal.pone.0001656.g001

Transcriptional System Reg.
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Figure 2. Biological significance of the transcriptional system regulators (TSRs). The most significant biological processes for either side of
the respective TSR according to the GO ontology classification are shown for TSR1, TSR2 and TSR50 in panels A, B and C, respectively. Graphs depict
the running sum statistics when applying gene set enrichment analysis. The running sum (y-axis) is shown as a function of the index in the list (x-axis)
of genes ranked in ascending order according to their factor loadings within TSR. The red vs. green graphs show the biological coherence of
opposing regulated gene clusters controlled by TSRs.
doi:10.1371/journal.pone.0001656.g002
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that the encoded proteins of the top-ranked genes of TSR1 (the

limit of 200 was arbitrarily chosen) are generally located within the

plasma membrane, whereas the 200 bottom-ranked genes of

TSR1 are generally located within the nucleus of the cell. This is

also visualized in Panel B, where the green ‘valley-like shape’

graph shows that the GO ontology for cellular localization

‘nucleus’ is enriched among the bottom-ranked genes. In contrast

the red ‘mountain-like shape’ graph shows the enrichment of the

GO ontology ‘plasma membrane’ at the top-ranked genes.

Similarities in transcriptional system regulation between
human and mouse

PCA on the combined two-species dataset consisting of 3,934

human and 3,934 mouse arrays was performed to assess the

similarity of the structure in transcription regulation between

human and mouse. PCA revealed that again 50 principal

components (PCs) explained ,73% of the total variance in

combined human and mouse gene expression. In this specific two-

species dataset the first PC (PC1) explained ,25% of the total

variance in expression. The distribution of PC1 scores for human

samples showed no overlap with PC1 scores for mouse samples,

suggesting that PC1 summarizes the variation in expression caused

by species differences (Figure S1). Biological processes such as

RNA processing, ion transport and primary metabolism were

enriched in PC1 using GSEA analysis. Except for PC1, all PCs

showed a strong overlap between human and mouse PC scores,

suggesting that gene expression in human and mouse is similarly

influenced by regulatory processes influencing evolutionary related

gene clusters in the same direction.

Mapping human and mouse TSRs
The results above suggest a high similarity in the structure of

transcriptional regulation between human and mouse. To assess

similarities in regulation of biological processes, we mapped TSRs

generated in the human dataset to TSRs generated in the mouse

dataset. The Spearman rank correlation coefficients between

human and mouse TSRs showed that human TSR1 was most

strongly correlated with mouse TSR2 (R = .489, P = 1.061026).

Correlation coefficients between the first 25 human and mouse

TSRs are given in Table S3. As an example of the strong

resemblance in transcriptional system regulation between human

and mouse, Figure 4 shows that identical biological processes are

enriched and similarly controlled in one direction (human TSR1

vs. mouse TSR2).

Regional control of chromosomal domains
Next, in order to further characterize the transcriptional system

regulation, we assessed whether genes similarly controlled by a

Figure 3. Relationship between cellular localization of genes controlled in opposite directions by TSR1. Panel A shows the cellular
localization of the 400 most strongly controlled genes (highest factor loadings). The colors represent genes with positive (green) and negative (red)
factor loadings. Panel B shows the results of gene set enrichment analysis with regard to cellular localization of the gene products. Graphs show the
running sum statistics when applying gene set enrichment analysis. The running sum (y-axis) is shown as a function of the index in the list (x-axis) of
genes ranked in ascending order according to their factor loadings within a TSR.
doi:10.1371/journal.pone.0001656.g003
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specific TSR also cluster within chromosomal regions. Figure 5

shows regional factor loading profiles for TSR1. GSEA results in

terms of chromosomal distribution of similarly controlled gene

regions for other TSRs are available in the supplementary data.

An application of a moving median with a window size of 20 genes

clearly shows differences for the chromosomal regions. The Y-

chromosome is not depicted as the number of genes in the dataset

located on the Y-chromosome was less than 20, so a moving

median could not be calculated. Several chromosomes (e.g. 1 and

11) have large regions of genes with predominantly positive factor

loadings, interspersed with regions where genes have predomi-

nantly negative factor loadings. In contrast, chromosomes 4, 13

and 22 show hardly any regions of genes inversely controlled by

TSR1, but, more remarkably, all these gene regions seem to be

regulated in only one direction.

Gene clustering based on TSR interaction
We clustered genes based on factor loadings with the first 50

TSRs in order to elucidate the dynamics of gene expression

regulation, in which individual genes are classified into groups

with similar regulation patterns. Gene clusters with distinct

patterns of regulation were observed; clusters predominantly

controlled by the first TSRs and clusters with a more diffuse

pattern of TSR regulation (e.g. genes of which the products are

involved in the biosynthesis of proteins from mRNA molecules).

Furthermore, as functionally related genes often exhibit expression

patterns that are correlated, we expected to observe clusters of

functionally related genes based on TSR interaction. For example,

Figure 6A and 6B show gene clusters with a strong biological

relationship, i.e. the human leukocyte antigen system (HLA). All

clustering results are available as supplementary data and can be

depicted with Java TreeView, which can be downloaded from

http://jtreeview.sourceforge.net/.

Sample clustering based on TSR scores
Samples from the publicly available human body index were

clustered to assess whether similar tissue samples have similar

patterns in TSR scores. Clustering results for all samples are given

in the supplementary data. Samples with identical tissue origins

showed strong clustering, e.g. Figure 7 shows clustering of liver

tissue samples as well as kidney samples.

Discussion

Principal component analysis (PCA) on a large number of

heterogeneous microarray experiments showed that a maximum

of 50 statistically independent transcriptional system regulators

(TSRs) can explain the vast majority of biological variance in gene

expression in human as well as in mouse. Furthermore, we

identified clusters of genes which expression is influenced in the

same direction by specific TSRs and showed that gene expression

can be conceptualized as a process influenced by a limited set of

TSRs.

In microarray studies small sample sizes often present a major

problem, such as overfitting, i.e. finding a discriminatory pattern

by chance, which may occur when large numbers of genes are

used to discriminate a small number of phenotypes.[7] Since a

TSR is a weighted sum of genes, a TSR score can be calculated for

each observed expression array. This data reduction allows us to

Figure 4. Similarities in transcriptional system regulation
between human and mouse. Panels A and B show the results of
gene set enrichment analysis for six biological processes for human
TSR1 and mouse TSR2, respectively. Graphs show the running sum
statistics. The running sum (y-axis) is shown as a function of the index in
the list (x-axis) of genes ranked in ascending order according to their
factor loadings with a TSR. The red vs. green graphs show the biological

r

coherence of regulated gene clusters controlled by TSRs in both
species.
doi:10.1371/journal.pone.0001656.g004
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Figure 5. Regional factor loading profiles for 23 chromosomes. Factor loadings for TSR1 are shown on chromosomes as a moving median
with a window size of 20 genes. Chromosome position is depicted on the x-axis and factor loadings for gene regions are given on the y-axis. Bars
above or below the middle line represent inversely regulated chromosomal regions.
doi:10.1371/journal.pone.0001656.g005
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characterize the expression profile of an individual microarray

with 50 highly reliable TSR scores (TSR-profiling) instead of using

thousands of individual genes (the software to compress expression

array data in TSR scores is available at the supplementary website:

http://129.125.155.240/tsr/). As an example we showed that

similar tissues clustered together based on the first 50 TSR scores

(Fig. 7). These results strongly suggest that the origin of tissues can

be uncovered with the use of TSR scores. This could be applied

for the identification of cancer metastases of unknown origin. The

advantage is that a limited set of TSRs makes it is possible to

analyze even small gene expression datasets with much less danger

of false-positive results due to overfitting. Furthermore, TSR

scores can be used to identify systematic changes of expression in

gene clusters consisting of genes with small but systematic fold

changes between phenotypes. This is important as we often do not

know whether large fold changes in individual genes will have

more biological relevance than smaller but coordinate fold

changes in a set of genes.

Inherent to microarray experiments the measurement of gene

expression is composed of biological signals and experimental

noise.[8] We assumed that at least the first 50 TSRs, accounting

for ,70% of the information present in the entire dataset, capture

the majority of relevant biological signals and that subsequent ones

are likely to consist of noise and experimental artifacts, a principle

which has also been described by Alter et al.[9] Normalizing gene

expression data by filtering out these latter TSRs enables a

meaningful comparison to be made of the expression of different

genes across different arrays in different experiments (Fig. 6).

Moreover, in addition to compare genes on the basis of their net

expression, genes can now also be compared by their similarity in

regulation of any chosen subset of TSRs. Therefore, the function

of genes with a provisional status could be elucidated by looking at

genes with known biological functions which are similarly

influenced by our identified TSRs.

TSRs can also be linked to biological functions as we have

shown a strong relation between TSR-related gene clusters and

biological coherence in terms of functionality as well as cellular

localization (Figures 2 and 3). Genes encoding for proteins located

in the nucleus are influenced in opposite directions compared to

genes encoding for proteins located in the plasma membrane. This

might suggest that there is a regulatory process which could down

regulate the expression of ‘nuclear’ genes when up-regulating

‘plasma membrane’ genes and vice versa. However, of note, a

biological process represented by a GO ontology is not necessarily

influenced by one specific TSR alone but can be influenced by

more then one TSR; e.g. the contrast nucleus vs. membrane was

seen in several TSRs. Although we do not know the nature of the

transcriptional regulatory processes represented by our TSRs, this

study provides insights into which specific biological processes are

influenced in opposite directions. Further studies are needed to

unravel the underlying nature and interplay of these TSRs.

Expression profiling of relevant disease tissues might help in

candidate gene selection. However, such studies are often

problematic, as relevant human tissue is hard to obtain. To

overcome these sampling problems, the use of comparable mouse

tissues seems a good option. Figure 4 shows a highly similar

pattern of influence on gene expression between TSR1 in human

and TSR2 in mice. Identical opposing GO ontologies are

influenced in the same directions. Our results suggest a high

homology between the transcriptional regulation of human and

mouse. It is noteworthy that the first principal component from the

PCA on the combined two-species dataset representing species

differences revealed that GO ontologies such as primary

metabolism and RNA processing were highly enriched. This is

Figure 6. Heat map examples of gene clusters based on factor loadings with the first 50 transcriptional system regulators (TSRs).
Each box in the heat map represents the factor loading of a gene with one of the TSRs (negative = red; positive = green). The first row shows the
average factor loadings for the depicted cluster.
doi:10.1371/journal.pone.0001656.g006

Figure 7. Heat map example of sample clusters based on transcriptional system regulator (TSR) scores. Each box in the heat map
represents the score for a sample (negative = red; positive = green). The first row shows the average TSR scores for the depicted cluster.
doi:10.1371/journal.pone.0001656.g007

Transcriptional System Reg.
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in line with expected metabolic differences between human and

mouse. By filtering out the first principal component that

represents expression differences between the species and/or

platforms, will enable one with the remaining differences to

translate mouse data to the human situation and vice versa, because

species-specific variance in expression can be recognized and

eliminated by subtraction.

So far several levels in transcriptional system regulation have

been reported, e.g. classical DNA sequence regulators, epigenetic

modifications, spatial and temporal organization of nuclear

processes and chromosomes, organization of chromatin into

higher-order domains, transcription factors and microRNAs.[10–

15] These known levels in transcriptional system regulation may

be represented by a combination of the TSRs identified in this

study. In addition, some of the identified TSRs may represent

other, as yet undiscovered levels of transcriptional system

regulation. Interestingly, our work demonstrated that TSRs

regulate genes from chromosomal regions predominantly in the

same direction. This observation was most strongly pronounced

for TSR1 (Fig. 5), suggesting it is strongly related to chromosom-

ally related transcriptome regulation. A higher-order organization

of transcriptome regulation in terms of chromosomal domains is

also suggested by Caron et al.[16]

Our results give biological insights into regulation of the cellular

transcriptome and provide a tool to characterize expression

profiles with highly reliable TSRs instead of thousands of

individual genes, leading to a .500-fold reduction of complexity

with just 50 TSRs. This might open new avenues for those

performing gene expression profiling studies.

Materials and Methods
Data acquisition

Publicly available microarray expression data of 17,550 human

samples hybridized to HG-U133A or HG-U133 Plus 2.0

Genechips (Affymetrix, Santa Clara, California, USA) and 3,934

mouse samples hybridized to MG-U74A Genechip (Affymetrix,

Santa Clara, California, USA) were obtained from the Gene

Expression Omnibus.[17] These datasets contained a wide range

of heterogeneous tissues (primary patient material, cell lines,

normal tissues, etc.) and covered a multitude of different

experimental conditions (transfected/transduced, stimulated or

treated cells, etc.). For the human dataset, probes available on both

platforms were selected for further analysis. Then the probes for

the human as well as the mouse dataset were converted to official

gene symbols, averaging log transformed expression values of

multiple probes targeting the same gene. This resulted in 13,032

and 9,062 unique genes for the human and mouse datasets,

respectively. Next, quantile normalization was applied separately

to the log2 transformed expression values in each dataset.[18]

Principal component analysis
Correlations between genes were calculated based on expression

patterns across the diverse samples in both the human as well as

the mouse datasets. Principal component analysis (PCA) was

performed on the resulting correlation matrices, which is

equivalent to factor analysis, leading to reduced dimensionality

in gene space. We developed software to perform this task based

on JAMA/C++, a translation of the Java Matrix Library,

developed by the Mathworks and NIST, into C++ (http://math.

nist.gov/tnt/). PCA is a method to condense a multi-dimensional

dataset into a set of lower dimensions, in order to reveal the

simplified linear structure of the data that often underlies it.[19] In

this study PCA represents a transformation of a set of correlated

genes into sets of uncorrelated linear additions of gene expression

signals called principal components (PCs). PCs are able to

summarize expression information and, for this application, can

be interpreted as statistically uncorrelated transcriptional system

regulators (TSRs).[9] In each TSR all genes are present but the

weight of individual genes in the linear addition varies among

TSRs. TSRs are constructed in such a way that the first TSR

explains the largest amount of variance in expression and each

subsequent TSR explains the largest amount of the remaining

variance in expression while remaining uncorrelated with

previously constructed TSRs. Since a TSR is a weighted sum of

genes, TSR scores can be calculated for each observed expression

array (TSR profiling). A TSR score can be seen as the degree of

activity of the regulator in different cellular states or phenotypes.

We provide a software tool capable of calculating individual TSR

scores for observed expression arrays (see supplementary infor-

mation online). Subsequently, the correlation between individual

gene expression and TSR scores can be calculated (i.e. a factor

loading). A factor loading can be seen as the amount of control a

specific TSR has on the net expression of a particular gene. A high

positive or negative factor loading with a TSR indicates that a

gene’s expression is strongly influenced by this specific TSR.

Clusters of genes with contrasting factor loading signs (i.e. positive

vs. negative) are inversely regulated by a specific TSR. For further

reading on PCA we recommend a publicly available tutorial.[20]

Reliability of transcriptional system regulators
To investigate whether our method gives results that depend on

the presence of specific arrays, we randomly divided the human

dataset into two equally sized sets and then generated new TSRs

using PCA, each based on only half of the data. To assess whether

these separately generated sets were comparable, we calculated

Pearson correlations between the factor loadings with TSRs from

the two separate sets.

Furthermore, to validate that the identified TSRs were not

artifacts of gene selection, we applied the split-half method on each

TSR.[21] As described above, a TSR is a weighted sum of genes

and a so-called TSR score can be calculated for each sample. In

the split-half method, the genes of a TSR score are split into two

random partitions and the resulting TSR scores of both parts are

correlated (Pearson). High correlation indicates that TSR scores

can be reliably calculated and that information from different

genes is indeed identical and indicative of the same underlying

TSR score.

Gene set enrichment analysis (GSEA)
To investigate whether our identified statistically uncorrelated

TSRs are related to biologically related gene clusters represented

by known GO ontologies we used GeneTrail, a software program

recently developed by a German team (http://genetrail.bioinf.uni-

sb.de).[22]. This web-based application scores a sorted list of genes

with respect to their enrichment of functional categories.[23] For

each TSR we ranked the genes according to ascending factor

loadings, i.e. from most negative to most positive factor loading. A

factor loading is the correlation between individual gene

expression and a specific TSR score (degree of regulator

activation). The ranked list of genes, of which some belong to a

functional set S, is then processed from top to bottom. Genes at the

top and bottom (i.e. genes with high negative and positive

factorloadings respectively) are genes most strongly controlled by

our defined TSR. Whenever a gene belonging to the functional set

S is found, an enrichment statistic (ES) is increased by a certain

amount, otherwise the ES is decreased. This ES is depicted in

graphs showing whether the genes that comprise a functional set S

are accumulated at the top (red graph) or bottom (green graph) of

Transcriptional System Reg.
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the ranked list (see Figs 2 and 4). The red vs. green graphs show the

biological coherence of opposing regulated gene clusters controlled

by TSRs, i.e. gene clusters with positive vs. negative factor loadings.

The minimum and maximum of this ES are used to estimate the

significance of the enrichment; the more significant a functional set

S is, the more important a TSR is in regulating the expression of

genes belonging to S. [22] To adjust for multiple testing problems,

we tested for the false discovery rate (FDR) according to Benjamini

and Hochberg’s method.[24] A significance threshold of P,0.05

after FDR correction was maintained. Although GeneTrail reveals

many biological categories, we focused our analysis on Gene

Ontology (GO) and chromosomal location.[25] We analyzed

5,760 GO categories containing more than two genes and also

assessed 24 chromosomes (including X and Y) for enrichment in

co-regulated genes.

Similarities in transcriptional system regulation between
human and mouse

To assess the similarity of the structure in transcription

regulation between human and mouse, we applied a PCA to a

combined two-species dataset containing 3,934 mouse arrays and

3,934 randomly selected human arrays. Expression data of 6,610

orthologus genes between human and mouse was selected for this

dataset. If the structure of transcriptional regulation is similar

between human and mouse, we would expect a similar, limited

number of TSRs to be needed to summarize the same amount of

variance in total expression as seen in the PCA performed on

human and mouse expression data separately.

Mapping human and mouse TSRs
To map TSRs identified in 17,550 human and 3,934 mouse

arrays separately, in order to assess similarities in regulation of

biological processes between human and mouse, we selected the

factor loadings of the first 50 TSRs for 6,610 identified homolog

genes, based on similar gene symbol identifiers. Then we

calculated Spearman rank correlations between factor loadings

from human and mouse TSRs. High correlation between a

human- and a mouse TSR indicates that these TSRs control

identical gene clusters in human and mouse in the same way.

Gene clustering based on gene-TSR correlation
In microarray experiments, gene expression is composed of

biological signals and experimental noise.[8] In our model the first

50 TSRs capture most of the biologically relevant signals and

subsequent TSRs capture noise and experimental artifacts. Cluster-

ing genes according to their factor loadings with the first 50 TSRs

instead of net expression patterns, of which a part is experimental

noise, might be a more robust approach and could give more insight

into the dynamics of gene expression regulation, in which individual

genes are classified into multiple groups of similar regulation. We

used average linkage hierarchical clustering according to the

Euclidean distance measure (square root of the sum of the squared

differences in each dimension) by using the Cluster 3.0 software.[26]

Sample clustering based on TSR scores
Since a TSR is a weighted sum of genes, a so-called TSR score

can be calculated for each individual sample. To assess whether

similar tissue samples have identical TSR scores, we applied

average linkage hierarchical clustering according to the Euclidean

distance measure on the first 50 TSR scores. We selected 621

samples, representing over 90 distinct tissue types from the

publicly available human body index dataset from the Gene

Expression Omnibus (Accession number: GSE7307).
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