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Background. Interaction between the coagulation and inflammation systems plays an important role in the development of
acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has
promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost
and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a
humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Methodology/Principal Findings. Human tissue
factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were
developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-
coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS
model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h
reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell
counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment
significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in
the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. Conclusions. This
novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits
further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies
against human-specific proteins is a novel strategy for preclinical studies.
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INTRODUCTION
One of the important features and major underlying mechanisms

of acute lung injury (ALI) and its severe form acute respiratory

distress syndrome (ARDS) is the intensive inflammatory response

[1]. Evidence from animals and human studies indicates that

alveolar and interstitial coagulation disorder and fibrin deposition

are the hallmarks of early phase ALI/ARDS and other

inflammatory situations in the lung, including pneumonia [2],

sepsis [3,4], and ventilator-induced lung injury [5,6]. Coagulop-

athy not only adds another pathological feature to ALI/ARDS,

but also leads to inflammatory signals through the activation of

protease-activated receptors (PARs) [7,8,9], indicating an exten-

sive cross-talk and reciprocal amplification between coagulation

and inflammatory cascades [10].

Recently, increased attention has been paid in both experimental

and clinical research of ALI/ARDS to the interplay between

coagulation and inflammation [11,12]. Anticoagulant therapies were

developed and tested in animals and humans. An infusion of

activated protein C showed a beneficial effect on the mortality in

patients with severe sepsis [13], supporting the role of an anti-

coagulant therapy to treat inflammation. Since tissue factor (TF) is a

key initiator of the coagulation cascade and plays a critical role in

inflammation as well, anti-TF therapy is another attractive

anticoagulant strategy. Several reagents against the TF complex at

sequential steps in its assembly, including a competitive inhibitor of

Factor VIIa and an antibody to the Factor X binding site on TF,

were tested in an E. coli sepsis model in baboons [4,14,15]. TF

blockade has shown protective effects when administered at the onset

of sepsis and given as a rescue therapy, decreasing systemic

inflammation, preventing fibrinogen depletion, and attenuating

injury to the lung, kidney, and other organs [4,14,15]. These

promising results support further development of new molecules

targeting coagulation pathways for clinical applications.

Currently, non-human primates are generally the best pre-clinical

models to test efficacy of antibodies against human proteins.

However, these models are often limited by their high cost and

animal availability. In the present study, we tested a humanized anti-

hTF monoclonal antibody (CNTO859) in a clinically relevant ALI

model induced by intestinal ischemia-reperfusion (IIR). However

instead of using non-human primates, we developed human TF
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knock-in (hTF-KI) transgenic mice, which express human TF

instead of murine TF (mTF). CNTO859 treatment significantly

reduced IIR-induced lung injury, attenuated alveolar fibrin

deposition and inflammatory responses in the lung. This novel

antibody and the transgenic approach against human genes to

conduct pre-clinical studies in mice merit further investigations.

METHODS

hTF-KI transgenic mice and anti-hTF monoclonal

antibody, CNTO859
Generation of hTF-KI transgenic mice has been previously

described [16]. Briefly, the first two exons of murine TF gene was

replaced in-frame by human TF cDNA. As a result, expression of

mTF was completely disrupted and hTF was expressed under the

control of mTF promoter. Chimeric mice derived from targeted

129SvBrd embryonic stem cells were bred with C57BL/6 mice to

produce hTF/mTF heterozygous mice and the breeding colony was

established by further backcrossing with C57BL/6 mice. hTFKI

homozygous mice (hTF/hTF) and wild type littermates used in this

study were derived from breeding N2 heterozygous mice.

The anti-hTF monoclonal antibody, CNTO859, was geneti-

cally engineered by grafting the complementarity–determining

regions of a murine anti-hTF antibody, TF8-5G9, onto a human

immunoglobulin G4 frame. The antibody consists of 5–10%

murine and 90–95% human proteins [17].

Testing of hTF activity in transgenic mice
Pro-coagulant activity of hTF expressed in the transgenic mice was

tested using a one-stage clotting assay with brain homogenate in

comparison with that in wild type mice and in human brain tissue

(ILSbio, Chestertown, MD). Approximately 25 mg brain tissues

were homogenized in Hanks Balanced Salt Solution using Fast-

prep protein isolator tubes (Bio 101 Systems, Qbiogene, Carlsbad,

CA). Brain homogenates were frozen at 280uC immediately after

isolation, and were diluted 1:100 prior to use. The total protein

was measured at OD280 to determine concentration. Citrated

human plasma (100 ml) was incubated with increasing concentra-

tions of brain homogenate (200 ml and 10 mM CaCl2) and the

clotting time was recorded using Organon Teknika Coag-A-mate

XM [18]. All samples were tested in duplicate. The data were fit to

a hyperbolic curve to determine an EC50 (0.1 mg/ml for human

and hTF-KI mouse brain extracts, 0.4 mg/ml for wild type

littermate mouse extract).

We also used this assay to determine the inhibition efficacy and

specificity of CNTO859 on human TF activity by incubating the

brain extracts with increasing concentrations of either the

CNTO859 or an anti-murine TF mAb. The changes of clotting

time were recorded for comparison.

Intestinal ischemia reperfusion-induced acute lung

injury
Acute lung injury was induced by intestinal ischemia-reperfusion as

previously described [19,20] with modification. Briefly, male hTF-

KI mice (6–8 weeks, 25–30 g) were anesthetized with 5% isoflurane.

A tracheostomy cannula for mouse (H. Sachs Elektronik, March-

Hugstetten, Germany) was inserted into the trachea, and animals

were ventilated with a volume control ventilator (Inspira Advanced

Safety Ventilator, Harvard Apparatus, St. Laurent, Canada) at a

tidal volume of 6 ml/kg, inspiratory/expiratory ratio 1:2 and a

frequency of 140 breaths/min (FiO2 100%). Anesthesia was

maintained with 1.5% isoflurane and body temperature was

maintained at 37uC throughout the experiment. A midline

laparatomy was performed and the superior mesenteric artery was

identified and occluded below the celiac trunk with an arterial micro-

clamp (Mizuho Ikakogyo, Tokyo, Japan). Intestinal ischemia was

confirmed by paleness of the jejunum and ileum. After 45 min of

ischemia period, reperfusion was initiated by removal of the clamp

and confirmed by the color recovery of the intestine. Pre-warmed

(37uC) saline (0.5 ml) was instilled into the peritoneal cavity before

closed with a suture. At 10 min after the onset of reperfusion, hTF-

KI mice were randomized into 2 groups treated with either anti-hTF

mAb (CNTO859, 5 mg/kg) or saline at same volume (2.5 ml/kg)

through the jugular vein. Anesthesia and ventilation were terminated

after treatment. All animals were left on spontaneous breathing

during the 2 h of reperfusion, and then sacrificed by exsanguina-

tions. The blood, lung and intestine tissues, and bronchoalveolar

lavage (BAL) fluid were collected for further analysis. The

experimental protocol was approved by the Toronto General

Hospital Animal Care and Use Committee. All mice received care in

compliance with the Principles of Laboratory Animal Care

formulated by the National Society for Medical Research, and the

Guide for the Care and Use of Experimental Animals formulated by

the Canadian Council on Animal Care.

Histology and immunostaining
A stretch of intestine from the middle of IR-challenged area and

the right lungs were fixed in 10% formalin [20] and subjected for

histological examination and immunostaining. Hematoxylin and

eosin (H&E) staining was conducted with 5 mm tissue slides. The

lung injury was assessed with modified scoring systems by a

blinded pathologist according to the presence and extent of

interstitial cellular infiltration, alveolar wall edema, hemorrhage,

and atelectasis [21].

Immunostaining was performed for von Willebrand factor

(vWF) in the lung tissue. Briefly, the lung sections at 5 mm

thickness were blocked with 5% BSA (Sigma, Oakville, Canada) in

PBS for 30 min at 37uC after deparaffinization and dehydration.

The slides were then incubated with rabbit anti-vWF polyclonal

antibody (1:600 in 1% BSA, Dako, Mississauga, Canada) at 4uC
overnight. ABC System (Vector Laboratories, Burlingame, CA)

was used with a biotinylated goat anti-rabbit IgG (1:200) as the

secondary antibody and permanent red as the chromogen. The

specificity of the antibody was determined by replacing the

primary antibody with non-immunized IgG (Sigma).

Cell counting and protein in BAL fluid
After ligation of the right bronchus, BAL was performed in the left

lung by gently instilling and aspirating 0.25 ml saline through an

intratracheal tube 2 times. An aliquot (20 ml) of BAL fluid from each

animal was diluted with trypan blue (1:1) for total cell counting with

a hemocytometer. The rest of the fluid was centrifuged (4,000 g,

10 min), and a Bradford protein assay (Bio-Rad, Hercules, CA) was

conducted for the protein concentration in the supernatant [20].

Evans blue dye (EBD) assay and wet/dry (W/D) lung

weight ratio
The lower lobes of the right lungs were collected and dehydrated

at 60uC for 72 h in a vacuum oven. The wet and dry weights were

measured to calculate the W/D ratio. The EBD assay was

conducted as previously reported [20]. Evans blue dye (30 mg/kg,

Sigma) was administered via jugular vein 30 min before the

experiment terminated. After flushing with 10 ml of PBS, the

extravasation of EBD in the lung tissues was extracted, and

determined at 620 nm.

Anti-hTF Therapy in ALI

PLoS ONE | www.plosone.org 2 January 2008 | Issue 1 | e1527



Coagulation Assays
Activities of hTF and plasminogen activator inhibitor-1 (PAI-1) in

the plasma were analyzed with a colorimetric assay according to

the manufacturer’s recommendations (American Diagnostica,

Stamford, CT). Fibrin deposition was stained with Martius Scarlet

Blue (MSB) using a standard protocol [22].

Electron microscopy
After IIR challenge, fresh lung biopsies were taken for electron

microscopy. The samples were fixed with 2% glutaraldehyde in

0.1 M sodium cacodylate buffer, post-fixed with 1% osmium

tetroxide in the same buffer, dehydrated in graded ethanol series,

and embedded in Spurr epoxy resin. The embedded tissues were

thin-sectioned, mounted on copper grids, and stained with uranyl

acetate and lead citrate, as previously described [19,20,23,24].

Photographs were taken with an FEI CM100 Electron Microscope

(FEI Company, Hillsboro, Oregon) equipped with a Kodak

MegaPlus digital camera.

Cytokine/chemokine measurement
Tumor necrosis factor a (TNFa), interleukin (IL)-6, IL-10, monocyte

chemoattractant protein-1 (MCP-1), and Interferon-c (IFN-c) in

BAL fluid and lung tissue homogenates were measured using a

mouse inflammation kit of cytometric bead array according to the

manufacture’s instruction (BD Bioscience, Mississauga, Canada)

[25]. In brief, an aliquot of 50 ml sample was incubated with 50 ml of

mixed beads coated with capturing antibodies specific for the

respective cytokines and 50 ml of PE-conjugated detection antibodies

for 2 h at room temperature in dark. The beads were washed by

adding 1 ml of wash buffer and centrifugation, and then re-

suspended in 300 ml of wash buffer. The distinct fluorescence

intensities of beads were determined with a flow cytometer, and the

data acquired were converted to the concentrations of the cytokines

using BD CBA software (Becton Dickinson).

Terminal transferase dUTP nick end labeling

(TUNEL) staining
The lung cell death was assessed by TUNEL staining with In Situ Cell

Death Detection Kit (Roche, Penzberg, Germany) following the

manufacture’s instruction [20]. Briefly, after deparaffinization and

dehydration the slides were permeabilized with 10 mg/ml proteinase

K in 10 mM Tris/HCl (pH 7.4) for 15 min, and stained with

Tetramethylrhodamine (TMR)-labeled TUNEL-positive nucleotides

and counterstained with Hoechst (Pierce) for 10 min. Slides pre-

treated with DNase (3,000 U/ml in 40 mM Tris-HCl, pH 7.5, 1 mg/

ml BSA) were served as a positive control. Slides for negative control

were incubated with the label solution without terminal transferase.

The TUNEL-positive cells were quantified from 10 optical fields

(400x) randomly chosen from each slide (n = 4 animals/group).

Caspase 3 activity assay
Caspase 3 activity in the lung tissues was determined by measuring

the fluorescence of cleaved caspase 3 substrate as described

[19,24,26]. Lung homogenate containing 200 mg of total protein

was mixed with 125 mM fluorogenic substrate (Ac-DEVD-AMC,

Chemicon, Temecula, CA) in a 96-well plate. The plate was

incubated at 37uC for 60 min and the fluorescence intensity

(excitation of 360 nm and emission of 460 nm) was monitored

with a CytoFluor multi-well plate reader (PerSeptive Biosystems

Series 4000, Framingham, MA). The enzyme activity was

calculated against a standard curve generated with recombinant

caspase 3 (Chemicon). Tissue lysates from hypothermic preserved

rat donor lungs [24] were used as positive controls for the assay.

Statistical Analysis
Statistical software SPSS version 11.5 (SPSS, Chicago, IL) was used

for data analyzing. Data are presented as mean6standard deviation

(SD). All parametric data were analyzed with un-paired two-tailed t-

test. Non-parametric data (lung injury scores) were analyzed with

Kruskall-Wallis test. P value ,0.05 is defined as significant.

Figure 1. Human tissue factor is functionally expressed in hTF-KI
transgenic mice, and effectively and specifically inhibited by the
anti-hTF mAb, CNTO859. Pro-coagulant activity of TF in brain extracts
from either hTF-KI or wild type (WT) mice, or from human brain tissue
was measured with a one-stage clotting assay, and a similar
prothrombin time was seen in all brain extracts, indicating a functional
replacement of mTF by hTF expressed in the hTF-KI mice (A). Anti-hTF
antibody, CNTO859, dose-dependently inhibited TF pro-coagulant
activity in the brain extracts from hTF-KI mice and human, but not
wild type mice (B). The experiments were repeated three times, and
representative data from one experiment are shown.
doi:10.1371/journal.pone.0001527.g001

Anti-hTF Therapy in ALI
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RESULTS

Human tissue factor maintains normal coagulant

activity in transgenic mice
To test anti-TF therapy against hTF in vivo, we used the hTF-KI

mice generated by replacing a portion of mTF gene with the open

reading frame of hTF. The hTF-KI mice have a similar life span

without abnormal pathology in comparison with wild type

animals. The tissue distribution and expression levels of hTF in

transgenic mice were similar to that of mTF in wild type mice, and

no mTF expression was detected in the transgenic mice [16]. The

brain extract of hTF-KI mice expressed hTF at 64 ng/mg protein,

a level comparable to that from the human brain extract at 80 ng/

mg protein. Tested with a one-stage clotting assay, the brain

Figure 2. Administration of anti-hTF mAb ameliorated intestinal ischemia-reperfusion (IIR)-induced acute lung injury in hTF-KI mice. IIR
challenged hTF-KI mice were treated with CNTO859 (5 mg/kg, i.v.) or saline. The representative histology (H&E, x400) from the intestine (A, B) and
lung (C, D) was shown. The lung injury was scored by a pathologist in a blind fashion (E) (& inflammatory cells infiltration; & alveolar wall edema; &
hemorrhage; atelectasis). % Lung injury scores of 4 categories were analyzed with Kruskall-Wallis test, n = 4 animals/group, *: p,0.05. The pulmonary
permeability was determined by Evans Blue dye assay (F, G, H). Administration of CNTO859 also reduced the wet/dry lung weight ratio (I), albumin
concentration (J), and total cell counts (K) in the BAL fluid. Panels I-K: n = 4 animals/group,*: p,0.05, un-paired t-test.
doi:10.1371/journal.pone.0001527.g002
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extract from the hTF-KI mice showed a similar pro-coagulation

activity as that from wild type mice or human brain tissue (Fig. 1A).

These results suggest that hTF functionally substitutes mTF and

maintains a normal coagulant activity in the hTF-KI mice.

When the humanized monoclonal antibody, CNTO859, was

incubated with brain extracts from human or hTF-KI mice, it

inhibited coagulation dose-dependently as measured by prothrom-

bin time. The IC50 of CNTO859 for the hTF-KI brain extract was

similar to that for the human brain extract (0.045 vs. 0.05 mg/ml),

supporting that the hTF activity from both samples were

comparable. In contrast, this antibody had no effect on brain

extract from wild type mice (Fig. 1B). When an anti-mTF antibody

was used in the coagulation assay, an inhibition effect was found

only on brain extract from wild type mice, but not that from hTF-

KI mice (data not shown). These results further confirm the

specificity of CNTO859 on hTF and the substitution of mTF by

the hTF is complete in the hTF-KI mice.

Administration of CNTO859 ameliorated IIR-induced

ALI
A clinically relevant model of extrapulmonary ARDS has been used

to induce acute lung injury by intestinal ischemia-reperfusion in

C57BL/6 mice, and a high mortality rate was observed in these

studies during 4 h of reperfusion period when animals were

ventilated with oxygen [19,20]. It is known that C57BL/6 mice

are sensitive to hyperoxia [27]. In the present study, we used hTF-KI

mice, which are of a hybrid strain of 129SvBrd (,20%) and C57BL/

6 (,80%). We first conducted a pilot study with a modified protocol,

in which animals were not subject to mechanical ventilation and

pure oxygen during the reperfusion period. There was no mortality

during the first 24 h of reperfusion (data not shown). The IIR

challenge induced a significant intestinal (Fig. 2A) and lung injury

(Fig. 2C) in hTF-KI mice, which are very similar to that in wild type

mice (data not shown) and as observed in our previous study [19,20].

These results suggest that hTF not only substituted mTF for

coagulation, but also may play a similar role in acute inflammatory

response related to acute lung injury.

We then used this modified IIR model to test the effects of anti-

hTF antibody in acute lung injury. The IIR-induced ALI in the hTF-

KI mice was characterized by increased pulmonary interstitial edema

(alveolar wall thickening), inflammatory cell infiltration, hemorrhage,

and atelectasis. Administration of anti-hTF antibody, CNTO859,

markedly ameliorated the IIR-induced ALI (Fig. 2D) in hTF-KI mice

with a significantly lower injury score (p,0.05, Fig. 2E).

One of the major features of ALI/ARDS is the increase in

pulmonary permeability [28,29]. A significant blockage of Evans

Blue Dye leaking was seen in the lung treated with CNTO859

(Fig. 2F–H). This effect was confirmed with lung wet/dry weight

ratio (Fig. 2I). The albumin content and total cell counts in the

BAL fluid were significantly lower in CNTO859-treated group

than in saline-treated group (Fig. 2J and 2K).

Anti-TF mAb treatment attenuated IIR-induced

coagulopathy
It is known that activation of TF can trigger a pro-coagulation

status, and lead to fibrin deposition in the lung. Administration of

CNTO859 significantly reduced both TF and PAI-1 activities in

the plasma (Fig. 3A and 3B), and dramatically attenuated the IIR-

induced alveolar fibrin deposition (Fig. 3C and 3D).

Endothelium damage is an important mechanism responsible

for the increase of pulmonary permeability [28,29]. vWF is an

endothelial specific marker, which is expressed mainly in larger

vessels in normal lung tissue [30,31]. In control animals, IIR

Figure 3. Anti-hTF mAb treatment attenuated IIR induced coagula-
pathy and protected pulmonary endothelium. Plasma TF and PAI-1
activities were determined as described in Methods. Administration of
CNTO859 significantly inhibited both TF (A) and PAI-1 (B) activities in
comparison with the saline treated control (*: p,0.05, n = 4 animals/
group, un-paired t-test). The fibrin staining showed that CNTO859
ameliorated IIR-induced fibrin deposition (pink) in the alveoli (C, D). The
lung tissues were stained for vWF, a specific marker for endothelial
integrity. Weaker staining of vWF (pink) of endothelium in the
pulmonary vessels was noted in the saline control group (E). In
CNTO859 treated animals stronger vWF staining was observed in the
endothelium of pulmonary vessels (F). The pulmonary endothelial injury
was further examined with electron microscopy. IIR challenge led to
significant endothelial cell swelling (G), which was protected by
CNTO859 treatment (H).
doi:10.1371/journal.pone.0001527.g003
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challenge markedly reduced vWF immunostaining in larger

pulmonary vessels (Fig. 3E). EM showed swelling of the cytoplasm,

nucleus, and mitochondria of the endothelial cells in micro

capillaries (Fig. 3G). In CNTO859 treated animals, vWF staining

was clearly stronger in the endothelial layer of larger pulmonary

vessels (Fig. 3F). The morphology of endothelial cells in pulmonary

capillaries was better preserved (Fig. 3H).

Anti-TF mAb treatment reduced inflammatory

response and cell death in the lung
Acute inflammatory response is a hallmark of ALI. CNTO859

treatment significantly reduced the levels of IL-6 and TNFa, and

MCP-1 in the lung tissue (Fig. 4A–C). The IL-6 levels in BALF

(Fig. 4D) were significantly reduced by CNTO859. However, the

levels of IL-10, an anti-inflammatory cytokine, did not change in

BALF (Fig. 4E), suggesting that the anti-inflammatory effect of

CNTO859 is not through up-regulation of IL-10.

In a previous study, we found that IIR induces alveolar

epithelial cell death [19]. In the present study, TUNEL positive

cells were found in the lung of hTF-KI mice after IIR challenge

(Fig. 5A), and they were significantly reduced by CNTO859

treatment (Fig. 5B and 5C). Caspase 3 is a key enzyme for

apoptotic cell death. CNTO859 treatment reduced caspase 3

activity in lung tissue homogenates (Fig. 5D).

DISCUSSION
Using transgenic mice to test efficacy of antibodies raised against

human proteins is an attractive and important concept. There are

only a few reports of using this strategy, thus, the results from the

present study provide more insights for further development of this

novel and useful model methodology.

Tissue factor, also named as thromboplastin, CD-142, and

coagulation factor III, is a single chain membrane glycoprotein

that functions as a receptor for Factor VII and VIIa and thereby

initiates the extrinsic pathway of the coagulation cascade in

response to vascular injury [32,33]. TF is generally localized in the

adventitial fibroblasts of blood vessels, and initiates a rapid

coagulation process when exposed to blood at the site of vessel

injury, thereby limiting blood loss and maintaining hemostasis

[34]. A compatibility study showed that hTF can bind to murine

Factor VIIa with high affinity to induce coagulation [35], while

mTF binds poorly to human Factor VIIa [35,36]. Our hTF-KI

transgenic mice showed expression of hTF at a physiological level

that is fully compatible to normal lifespan, coagulation function

[16] and similar inflammatory response upon IIR. The substitu-

tion or replacement of a murine protein with its human

counterpart is crucial for evaluating human-specific therapeutic

agents in murine models. The specificity and efficacy of the

humanized monoclonal antibody is also critically important. The

anti-hTF monoclonal antibody, CNTO859, specifically binds to

hTF [17], and inhibits the hTF activation in brain extracts from

human tissue and the hTF-KI transgenic mice, but not from wild

type littermate mice. It should be mentioned that we used the

antibody CNTO859 at a very high dose (20 mg/kg) in our

preliminary experiments, and observed no significant haemor-

rhage in the treated animals, indicating the safety of the antibody

(data not shown). These features are important for its potential

clinical application in the future.

ARDS is a multi-factorial syndrome with similar pathological

manifestations but distinct underlying mechanisms [1]. Anti-TF

therapy is attractive not only because of TF’s role in the coagulation

cascade, but also because of its pivotal role in the interplay with

inflammatory signaling. TF binding to Factor VIIa leads to

Figure 4. Anti-hTF mAb treatment reduced inflammatory response. Inflammatory cytokines were measured in the lung tissues and BAL fluid with a
cytometric bead array. The expression levels of IL-6 (A), TNFa (B), and MCP-1 (C) in the lung tissues were significantly reduced by CNTO859 in
comparison to saline group. In the BAL fluid CNTO859 also reduced the IL-6 levels (D), but the IL-10 level remained unchanged between the two
groups (E). Un-paired t-test was used, *: p,0.05, n = 4 animals/group.
doi:10.1371/journal.pone.0001527.g004
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activation of Factor X, forming a transient ternary complex, which

activates coagulation, thus resulting in thrombin generation, and

ultimately the clot formation. This complex has been demonstrated

as being critical for presenting Factor VIIa and Factor Xa to PARs

on the cell surface. Cleavage of PARs initiates the inflammatory

rather than coagulant activities of TF, including upregulation of

cytokine gene expression [7,9,14]. The requirement of TF as a co-

receptor for PAR1 and PAR2 activation is likely to be a key

determinant [37]. Recently, evidence showed the cytoplasmic

domain of TF is also involved in chemotaxis regulation [38].

In the present study, we used IIR to induce ALI in hTF-KI

mice. This is a clinically relevant model in which the severe

intestinal damage is the initial insult. The lung is the most

vulnerable remote organ after IIR, although cell death and

inflammation have been noted in other vital organs [20]. This

model has added value to other studies related to anti-TF

therapies. Our data show a significant attenuation of the lung

injury induced by IIR. The pulmonary permeability barrier

consists of capillary endothelial and alveolar epithelial cells.

Damage could occur on both sides of the alveolar walls during

ALI [39]. In the present study, administration of anti-hTF

antibody not only protected pulmonary endothelium from severe

injury, but also significantly reduced cell death in the lung tissue,

which mainly happens in alveolar epithelial cells upon IIR

challenge [20]. Thus, anti-TF therapy may have protective effects

on both endothelial and epithelial layers of alveolar walls. Ideally,

a humanized IgG, instead of normal saline should be used for

comparison with CNT0859, to exclude non-specific IgG effects.

Our studies were limited by the availability of this agent; the

results should be interpreted with caution.

The pulmonary level of TF expression has been found especially

high relative to other organs. The TF levels in pulmonary edema

fluid were found to be more than 100-fold higher than that in the

plasma in patients with ALI/ARDS, indicating a local hypercoa-

gulation status and tissue damages in the lung. The TF expression

and activity in lung alveolar epithelial cells was increased by pro-

inflammatory cytokines (e.g. TNFa and IL-1ß) [40]. We speculate

that local administration of an anti-TF antibody may have direct

benefits to ameliorate ALI, especially injury induced by intrapul-

monary insults, such as acid aspiration and lung transplantation.

The hTF-KI animals and the specific antibody may offer us a

useful model system to better characterize and understand the

effects of anti-TF therapy in ALI models induced by other insults,

such as sepsis, ventilator-induced lung injury, bacterial infection,

etc. Results from these studies may provide additional information

about the role of TF, as well as the potential therapeutic efficacy of

CNTO859. Using small animals, we will be able to collect critical

data prior to studies in non-human primates and clinical trials.

This strategy should be considered for the development of species-

specific therapeutic reagents for ALI/ARDS and other human

diseases.

In summary, this study demonstrated the potential therapeutic

effects of anti-TF strategy on ALI/ARDS with a new anti-TF

monoclonal antibody. The new experimental strategy of using

humanized antibody against human TF in transgenic mice offers a

useful tool for further assessing the anti-TF therapy in preclinical

trials for ARDS as well as other diseases related to the function of

tissue factor.
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