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Background. In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias
involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single
nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency,
degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype
and chromosomal copy number analyses. Methodology/Principal Findings. We found a large variability in amplification bias
among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the
genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for
high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized
protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a
lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully
obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype,
indicating the applicability and potential of our optimized workflow. Conclusions/Significance. Our results suggest that the
quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-
based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal
alterations in single cells.
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INTRODUCTION
Single-cell human genome analysis is critically important for basic

and medical genetics. Somatic genomic differences are found in both

normal cellular differentiation, as seen in the immune system, and in

the progression of diseases such as cancer. In addition, genomic

differences within neurons of an individual, as seen in aneuploidy,

have also been proposed to contribute to neuronal complexity [1–3].

Technical difficulties have hampered genomic studies using

single cells because many analytic techniques require considerable

amounts of genomic DNA (gDNA). A number of whole-genome

amplification (WGA) methods [4,5] and their application to single

cells have been developed to overcome this obstacle. However,

single-cell WGA (S-WGA) methods are notoriously susceptible to

strong amplification bias [6] such as the failure of amplification of

one of the two alleles (allele dropout, AD) and excess amplification

of one allele or unequal amplification of the two alleles (prefer-

ential amplification, PA). Conventional PCR-based WGA meth-

ods such as degenerate oligonucleotide primed PCR (DOP-PCR)

[7–10], primer extension preamplification (PEP) [11–14], and the

linker-adaptor ligation-based method [15,16] have been used to

amplify DNA extracted from a small number of cells. However,

these methods do not allow researchers to examine the amplifi-

cation bias in a genome-wide manner. The genome regions to be

amplified are known to be biased and limited in the conventional

PCR-based methods. In addition, amplified products obtained by

PCR-based WGA methods are generally too short in length to

apply genome-wide single nucleotide polymorphism (SNP) geno-

typing technologies. In one PCR-based S-WGA method [17,18], a

less-biased genome amplification was proposed. However, it is still

difficult to apply genome-wide SNP genotyping analysis to the

product obtained by this method, due to the random fragmenta-

tion of gDNA and short product length.

Recently, multiple displacement amplification (MDA)-based

WGA with a phi29 DNA polymerase, which yields less-biased and

longer (.10 kb) amplified products [19], has been applied to a

small number of cells. In the case of MDA from a small number of

cells, consistent genotype and chromosomal copy number (CCN)

profiles can be obtained from about 1,000 to 1,500 cells, and well-

optimized experimental conditions have already been established

[20–24]. Although MDA-based WGA has also been applied to

single cells [6,25–27], the knowledge of amplification biases, such

as the frequency, degree, and preference for genomic location in

the S-WGA products at the single-cell level has been very limited,

and their effects on down-stream analyses have been poorly

examined until now.

Here we performed a high-density oligonucleotide SNP array

analysis of the MDA-based S-WGA products from a lymphoblas-

toid cell line (LCL) and a cell line having a complex karyotype. We
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examined the nature of the amplification bias using genome-wide

genotype information, and assessed its effect on the CCN analysis.

We also developed a SNP array data analysis approach to

discriminate CCN alterations from amplification bias artifacts,

which will be useful for exploring the chromosomal alterations in

single cells.

RESULTS

S-WGA from LCL and Taqman genotyping assay
We performed MDA-based S-WGA in 40 single cells obtained from

one LCL (Figure 1). Among the 40 single cells, 16 were processed by

protocol 1 and 24 were processed by protocol 2 (see Materials and

Methods). We did not observe degradation of the starting gDNA

(data not shown) or differences in size distribution among the S-WGA

products, except for one sample with a lower yield than the others

(Figure 1). The S-WGA products were genotyped for 23 SNPs,

covering all autosomes and X chromosomes, using a fluorogenic 59-

nuclease (Taqman) assay (Table S1). The non-amplified gDNA of

this LCL was found to be homozygous for 17 SNPs and heterozygous

for 6 SNPs. With regard to the 17 homozygous SNPs in the non-

amplified gDNA, none of the genotyped alleles in the S-WGA

products showed inconsistent genotypes. On the other hand, we

observed various degrees of amplification bias in the S-WGA

products, involving the 6 heterozygous SNPs in the non-amplified

gDNA (Figure 2A and Figure S1). We therefore manually

determined the genotypes of the heterozygous alleles based on the

fluorescence intensities of the Taqman assay, and classified them into

the following categories: heterozygous (allele AB), PA, AD or failure

(Figure 2B). We found that only 10.4% of the genotyped SNPs

showed up as heterozygous, and the other SNPs showed a failure or

amplification bias. (Figure 2C).

Among the 40 S-WGA products genotyped, we selected a total

of 12 products for the SNP array analysis. We found that the rate

of successfully genotyped alleles (call rate) on the array was

modestly correlated with the concordance rate of heterozygous

SNPs by the Taqman assay, if both PA and AB were considered to

be successfully genotyped as heterozygous (R = 0.467, Figure 2D).

Genotype analysis of S-WGA products from LCL

using SNP arrays
We found that the call rate on the SNP array was strongly

correlated with the global genotype concordance between S-WGA

products and non-amplified gDNA obtained by SNP array

(R = 0.982, Figure 3). The heterozygous SNPs in the non-

amplified gDNA showed lower concordance (average6SD,

31.4621.1%) among S-WGA products, compared with the

homozygous SNPs (82.1611.7%, Figure 3).

To test whether the genomic location influences the amplifica-

tion efficiency of MDA, we used the homozygous SNPs in the

array data for analysis. The homozygous SNPs in the non-

amplified gDNA were divided into three groups by genomic

location: close to a centromere, close to a telomere (p arm or q

arm), or located elsewhere. We found that SNPs close to

centromeres or telomeres showed significantly lower genotype

concordance between non-amplified gDNA and S-WGA products,

compared with those located in other genomic regions (Figure
S2). In addition, we observed that certain chromosomes, such as

19 and 22, tend to show discordant genotypes between non-

amplified gDNA and S-WGA products (Figure 4).

We then examined whether genomic location influences the

amplification bias using heterozygous SNPs in the non-amplified

gDNA for analysis. In contrast to the homozygous SNPs, we

observed that the heterozygous SNPs that showed discordant

genotypes between non-amplified gDNA and S-WGA products

were dispersed throughout the genome (Figure S2), suggesting a

stochastic occurrence of AD in a genome-wide manner.

We then tested whether genome GC content (GC%) influences

amplification bias. To this end, heterozygous SNPs in the non-

amplified gDNA were used for analysis (Figure S2). We first

excluded the heterozygous SNPs located close to the centromeres

or telomeres described above. Among the remaining heterozygous

SNPs, 2.6% (290 SNPs) were genotyped as homozygous or no calls

in all of the 10 S-WGA products. We did not observe a preference

for genomic location for these SNPs (data not shown), but found

that the genome GC% slightly but significantly (P,0.01, t-test)

affected the genotype concordance (Figure S2).

Among the 290 discordant SNPs, we used 154 whose genotype

was homozygous in greater than five S-WGA products (i.e., non-

no call SNPs) for further analysis. We then divided these SNPs into

two groups: SNPs showing biased AD of one allele (i.e., the

genotype call of each SNP tended to be exclusively one

homozygous allele, at least 75% AA or BB) and other SNPs (i.e.,

the genotype call of each SNP was a mixture of two homozygous

alleles, AA and BB). We found that a total of 74 SNPs showed a

biased AD of one allele, and 80 SNPs showed non-biased AD. We

did not observe the preference for genomic location for the SNPs

showing the biased AD of one allele (data not shown). However,

these SNPs showed statistically higher GC% (40.2%) compared

with other SNPs (38.0%, P,0.05, t-test). These results suggest that

genome GC% affects both the occurrence of AD and the

preference of AD between two alleles to some extent.

CCN analysis in the S-WGA products from LCL using

SNP arrays
Accuracy of the CCN analysis, assessed by the standard deviation

of the signal log2 ratio, was also strongly dependent on the call rate

on the array (R = 0.885, Figure 5A). Consistency of the CCN

data between S-WGA products and non-amplified gDNA was

progressively lost in the S-WGA products showing lower call rates.

Similar to the genotype analysis described above, we also tested

whether genomic location influences the CCN analysis by using

both homozygous and heterozygous SNPs in the SNP array

together. Genomic regions showing a frequent genotype discor-

dance such as regions close to centromeres and telomeres showed

statistically weaker signal log2 ratios compared with other genomic

regions (Figure S2). We observed a strong correlation between

genotype concordance and signal log2 ratio (R = 0.980 and 0.823

Figure 1. Visualization of the S-WGA products from a LCL by gel
electrophoresis. We loaded 1 ml of each S-WGA reaction mixture
obtained by protocol 2 (N = 24). A sample indicated by an asterisk was
not selected for further analysis based on the results of the Taqman
genotyping assay.
doi:10.1371/journal.pone.0001306.g001
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for homozygous and heterozygous SNPs, respectively). Specific

chromosomes that showed discordant genotypes such as chromo-

somes 19 and 22 also showed weaker signal log2 ratios compared

to other chromosomes (Figure 4).

To correct for these effects of amplification bias on CCN

analysis, we developed a two-step examination of the candidate

regions for chromosomal alterations. In the first step, CCN

analysis of an S-WGA product was performed using a set of non-S-

WGA products as reference, and candidate CCN alterations were

identified. In the second step, CCN analysis of the S-WGA

product was performed by using another set of S-WGA products

as reference, and candidate regions were re-examined. By

changing the reference, the CCN data can be successfully

normalized in the insufficiently amplified regions, such as

chromosome 19 and 22 (Figure 5B, C). Unexpectedly, we found

that two S-WGA products showed a weak signal log2 ratio in a

large part of chromosome 6q (20%), even after the normalization

by other S-WGA SNP array data (Figure 5D). In that region,

we also detected a considerable loss of heterozygous SNPs

(Figure 5D). Subsequent karyotype analysis in this LCL revealed

a deletion in chromosome 6q in four of the 14 cells analyzed (29%)

(Figure 5E). This finding provided evidence that the weak signal

log2 ratio observed in that region was not a technical artifact but

reflects a true chromosomal deletion, demonstrating the appro-

priateness of our data analysis for the detection of chromosome

structural alterations at the single cell level.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1Ta
qm

an
 fl

uo
re

se
nc

e 
in

te
ns

ity
 (a

lle
le

 B
)

S-WGA product

Positive control
Negative control

Non-amplified gDNA

Taqman fluoresence intensity (allele A)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control samples

AA BB AB

S-WGA products

AB PA FailedAD

Non-amplified
   gDNA

  No 
template

AB
Fl

uo
re

se
nc

e 
in

te
ns

ity

Allele A
Allele B

Allele B positive threshold

Allele A positive threshold

Allele A negative threshold

Allele B negative threshold

A B

Heterozygous

PA

AD

Failed 10.4%

23.6%

38.9%

27.1%

20

40

60

80

100

40 60 80 100

CMK11-5
LCL

SNP array call rate (%)

C
on

co
rd

an
ce

 ra
te

 o
f h

et
er

oz
yg

ou
s

   
  a

lle
le

s 
(%

) (
Ta

qm
an

 a
ss

ay
)  

   
   

 
C D

Figure 2. Amplification bias and manual genotyping of the heterozygous SNP. (A) Amplification bias revealed by the Taqman genotyping assay.
The relative fluorescence intensities of alleles A and B in each sample with regard to rs1895694 are shown. Fluorescence intensities of the S-WGA
products obtained by protocol 2 (N = 24) are shown. The results from another 5 heterozygous SNPs can be found in Figure S1. (B) Manual genotyping
of rs1895694 in the S-WGA products. AB, heterozygous (allele AB); PA, preferential amplification; AD, allele dropout; Failed, failure in WGA. (C)
Summary of the manual genotyping of the heterozygous SNPs. The percentage was calculated from a total of 240 data points obtained from
genotyping of 6 heterozygous SNPs in 40 S-WGA products. (D) Concordance rate of the heterozygous SNPs by Taqman genotyping assay correlated
with call rate on the SNP array. The data from 12 S-WGA products derived from a LCL and 3 S-WGA products derived from the CMK11-5 are shown.
Genotyping results of 6 heterozygous SNPs (rs1895694, rs4706387, rs2074711, rs1007971, rs4140571, and rs2280964 for a LCL; rs1895694, rs7110302,
rs11657541, rs1217617, rs9991, and rs2268248 for the CMK11-5) by Taqman assay were used for calculation of concordance rate. In genotyping S-
WGA products, the heterozygous SNP as well as PA-classified SNPs were considered to be concordant with non-amplified gDNA. The blue squares
and diamonds indicate the S-WGA products obtained by protocol 1 and 2, respectively.
doi:10.1371/journal.pone.0001306.g002
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CCN analysis in the S-WGA products from the

CMK11-5 line using SNP arrays
The success in the detection of chromosomal deletion in the LCL

allowed us to assess the ability of our approach to detect complex

chromosomal abnormalities. We next performed CCN analysis of

the S-WGA products from the CMK11-5 cell line, one of the

derivatives of the CMK line. The CMK line was established from

a patient with Down syndrome [28], and known to show complex

hypo-tetraploidy. We confirmed that the CMK11-5 also showed

complex hypo-tetraploidy and that this has a different karyotype

compared with the parental CMK line (Figure S3).

With regard to the 23 SNPs used for genotyping by the Taqman

assay, the non-amplified gDNA of CMK11-5 was found to be

homozygous for 17 SNPs and heterozygous for 6 SNPs. After the

S-WGA and subsequent Taqman assay of the 24 products, a total

of 3 were selected for SNP array analysis. Similar to the LCL

experiment, the call rates on the SNP array were strongly

associated with the Taqman genotype concordance of heterozy-

gous SNPs, when AB and PA-classified genotypes were considered

to be concordant (Figure 2D).

As predicted, concordance of the genotypes and the CCN

profiles between the S-WGA products and non-amplified gDNA

was dependent on the call rate on the array (Figure 3 and

Figure 6A). Nevertheless, the CCN profiles of 3 S-WGA products

were very similar, supporting the reproducibility of the S-WGA

and SNP array analysis in this cell line (Figure 6A).

We next analyzed various parameters in the CCN analysis using

the Copy Number Analysis Tool (CNAT) 4.1 software. The

optimal genomic smoothing size in the CCN analysis (s, copy

number state of each SNP was calculated using all flanking SNPs

within 2s to the left and right) is generally dependent on the type

of analysis. We needed a genomic smoothing size of 2–3 Mb with

about 80% of the call rate on the array to obtain consistent data

with non-amplified gDNA (Figure 6B). For detecting chromo-

somal alterations in the CMK lines such as del(3)(p14), del(9)(p21)

and additional chromosome 21, a genomic smoothing size of 1 Mb

was sufficient (Figure 6B). Due to the limited resolution of the

karyotype by the G-band and the existence of multiple marker

chromosomes (Figure S3), determining the precise relationship

between karyotype and CCN data was beyond the scope of the

current study.

DISCUSSION
The large variability in amplification bias among S-WGA

products, and the severe effect of amplification bias on the

genotype and CCN analysis, suggest that the quality of S-WGA

products should be critically assessed before starting down-stream

analyses. It should be noted that size distribution and product yield

did not differ among the S-WGA products, indicating that simple

electrophoresis and DNA quantification cannot help the assess-

ment of the product quality. Although only modest correlation was

obtained, Taqman genotyping of heterozygous SNPs with
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consideration for PA was proven to be effective in predicting the

SNP array call rate and screening for the products with potentially

high quality (i.e., low rate of AD and less-biased genome

amplification).

Because the amplification bias was seen, more or less, at every

heterozygous SNP (Figure S1), we determined the genotypes

arbitrarily by defining the thresholds in the Taqman genotyping

assay (see Materials and Methods). In addition to AD, we

determined PA in the genotyping. By considering the PA genotype

as the heterozygous SNP, we observed correlation between the

Taqman assay and SNP array call rate. We did not observe any

correlation when we used other genotypes for calculation, such as

homozygous SNPs, or heterozygous SNPs without consideration

for PA (data not shown). Although changing the thresholds in the

Taqman genotyping affected the results to some extent, the

relationship between genotype concordance rate by the Taqman

assays and the call rate on the SNP array (Figure 2D) was stably

detected (data not shown). It should be noted that the Taqman

genotyping assays were not suitable for quantitative purposes.

However, considering that the fluorescence intensity was obtained

at the endpoint of the assay, using positive controls of non-

amplified gDNAs generally resulted in rigorous and reproducible

fluorescence intensities for threshold determination.

Selecting the S-WGA products showing a concordance rate

greater than 60% by Taqman assay of the heterozygous SNPs for

the subsequent SNP array analysis generally resulted in call rates

of at least 80% (Figure 2D). SNP array data with such a high call

rate ensure a relatively low level of AD (average genotype

concordance in the heterozygous SNPs was 41.7%, Figure 3) and

a precise CCN profile for single cells with complex chromosomal

structural alterations (Figure 6). It should be noted that we used 6

heterozygous SNPs for calculation. Among the 40 S-WGA

products from the LCL, only about one-fourth of the products

showed more than 60% concordance by the Taqman assay (data

not shown). Increasing the number of heterozygous SNPs for the

Taqman assay will improve this predictive ability. In addition, it

has been recently reported that amplification bias in MDA can be

ameliorated by reducing the reaction volume using nanoliter
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reactors [29]. Such approaches will enable researchers to more

easily screen high quality S-WGA product.

We found that genomic location of the homozygous SNPs that

showed discordant genotypes in the S-WGA products was mainly

localized to the regions close to centromeres or telomeres (Figure
S2). It has been known that repetitive genomic regions such as

telomeres and centromeres tend to be underrepresented by MDA

[19].

In addition, we observed that chromosomes such as 19 and 22

showed weak signal log2 ratio in the CCN analysis. Although the

reason for this is not clear, this may not be specific to S-WGA, but

rather a characteristic of the MDA-based WGA to some extent,

because the signal log2 ratio in the WGA product using 10 ng of

non-amplified gDNA as starting material also showed a slightly

decreased signal log2 ratio in chromosome 19 (Figure 5B). It has

been reported that specific chromosomal regions such as 1q42,

4q35, and 6p25 showed loss of representation after MDA [30],

although these regions were not replicated in our previous study

[31] or in the current study using S-WGA products. Recent array

CGH analysis using the MDA products from a small number of

cells isolated by laser capture-microdissected cells also revealed a

reproducible biased-amplification of the genomic regions includ-

ing telomeres and some chromosomes [23,24]. In addition, in

recent S-WGA studies, insufficient chromosome amplifications in

the S-WGA products were found in both PCR- and MDA-based

WGA using array CGH techniques [25,32,33], suggesting that

some chromosomes are difficult to amplify by the S-WGA

experiments.

Although we observed that genome GC content affects both

occurrence of AD and preference of AD between two alleles to

some extent, we found that AD occurred throughout the genome

in addition to the insufficiently amplified genomic regions. These

results indicate that genotyping the heterozygous SNPs at the

single-cell level for medical purposes should be done cautiously,

even in cases where high-quality S-WGA products can be used for

analysis.

Unlike the array CGH analyses [18,25,33], SNP array analysis

allowed us not only to carry out high-resolution CCN analysis, but

also to apply critical quality assessment using genotype informa-

tion. In addition, our two-step examination of the candidate

CMK11-5 S-WGA, call rate 87.3%

-1.5

+1.5

0

-1.5

+1.5

0

-1.5

+1.5

0

CMK11-5 S-WGA, call rate 81.0%

CMK11-5 S-WGA, call rate 68.7%

10 11 12 13 14 15 16 17 19 202122 X181 2 3 4 5 6 7 8 9chr

10 11 12 13 14 15 16 17 19 202122 X181 2 3 4 5 6 7 8 9chr

-1.5

+1.5

0

-1.5

+1.5

0

-1.5

+1.5

0

A

B

Figure 6. CCN analysis of the S-WGA products from the CMK11-5 cell line. (A) Results of the CCN analysis. A 3-Mb genomic smoothing size was
used for analysis. Blue and red lines indicate CCN data of the non-amplified gDNA and S-WGA product, respectively. (B) Effect of the genomic
smoothing size (s) on the CCN analysis. Green and red lines indicate CCN data of the non-amplified gDNA and S-WGA product, respectively.
doi:10.1371/journal.pone.0001306.g006

Single Cell Genome Analysis

PLoS ONE | www.plosone.org 6 December 2007 | Issue 12 | e1306



regions for chromosomal alterations will effectively discriminate

CCN alterations from biased amplification. A similar normaliza-

tion principle utilizing the reproducible biased-amplification in

MDA has also been reported in array CGH analyses [23,33].

In summary, by using our optimized protocol in single cells

from the lymphoblastoid cell line, we successfully detected a

chromosomal deletion that was previously unidentified. In

addition, we successfully obtained reproducible CCN profiles of

single cells from the CMK11-5 cell line with a complex karyotype.

The MDA-based S-WGA followed by the SNP array analysis

described here will be useful for exploring chromosomal

alterations in single cells.

MATERIALS AND METHODS

Cell culture and karyotyping
A LCL, which was established by standard methods from a Japanese

female subject, was maintained and cultured as described previously

[34]. The CMK11-5 cell line was purchased from the Japanese

Collection of Research Bioresources (JCRB) and cultured according

to the provider’s instructions. Before the S-WGA experiments, cell

cultures were retrieved and washed once with phosphate-buffered

saline (PBS). Karyotype of the LCL and CMK11-5 was determined

by the G-band method (Japan SRL, Tokyo, Japan).

Manipulation of single cells
Two areas for the single-cell experiments, each equipped with

pipets, tubes and all reagents and instruments, were prepared in

different rooms. To prevent contamination from external DNA to

the reagent, one area was reserved for the preparation for reaction

mixtures only, and nucleic acids were not handled there.

Subsequent experiments were done in the other area, which was

equipped with a UV PCR Workstation (UVP, Upland, CA, USA).

Whenever possible, all equipment was UV irradiated for 30 min

before the experiment began. Single cells were retrieved by

mouth-controlled pipetting with a fine hand-drawn microcapillary

tube under a stereoscopic microscope.

S-WGA reaction
Two protocols (protocol 1 and 2) for S-WGA using a GenomiPhi

V2 kit (GE Healthcare Life Sciences, Piscataway, NJ, USA) were

provided by the manufacturer. They were similar to the method

previously reported [6,35]. Protocol 1: Single cells were transferred

into a PCR tube containing 3 ml of sample buffer. The 1.5 ml of

lysis solution (0.4 M KOH, 10 mM EDTA, and 100 mM DTT)

was added to a tube and cells were lysed at room temperature for

10 min. 1.5 ml of neutralizing buffer (0.8 M Tris-HCl, pH8.0, and

0.4 M HCl), 1.5 ml of sample buffer, 7.5 ml of amplification mix

(reaction buffer:enzyme mix = 9:1) were added to a tube. The

reaction mixture was then incubated at 30uC for 4 hours followed

by heat inactivation at 65uC for 10 min. Protocol 2: Single cells

were transferred into a PCR tube containing 3 ml of sample buffer.

The 1.5 ml of lysis solution 2 (0.6 M KOH, 10 mM EDTA, and

100 mM DTT) was then added to a tube and cells were lysed at

30uC for 10 min. 1.5 ml of neutralizing buffer 2 (4:1 mixture of

1 M Tris-HCl pH8.0 and 3 M HCl), 4.0 ml of sample buffer, and

10 ml of amplification mix (reaction buffer:enzyme mix = 9:1) were

added to a tube. The reaction mixture was then incubated at 30uC
for 4 hours followed by heat inactivation at 65uC for 10 min. In

both protocols, the sample buffer, reaction buffer, and enzyme mix

were included in the GenomiPhi V2 kit.

Despite extensive efforts, we sometimes observed amplified

products from negative control samples (PBS, distilled water, or no

addition of solution). Although they could not be distinguished from

amplified products derived from single-cell samples by the

electrophoresis or DNA quantification assays, a subsequent Taqman

genotyping assay revealed no signals from them at all 23 SNPs (see

below). Therefore, we concluded that amplification did not originate

from human DNA, but originated from the primers included in the

kit, or contamination of bacterial DNA included in the kit. Similar

observations were also reported by others [6].

In obtaining the S-WGA products in the LCL, either protocol 1 or

2 was used. We did not find considerable differences between the two

protocols with regard to the yield (protocol 1, 6.6560.48 mg, N = 16;

protocol 2, 6.6360.52 mg, N = 24), Taqman genotyping assay and

SNP array results (Figure 2). For obtaining the S-WGA products

from the CMK11-5 line, we used protocol 2.

SNP genotyping by Taqman assay
A total of 23 SNPs (one SNP for each autosome and chromosome

X, see Table S1) were chosen by the following criteria. 1) SNPs

were not included in the known copy number variations and 2) the

minor allele frequency in the Japanese population was above 0.1.

Genotyping was performed using Taqman assays (Applied

Biosystems, Foster City, CA, USA) with an ABI PRISM

7900HT (Applied Biosystems). Probes and Universal PCR Master

Mix were obtained from Applied Biosystems. In every genotyping

assay, we included the S-WGA products as well as two negative

controls (distilled water), 14 subjects for positive controls as

described below, and a non-amplified gDNA sample. In

genotyping the S-WGA products and positive control samples,

1 ml of the 5-times diluted S-WGA reaction mixture (about 70 ng)

and 10 ng of gDNA, respectively, were used as template.

Selection of the control samples for Taqman assay
To search for DNA samples suitable to serve as technical controls

in the Taqman assay of S-WGA products, we genotyped a total of

40 Japanese lymphoblastoid DNA samples. Among the 40 DNA

samples, 14 were selected for the quality control of the Taqman

assay. These DNA samples were chosen so that all three genotypes

(AA, AB, and BB) per SNP were covered by at least two subjects.

Manual determination of the genotyping by

Taqman assay
In manual determination of the genotypes of the S-WGA

products, we arbitrarily defined the following four types of

thresholds, based on the fluorescence intensities (FI) of the control

samples. The positive allele A threshold was defined as follows:

(average FI of allele A in the heterozygous alleles of the control

samples)–3 * (standard deviation of FI of allele A in the

heterozygous alleles of the control samples). Above this threshold,

allele A in the S-WGA product was considered to be amplified.

The negative allele A threshold was defined as follows: (average FI

of allele A in the homozygous allele B of the controls)+5* (standard

deviation of FI of allele A in the homozygous allele B of the

controls). If the FI of allele A in the S-WGA product was below

this threshold, allele A was considered to have dropped out of the

amplification. The positive and negative allele B thresholds were

determined the same way. Based on these thresholds, genotyping

of the heterozygous SNPs in the S-WGA products were classified

into 4 categories: AB (heterozygous, FI of both alleles were above

the positive thresholds), PA (FI of one allele was above the positive

threshold, while that of the other was not above the positive

threshold but greater than the negative threshold), AD (FI of one

allele was above the positive threshold, while that of the other was

below the negative threshold), or failed (FI of both alleles were

below the negative thresholds). An example of manual determi-
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nation of genotyping is shown in Figure 2B. In genotyping the

homozygous SNPs in the S-WGA products, we did not observe

novel allele creations (for example, we never observed high FI for

allele A in a homozygous allele B genotype).

SNP array and genotype data analysis
Array data was deposited in the gene expression omnibus database

(accession no. GSE8567). An Affymetrix 50KXba chip, which

contains the probe sets for about 59,000 SNPs, was used for SNP

typing. The SNP array data of the non-amplified gDNA of the

LCL and the WGA product using 10 ng of LCL gDNA, were

previously reported [31]. The S-WGA products of LCL and

CMK11-5, as well as non-amplified gDNA of CMK11-5, were

used for the SNP array analysis in this study. The experiment was

performed according to the manufacturer’s protocol. Regardless of

the source of DNA, 250 ng of DNA was used as starting material.

The raw SNP array data was processed by Affymetrix GeneChip

Genotyping analysis (G-TYPE) software 4.1. The genotype was

determined by the Dynamic model based algorithm in the G-

TYPE software. Human genome reference of NCBI build 36 was

used for analysis. Relative genotype concordance was calculated as

follows: In each S-WGA array data set, genotype concordance rate

was calculated by chromosome, and then concordance rates were

divided by the average concordance rate (similar to per-chip

normalization). Averaged relative genotype concordance is plotted

in Figure 4.

CCN analysis
CCN analysis was performed using the CNAT4.1 (Affymetrix).

Typically, we performed unpaired sample analysis, in which one

S-WGA SNP array dataset was used as the sample and eleven

SNP array datasets from female subjects were used as reference.

Reference samples were obtained in an Asian population used in

the HapMap project. Median scaling implemented in the software

was used for per-chip normalization.

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0001306.s001 (0.03 MB

XLS)

Figure S1 Amplification bias in heterozygous SNPs revealed by

the Taqman genotyping assay. The relative fluorescence intensities

of alleles A and B are shown.

Found at: doi:10.1371/journal.pone.0001306.s002 (1.47 MB EPS)

Figure S2 (A) Genomic location of the SNPs showing inconsis-

tent genotypes or no calls in the S-WGA products compared with

non-amplified gDNA. Left, homozygous SNPs; right, heterozy-

gous SNPs. Among the 12 profiled LCL SNP array datasets, the 2

with the low quality (call rate,50%) were removed from this

analysis. Red and green bars on the chromosomes indicate the

SNPs showing low (30% or less) and high (70% and above)

consistency, respectively. Arrowheads indicate centromeres. Note

that SNPs were not located in the p arms of several chromosomes

in the Affymetrix 50K Xba SNP array. (B) Statistical analysis of

the concordance and signal log2 ratio. Concordance rates of

homozygous SNPs, or signal log2 ratio of the SNPs, in the

telomeres or centromere were compared with those in the rest of

the chromosome. Telomere SNPs included all SNPs within 10Mb

of the end. Centromere SNPs included all flanking SNPs within

the span 10Mb to the left and right of the centromere. P values by

the Student’s t-test are given. (C) Genome GC content and

genotype concordance of heterozygous SNPs.

Found at: doi:10.1371/journal.pone.0001306.s003 (2.98 MB EPS)

Figure S3 Karyotype of the CMK11-5. The CMK lines were

established from a patient with Down syndrome, and showed

hypo-tetraploidy. The CMK 11-5 was established from the CMK.

The composite karyotype of 10 cells of the CMK11-5 was as

follows: 83-90 ,4n., XYY, add(X)(p22.1)[10], add(1)(p36.3)[9],

add(1)(q21)[10], -2[10], add(2)(p21)*2[10], -3[8], add(3)(q11)[2],

del(3)(p14)*2[10], -4[9], +add(5)(q11.2)[9], add(5)(q13)[10], -6[8],

der(6)add(6)(p23)del(6)(q?)[10], der(6)add(6)del(6)[3], -7[8], -8[10],

-8[6], dup(8)(q11.2q21)[10], -9[10], -9[10], -9[7], der(9)del(9)(-

p21)add(9)(q34)[7], +10[2], del(10)(q22q24)[10], del(10)[7],

add(11)(p15)[10], der(11;17)(q10;q10)[10], -12[9], add(12)(p11.2)-

[10], add(12)[8], add(12)(p13)[10], -13[10], -13[5], -14[10], -

14[3], -15[10], -15[7], -16[4], -17[10], 18[9], add(18)(p11.2)[2],

add(18)(q23)[10], add(18)(q23)[10], -19[10], -19[6], add(19)(p13)-

[10], der(20)t(1;20)(q2?5;q1?2)*2[10], +22[3], +10-14mar.

Found at: doi:10.1371/journal.pone.0001306.s004 (4.68 MB EPS)

ACKNOWLEDGMENTS
We would like to thank Dr. Gyanendra Kumar (GE Healthcare) for

providing the S-WGA protocols, and Dr. Michinori Saitou (RIKEN

Center for Developing Biology) for help in setting up single-cell

manipulations. We also thank Affymetrix Japan for technical support in

the copy number analysis. We are indebted to the Research Resource

Center at the RIKEN Brain Science Institute for the SNP array analysis.

Author Contributions

Conceived and designed the experiments: TK KI. Performed the

experiments: MB JU YN. Analyzed the data: KI MB JU. Contributed

reagents/materials/analysis tools: WU EH TS. Wrote the paper: KI.

REFERENCES
1. Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity.

Nature 441: 1087–1093.

2. Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in

mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol

249: 143–191.

3. Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J (2006) Aneuploidy

in the normal and diseased brain. Cell Mol Life Sci 63: 2626–2641.

4. Lasken RS, Egholm M (2003) Whole genome amplification: abundant supplies

of DNA from precious samples or clinical specimens. Trends Biotechnol 21:

531–535.

5. Lovmar L, Syvanen AC (2006) Multiple displacement amplification to

create a long-lasting source of DNA for genetic studies. Hum Mutat 27:

603–614.

6. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, et al.

(2006) Optimization and evaluation of single-cell whole-genome multiple

displacement amplification. Hum Mutat 27: 496–503.

7. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, et al. (1992)

Degenerate oligonucleotide-primed PCR: general amplification of target DNA

by a single degenerate primer. Genomics 13: 718–725.

8. Cheung VG, Nelson SF (1996) Whole genome amplification using a degenerate

oligonucleotide primer allows hundreds of genotypes to be performed on less than

one nanogram of genomic DNA. Proc Natl Acad Sci U S A 93: 14676–14679.

9. Harada T, Okita K, Shiraishi K, Kusano N, Furuya T, et al. (2002) Detection of

genetic alterations in pancreatic cancers by comparative genomic hybridization

coupled with tissue microdissection and degenerate oligonucleotide primed

polymerase chain reaction. Oncology 62: 251–258.

10. Grant SF, Steinlicht S, Nentwich U, Kern R, Burwinkel B, et al. (2002) SNP

genotyping on a genome-wide amplified DOP-PCR template. Nucleic Acids Res

30: e125.

11. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, et al. (1992) Whole genome

amplification from a single cell: implications for genetic analysis. Proc Natl Acad

Sci U S A 89: 5847–5851.

Single Cell Genome Analysis

PLoS ONE | www.plosone.org 8 December 2007 | Issue 12 | e1306



12. Sermon K, Lissens W, Joris H, Van Steirteghem A, Liebaers I (1996) Adaptation

of the primer extension preamplification (PEP) reaction for preimplantation
diagnosis: single blastomere analysis using short PEP protocols. Mol Hum

Reprod 2: 209–212.

13. Wang VW, Bell DA, Berkowitz RS, Mok SC (2001) Whole genome
amplification and high-throughput allelotyping identified five distinct deletion

regions on chromosomes 5 and 6 in microdissected early-stage ovarian tumors.
Cancer Res 61: 4169–4174.

14. Dietmaier W, Hartmann A, Wallinger S, Heinmoller E, Kerner T, et al. (1999)

Multiple mutation analyses in single tumor cells with improved whole genome
amplification. Am J Pathol 154: 83–95.

15. Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, et al. (1999)
Comparative genomic hybridization, loss of heterozygosity, and DNA sequence

analysis of single cells. Proc Natl Acad Sci U S A 96: 4494–4499.
16. Stoecklein NH, Erbersdobler A, Schmidt-Kittler O, Diebold J, Schardt JA, et al.

(2002) SCOMP is superior to degenerated oligonucleotide primed-polymerase

chain reaction for global amplification of minute amounts of DNA from
microdissected archival tissue samples. Am J Pathol 161: 43–51.

17. Langmore JP (2002) Rubicon Genomics, Inc. Pharmacogenomics 3: 557–560.
18. Fiegler H, Geigl JB, Langer S, Rigler D, Porter K, et al. (2007) High resolution

array-CGH analysis of single cells. Nucleic Acids Res 35: e15.

19. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, et al. (2002) Comprehensive
human genome amplification using multiple displacement amplification. Proc

Natl Acad Sci U S A 99: 5261–5266.
20. Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL (2004) Whole genome

amplification of DNA from laser capture-microdissected tissue for high-
throughput single nucleotide polymorphism and short tandem repeat genotyp-

ing. Am J Pathol 164: 23–33.

21. Hughes S, Lim G, Beheshti B, Bayani J, Marrano P, et al. (2004) Use of whole
genome amplification and comparative genomic hybridisation to detect

chromosomal copy number alterations in cell line material and tumour tissue.
Cytogenet Genome Res 105: 18–24.

22. Hughes S, Arneson N, Done S, Squire J (2005) The use of whole genome

amplification in the study of human disease. Prog Biophys Mol Biol 88: 173–189.
23. Cardoso J, Molenaar L, de Menezes RX, Rosenberg C, Morreau H, et al. (2004)

Genomic profiling by DNA amplification of laser capture microdissected tissues
and array CGH. Nucleic Acids Res 32: e146.

24. Arriola E, Lambros MB, Jones C, Dexter T, Mackay A, et al. (2007) Evaluation

of Phi29-based whole-genome amplification for microarray-based comparative
genomic hybridisation. Lab Invest 87: 75–83.

25. Le Caignec C, Spits C, Sermon K, De Rycke M, Thienpont B, et al. (2006)

Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res
34: e68.

26. Hellani A, Coskun S, Benkhalifa M, Tbakhi A, Sakati N, et al. (2004) Multiple
displacement amplification on single cell and possible PGD applications. Mol

Hum Reprod 10: 847–852.

27. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, et al. (2004)
Isothermal whole genome amplification from single and small numbers of cells: a

new era for preimplantation genetic diagnosis of inherited disease. Mol Hum
Reprod 10: 767–772.

28. Sato T, Fuse A, Eguchi M, Hayashi Y, Ryo R, et al. (1989) Establishment of a
human leukaemic cell line (CMK) with megakaryocytic characteristics from a

Down’s syndrome patient with acute megakaryoblastic leukaemia. Br J Haematol

72: 184–190.
29. Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, et al. (2007)

Nanoliter reactors improve multiple displacement amplification of genomes from
single cells. PLoS Genet 3: 1702–1708.

30. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, et al. (2004) Genome coverage

and sequence fidelity of phi29 polymerase-based multiple strand displacement
whole genome amplification. Nucleic Acids Res 32: e71.

31. Iwamoto K, Ueda J, Nakano Y, Bundo M, Ukai W, et al. (2007) Evaluation of
whole genome amplification methods using postmortem brain samples.

J Neurosci Methods 165: 104–110.
32. Johnson NA, Hamoudi RA, Ichimura K, Liu L, Pearson DM, et al. (2006)

Application of array CGH on archival formalin-fixed paraffin-embedded tissues

including small numbers of microdissected cells. Lab Invest 86: 968–978.
33. Hu DG, Webb G, Hussey N (2004) Aneuploidy detection in single cells using

DNA array-based comparative genomic hybridization. Mol Hum Reprod 10:
283–289.

34. Kato T, Ishiwata M, Nagai T (2002) Mitochondrial calcium response in human

transformed lymphoblastoid cells. Life Sci 71: 581–590.
35. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, et al.

(2006) Whole-genome multiple displacement amplification from single cells. Nat
Protoc 1: 1965–1970.

Single Cell Genome Analysis

PLoS ONE | www.plosone.org 9 December 2007 | Issue 12 | e1306


