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Background. Codon usage and codon-pair context are important gene primary structure features that influence mRNA
decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have
carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. Methodologies/Principal

Findings. We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These
methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3
domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints
imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases
on codon-pair context. Conclusions. The data highlight fundamental differences between prokaryotic and eukaryotic mRNA
decoding rules, which are partially independent of codon usage.
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INTRODUCTION
A myriad of evolutionary forces shape the primary structure of

coding components (ORFs) of genomes, herein called ORFeomes.

These include genome and gene duplication, chromosome

rearrangements, DNA recombination, deletions and insertions,

transposition of mobile elements, single nucleotide polymorphisms,

nucleotide repeats and biased G+C pressure [1–4]. Apart from

these DNA replication derived phenomena others arising from

DNA transcription, mRNA stability and translation [5–7] are also

likely to fine tune ORFeomes’ primary structure, but their

significance is not yet fully understood.

At the mRNA translation level, synonymous codon usage and

codon-pair context (representing the pair of codons located in the

A and P- ribosome sites) are expected to be under selective

pressure since they affect mRNA decoding speed and accuracy [8–

15]. Synonymous codon usage biases are explained mainly by

G+C content and only secondarily by constraints imposed by

mRNA translation variables [4], namely tRNA abundance,

efficiency of tRNA charging, mRNA decoding efficiency (speed

plus accuracy), mRNA stability and structure, gene expression,

and amino acid composition [7,13,16–18]. The nucleotides

surrounding a codon also influence synonymous codon usage,

with the strongest influence arising from the interplay between the

last nucleotide of a codon and the first nucleotide of the neighbor

codon (N1N2N3 N1N2N3), the so called N3-N1 context [7,19,20].

Conversely to codon usage, the forces that modulate codon-pair

context, with the exception of the context of initiation and

termination codons [16,21], are still poorly understood. The few

studies carried out to date show, however, that codon-pair context

has a direct impact on missense, nonsense and frameshifting errors

[15,22,23].

In E. coli, missense error in vivo, under standard growth

conditions, is in the order of 1023 to 1024 per codon decoded

[24,25]. Frameshifting and stop codon readthrough errors happen

at levels of 361024 to 1025 and of 1023 to 1026, respectively

[26,27]. Under stress, namely amino acid starvation, these basal

error rates increase significantly [16], indicating that decoding

error in nature may be significantly higher than in optimal

laboratory conditions. Furthermore, 30% of the newly synthesized

proteins in HeLa, lymph node, L-Kb and dendritic cells are

defective ribosomal products (DRiPs) that arise from missense,

frameshifting and ribosome drop off at mRNA pausing sites [28].

Since protein synthesis utilizes 45% of the cell ATP, 30% DRiP

rate represents 11% of wastage of total cellular energy [28].

Whether this is a common trend in all type of cells is unknown,

however, peptides resulting from proteasome degradation of

DRiPs are a major source of peptides for MHC class I molecules,

highlighting an unanticipated role of mistranslation in immune

cells [28].

It is not yet clear whether the ribosome drops off randomly or

preferentially at specific mRNA drop off hot spots. In other words,

it is important to elucidate whether average decoding error (1024

to 1025) is evenly distributed along mRNAs (average error) or

whether it fluctuates along the mRNA? If so, how can decoding

error hot spots be identified? In order to obtain insight into these

questions and identify mRNA primary structural features that

influence mRNA decoding error, we have developed a software

package, statistical and graphical tools to study codon-pairs

corresponding to ribosomal A- and P-site codons, using genome

wide approaches (ANACONDA vs 1.0) [20,29]. ANACONDA

1.0 already allowed us to demonstrate that codon-pair context is
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weakly modulated by G+C pressure [20]. In the present study, we

have significantly improved ANACONDA (creating its version

2.0) and used it to carry out large scale comparative codon-pair

context analysis using complete ORFeome sequences of 81

Eubacteria, 18 Archaea and 20 Eukaryota. The data show that

i) codon-pair context is species specific, ii) there are general rules

governing its evolution in the three domains of life and iii) in

eubacteria and archeae codon-pair context is mainly determined

by constraints imposed by the translational machinery, while, iv) in

eukaryotes the emergence of DNA methylation and tri-nucleotide

repeats influenced codon-pair context. The data suggests the

existence of fundamental differences between prokaryotic and

eukaryotic mRNA decoding rules and shows that codon-pair

context is partially independent of codon usage.

RESULTS

New tools for large scale comparative codon-pair

context analysis
The ANACONDA 1.0 algorithm developed previously [20,29]

simulates the ribosome during decoding by reading Open Reading

Frames (ORFs) sequences, starting at the AUG initiation codon

and moving the reading window three nucleotides at a time

(Figure 1A). While doing this, it memorizes all codon-pairs, which

represent A- and P-site codons during mRNA decoding. It then

builds a codon-pair contingency table (Figure 1B) that renders

itself to statistical analysis and permits determination of the codon-

pair context bias [20]. The existence of association between

codon-pairs is determined through the chi-square (x2) test of

independence and preferred and rejected pairs of codons are

identified through the analysis of adjusted residuals for contingen-

cy tables. These rejected and preferred pairs of codons are then

displayed in a 61x64 green (preferred) and red (rejected) color

coded map that generates a global view of the codon-pair context

data for any ORFeome (Figure 1C). ANACONDA 1.0 also

clusters the data according to the context preferences and

rejections (residuals values) and builds Differential Display Maps

(DDM), which represent codon-pair context differences between

two different ORFeomes (Figure 2).

In an attempt to identify putative general rules that govern

codon-pair context, we have carried out large scale codon-pair

comparisons, using ANACONDA version 2.0. For this, new

algorithms and tools were developed to convert the 61x64 codon-

pair context colour-coded maps into a single colour-coded column

containing 3904 lines, representing all possible combinations of

pairs of the 64 codons (Figure 1D). ANACONDA 2.0 compared

these colour-coded columns, clustered the data and highlighted

groups of codons that had similar pair preference and rejection

patterns (Figures 1E–3). Since the size of ORFeomes varied

significantly between bacteria and eukaryotes, ANACONDA 2.0

normalized the data using the biggest ORFeome as a reference data

set (Figure S1). This permitted carrying out direct comparisons of

large and small ORFeomes and allowed the study of codon-pair

context preferences (positive residual value; green color in the map)

and rejections (negative residual values; red color in the map) of 119

ORFeomes of Eubacteria, Archaea and Eukarya, including the

human and chimpanzee ORFeomes (Figure S2A–C).

Codon-pair context preferences are species specific
Codon-pair context maps showed remarkable diversity from

bacteria to high eukaryotes (Figure 2; Figure S3A–J). For example,

codon-pair context preferences of the human (Homo sapiens or H.s)

and mouse (Mus musculus or M.m) ORFeomes showed several

differences, which were unveiled by direct comparison of

ORFeomes and construction of Differential Display Maps (DDM)

(Figure 2A,B), as described in our previous study [20]. Conversely,

the codon-pair context maps for the chimpanzee (Pan troglodytes or P.t)

and human ORFeomes were remarkably similar (Figure 2B), which

was in agreement with the high homogeneity found for codon-pair

distributions of both ORFeomes (data not shown). The same trend

was found in bacteria. Indeed, the Escherichia coli (E.c) ORFeome

codon-pair context map was more similar to that of Salmonella typhi

(S.t) than to Bacillus cereus (B.c in Figure 2C,D). Clustering of the

codon-pair context maps showed that codon-pair context follows

Figure 1. Flowchart of the codon-pair context analysis performed by
ANACONDA. A) The software selects valid ORFs from the total set
available for each species (ORFeome) and counts all combinations of
two consecutive codons (codon-pair context) that are present in the
sequences. B) The observed values are incorporated into a contingency
table in which the lines correspond to the 59 codon (ribosome P-site)
and the columns to the 39 codon (ribosome A-site) of each pair. C) The
contingency table of observed values is then compared to another
table in which the values expected under independence are calculated.
The cell corresponding to each pair of codons was colored in green for
preferred contexts or red for rejected ones. This produces a color-coded
map for the 61664 two-codon contexts of one ORFeome. D) To aid
simultaneous comparison of a large set of ORFeomes the 61664 map is
automatically converted into one single column with 3904 lines, one for
each pair of codons. E) Finally, the columns that illustrate the two-
codon context bias of each individual ORFeome are placed side by side,
yielding a large-scale codon context comparison map. Both maps for
codon context bias, i.e. the 61664 map for a single species and the
large-scale codon context comparison map can be rearranged using
clustering methodologies that highlight similar codon-pair context
patterns. For detailed description of statistics and software, see
Methods or [20,29].
doi:10.1371/journal.pone.0000847.g001
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rRNA phylogeny (Figure 2E), highlighting the possibility of using

codon-pair context maps as species specific fingerprints. Further-

more, the overall correlation between the 3 domains of life was lower

than that calculated within each domain, as the Spearman’s

correlations of the ranks (Table S1) showed low correlation

coefficients between species of different domains of life, i.e. 0,452

for Eukarya vs Archaea; 0,450 for Eukarya vs Eubacteria; and 0,500

for Archaea vs Eubacteria. While correlation coefficients calculated

between species of the same domain were high, i.e. 0,988 among

Eukarya (between H. sapiens and P. troglodytes); 0,823 among Archaea

(between P. abyssi and P. horikoshii); and 0,959 among Eubacteria

(between E. coli and S. flexneri).

The distribution of residual values over the entire set of

ORFeomes showed that the 3 domains of life have significantly

different codon-pair preferences (Tables 1, 2). For example,

codon-pair contexts with highest and lowest adjusted residual

values showed no common codon-pairs in the 3 domains of life,

suggesting fundamental differences between eukarya, eubacteria

and archeae in codon-pair rules and in the evolutionary forces

that shape ORFeomes primary structure. Interestingly, 9 out of

the 10 codon-pair contexts with highest residual values (best

codon-pairs) of all eukaryotic ORFeomes were pairs formed by

identical codons (codon repeats) (Table 1). The same trend was

also detected when the most frequently preferred codon-pair

contexts for each domain were compared (Table 2). With this

approach, common codon-pair contexts were identified for the 3

domains of life. For example, AAU-CCA and GGC-UGU had

positive residuals in Eubacteria and Archaea. In Eukarya and

Archaea ACU-AAG had negative residuals and AGA-AGA

had positive residuals in Eubacteria and Eukarya. This suggested

that, despite the species specificity of codon-pair context maps,

at least some of the evolutionary constraints that shaped codon-

pair context are conserved across species in the three domains

of life.

Figure 2. Codon-pair context is species specific. A) Individual codon-
pair context maps built for various genomes followed phylogeny
indicating that codon-pair context is species specific. For instance, the
human ORFeome map is more similar to that of chimpanzee (Pan
troglodytes) than to the mouse (Mus musculus) map. B) This result was
confirmed using differential display maps (DDM) that subtract two
codon-pair context maps. For example, H. sapiens–M. musculus (H.s vs
M.m); H. sapiens–P. troglodytes (H.s vs P.t). In these differential display
maps major codon-pair context differences (above 15) are shown in
light blue and darker maps correspond to species with more similar
codon-pair context biases. In the present example, the maps of H.s vs
M.m and H.s vs P.t have 6% and 1% of blue cells, respectively. C and D)
The same phylogenetical relationship could be detected for bacterial
ORFeomes, as exemplified for Escherichia coli, Bacillus cereus and
Salmonella typhi. The DDM built with these species have 55% (E.c vs B.c)
and 20% (E.c vs S.t) of blue cells. E) Finally, the phylogenetical
relationship was maintained when the above species were clustered
according to the similarities of the codon-pair context maps. The yeasts
Saccharomyces cerevisiae and Schizosaccharomyces pombe were added
to include an intermediate group of lower eukaryotes in the tree.
Adjusted residuals are colored in the maps according to the color scale
shown, so that green cells correspond to preferred and red cells to
rejected contexts.
doi:10.1371/journal.pone.0000847.g002

Table 1. The most biased codon-pair contexts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The 10 lowest residual values

EUBACTERIA ARCHAEA EUKARYOTA

Context Residual Context Residual Context Residual

GCC.CUG 2308,976 GAC.GUC 2216,464 CUG.GAG 2135,197

CUG.GCG 2277,801 GGC.GCC 2201,205 GUC.GAG 2125,758

CUG.GGC 2248,528 CUG.GAG 2187,918 UUU.AAG 2118,366

UUC.GAG 2235,436 GGC.GCC 2183,471 AAU.UUA 2118,201

GCC.GGC 2231,399 CUC.GAG 2178,679 GGC.CUG 2110,765

CUG.CUC 2226,625 CUC.GAG 2176,574 CUC.GAG 2109,220

GUG.GCG 2224,022 GAG.CUC 2169,707 GCC.GAA 2107,698

CUC.CGC 2223,365 CUC.GAG 2148,041 CUC.CUG 2107,332

CUG.CAG 2222,711 UUA.GAU 2145,409 GCC.GAA 2107,194

GCC.CUG 2222,703 GAU.CCA 2141,241 AAA.UUU 2106,245

The 10 highest residual values

CGA.UCG 921,068 GUG.UUG 348,268 AAU.AAU 429,080

GCG.AUC 787,349 CUU.GCA 308,638 CAG.CAG 357,404

GAU.CGC 726,087 CUU.GAA 298,926 AGC.AGC 258,564

GCG.AUC 674,901 GAC.GCC 285,894 CAG.CAG 225,474

CGA.UCG 635,246 CCU.GAA 283,549 GAU.GAU 217,335

GGA.AGC 473,874 CCU.GGG 242,525 CCA.CCG 215,623

GAU.CGC 441,929 UUA.AAA 238,652 AGC.AGC 215,121

GCG.CUG 429,895 GCC.GCC 238,422 GGU.GGU 215,059

AAA.GAG 423,652 GAU.UUG 235,469 AAG.AAG 198,659

GCG.AUC 416,940 GCC.GAC 234,454 GAA.GAA 198,519

In order to identify the strongest bias in codon-pair contexts they were ranked
according to their residual values in Eubacteria, Archaea and Eukaryota. The 10
lowest or highest residuals obtained in each group are shown. Codon-pair
contexts that appeared in more than one group are underlined, while codon-
pair contexts of identical codons are shown in bold. Eubacteria showed the
highest codon-pair biases since the amplitude of the adjusted residuals varied
between 2309 and 921. Interestingly, 9 out of the 10 highest residuals of
eukaryotic ORFeomes corresponded to codon-pair contexts formed by identical
codons in both positions (in bold).
doi:10.1371/journal.pone.0000847.t001..
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Context preferences exist in coding and non-coding

sequences
A large-scale codon-pair context comparison was carried out to

visualize general context patterns, using clustering tools

(Figure 3A). Interestingly, a red region, corresponding to negative

residual values (rejected context), appeared across the 119

ORFeomes studied (blue box in Figure 3A). These rejected

codon-pairs were of the general type NNU3-A1NN, where N

represents any base. Other general patterns in the map

represented either preferred codon-pairs in Archaea and Eukarya

(Figure 3A; region-Y), rejected codon-pairs in Archaea and

Eukarya (Figure 3A; region-Z) or strongly rejected codon-pairs

in Eubacteria (Figure 3A; region-X).

In order to evaluate whether those general codon-pair context

patterns arose from DNA replication biases, a second large scale

comparative map was built using complete genome sequences

(coding + non-coding) of the 119 organisms under study. For this,

ANACONDA 2.0 scanned full chromosome sequences starting at

the first six nucleotides and moved the scanning window three

nucleotides at each step. In this way, both coding and non-coding

sequences were analyzed and the frequency of all hexanucleotides

was computed, without worrying about the DNA strand location

or the reading frame of coding sequences, i.e. ORFs were

scanned randomly in the frames 0, +1 or +2. This full genome

context map (Figure 3B) showed patterns that were also observed

in the ORFeome map (Figure 3A), confirming that DNA

replication biases strongly influence codon-pair context. Since

the difference between full genome (Figure 3B) and ORFeome

(Figure 3A) codon context maps could separate global genome

biases from translational biases, a DDM was built and the

differences between the two were colored using a blue color scale

(Figure 3C), as before (Figure 2). The DDM showed significant

differences between full genome and ORFeome maps indicating

Table 2. General codon-pair contexts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Negative codon-pair contexts

EUBACTERIA ARCHAEA EUKARYOTA

Context Max. Context Max. Context Max.

AUG.UAU 22,443 GCU.AAC 220,054 ACU.AAG 236,764

UGG.GCC 0,000 ACU.AAG 216,118 UCU.AAG 235,027

AUG.UGA 0,000 ACC.AAA 213,191 AUU.AAG 230,44

GUG.UCA 4,769 UGC.GCA 211,122 AAU.AAG 227,011

UUC.GCA 8,384 CUC.GAG 210,371 GCU.AAG 226,357

GGC.CAA 10,086 ACC.AAG 29,663 UUU.AAG 225,784

UUG.UAC 11,826 CAC.AAA 29,257 CCU.AAG 225,695

GUU.AGC 20,281 CCC.AAA 29,050 UGU.AAG 225,652

GUA.UAC 39,931 UGC.GCU 26,427 UAU.AAG 225,582

GCG.UAC 76,191 CCU.AUG 26,140 AGU.AAG 225,04

Positive codon-pair contexts

Context Min. Context Min. Context Min.

UAC.AAC 25,974 GAC.UGG 14,515 AAG.AAG 67,019

AUG.AGU 28,173 GGC.UGU 13,185 GCU.GCU 51,04

GUU.UCU 28,426 AAU.CCA 12,265 GGU.GGU 34,927

AAA.UAG 210,902 GGC.UGG 9,454 AGA.AGA 29,651

AAU.CCA 211,288 UGG.UGG 8,653 AAG.AAA 28,187

AGA.AGA 20,75 UUC.UGG 8,575 AAC.AAC 27,524

AGU.UUU 25,871 GUA.AAU 7,486 AGC.AGC 26,491

AAG.UAA 26,285 AAC.UGC 6,051 UCU.UCA 25,624

GGC.UCU 218,712 ACA.ACA 5,273 CCU.CCA 23,884

GGG.CAU 227,619 UGC.CCC 5,243 CCU.CCU 23,624

In order to determine whether there are general rules for codon-pair contexts,
the contexts that were negative or positive in the highest number of species
were identified and sorted by the maximum and minimum residual value found
for each context as shown above. As a consequence, contexts that have
negative maximum values or positive minimum values have the same sign in all
species of each domain (general rules). Codon-pair contexts that appeared
more than once are underlined, while codon contexts of identical codons are
shown in bold. Major preference for codon repetitions in eukaryotes is clearly
visible in the dataset.
doi:10.1371/journal.pone.0000847.t002..
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Figure 3. Nucleotide context preferences can be detected in total
genome sequences. A large-scale map for codon-pair context was
produced using either the ORFeome (panel A) or the total genome
(panel B) sequences of 119 species (see Figure 1 and Methods). Such
patterns are either universal i.e. present in every species, or visible only
in special phylogenetic groups. Surprisingly, most of the ORFeome
patterns were also present in total genome sequences, implying that
the major forces that drive the evolution of coding sequences are not
necessarily connected to mRNA translation. Moreover, when a Differen-
tial Map Display (DDM) was built to compare the two former maps
(panel C) it became clear that eukaryotes have a more heterogeneous
behavior, since they showed greater resemblance between coding and
non-coding sequences (darker pattern in the DDM), but they also
produced the larger differences found in the DDM (*). These differences
correspond either to two-codon context rules imposed by the
translational machinery and hence specific of ORFeomes, or to genome
biases that are strongly repressed in coding sequences, where they are
probably associated to increased decoding error rates. ORFeomes were
arranged in the map by domain of life (Eukaryota, Archaea and
Eubacteria from left to right) and sorted as shown in Figure S2. Adjusted
residuals are colored in the maps so that green cells correspond to
preferred and red cells to rejected contexts, while in the DDM major
differences (above 15) between residuals of the previous maps are
shown in light blue.
doi:10.1371/journal.pone.0000847.g003
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that codon-pair context is also influenced by evolutionary forces

that are not related to DNA replication biases. Interestingly, the

column corresponding to eukaryotes was generally darker than

the rest of the map, meaning that coding and non-coding sequences

are similar in eukaryotes (i.e. stronger influence of DNA replication

biases). However, the eukaryotic region of the DDM included the

highest differences between ORFeomes and genomes (marked with *

in Figure 3C), suggesting that the eukaryotic translational machinery

also imposes strong selective pressure on specific combinations of

codons, resulting in a localized higher divergence between coding

and non-coding sequences.

Codon-pair context is influenced by genome and

mRNA translation biases
Since DNA replication biases are partly visible at the dinucleotide

level [30–32], we have constructed individual codon-pair context

maps in which rows and columns were sorted to separate P-site

codons ending with a particular nucleotide (N3; rows) and A-site

codons starting with a particular nucleotide (N1; columns)

(Figure 4A). These two consecutive positions of codon-pair

context discriminated rather well codon-pair preferences and

such discrimination was very strong for high eukaryotes and weak

for low eukaryotes and bacteria (Figure 4A). In order to

determine whether such dinucleotide bias was linked to trans-

lational selection or to overall genome dinucleotide preferences,

the dinucleotide bias was determined for the full set of 119

genomes under study (Figure 4B). Overall, rejection of UA

dinucleotides in the 3 domains of life was evident; a trend that

corresponded to the negative codon-pair context rule (NNU3-

A1NN) described above. The overall dinucleotide biases were also

in agreement with the codon-pair context pattern (Figure 4A).

For example, the rejection of CpG dinucleotides in higher

eukaryotes (with the surprising exception of the honeybee, Apis

mellifera), was also observed in NNC3-G1NN codon-pairs

(Figure 4A). Other examples were UpG and CpA dinucleotides

that were strongly preferred in higher eukaryotes (Figure 4B),

a characteristic that was also reflected in codon-pair context maps

(Figure 4A). Finally, the dinucleotide biases (Figure 4B) showed

overall preference for ApA and UpU dinucleotides. This feature

originated from frequent tandem repeats of 3 and more identical

bases (Figure S4).

The only universal rule detected in the large-scale comparison

(Figure 3) contained codon pairs of the type NNU3-A1NN. Since

this rule included out-of-frame stop codons, namely UAA or UAG

(i.e. NNU3-A1A2N or NNU3-A1G2N), we investigated whether

NNU3-A1NN rejection was related to premature translation

termination. For this, we constructed a subset of codon-pair

context maps in which the contexts containing out-of-frame stop

codons were represented (Figure 5). This approach showed that

NNU3-A1A2N and NNU3-A1G2N type contexts were indeed the

most negative in almost all ORFeomes. However, NNU3-G1A2N;

NU2A3-A1NN and NU2G3-A1NN contexts which also contained

out-of-frame stop codons had a majority of positive residual values

(green), while NNU3-A1C2N and NNU3-A1U2N contexts that did

not contain out-of-frame stop codons had a majority of negative

residual values (red). Since some of the positive context rules

(Figure 5) included the dinucleotide UpA, which was rejected in

the total genomes map (Figure 4), it is likely that dinucleotide bias

is not the only cause for the rejection of codon-pair contexts. On

the other hand, premature termination was not the only potential

problem here, because NNU3-A1C2N and NNU3-A1U2N did not

correspond to out-of-frame stop codons and were also strongly

rejected in ORFeomes (Figure 5).

General codon-pair context rules
In order to highlight the codon-pair context preferences that were

exclusive of coding sequences, the original map of ORFeomes

(Figure 3A) was rebuilt to show in black cells whose residuals

values were similar to those of identical contexts in the complete

genomes map (Figure 3B). In this filtered map (Figure 6A) green

and red colored cells corresponded to those context residual values

calculated for ORFeomes that were significantly different from

those calculated for complete genomes, i.e. cells that were colored

in blue in Figure 3C. This large-scale comparative map allowed

extraction of ORFeome specific codon-context patterns, while the

converse filtering originated a complete genomes map that

permitted extraction of genome specific patterns (Figure 6B). This

approach highlighted clear codon-pair context differences between

ORFeome and complete genome maps (Figure 6A,B). Interest-

ingly, these patterns corresponded to different sets of codon-pair

Figure 4. Influence of dinucleotide bias on the codon-pair context
preferences. A) In order to highlight the influence of dinucleotide bias
on codon-pair contexts, the maps of H. sapiens, M. musculus, S.
cerevisiae and E. coli were arranged according to their (N3-N1) context.
High degree of context discrimination was achieved by these two
positions in higher eukaryotes, especially for the dinucleotide CpG (blue
square), however this effect was weak in yeast and E. coli showed an
opposite preference pattern (green). Adjusted residuals are colored in
the maps so that green cells correspond to preferred and red cells to
rejected contexts. B) In order to further evaluate the role of the
dinucleotide N3-N1 bias on codon-pair context biases dinucleotide
preferences were determined using total genome sequences. The
dinucleotide combinations with highest bias were displayed in green
(preferred dinucleotides) or red (rejected ones) and correspond to
dinucleotides that appear 1% above or bellow the expected level,
respectively. The UpA dinucleotide is strongly repressed throughout all
domains of life. Other constraints imposed on ORFeomes by genomes
biases include the rejection of CpG dinucleotides in higher eukaryotes
and the accumulation of CpA and UpG in higher eukaryotes or UpU and
ApA in almost all organisms. The last preference is related to high
number of tandem repeats of more than 3 consecutive Us or As (Figure
S4). ORFeomes were arranged in both maps by domain of life
(Eukaryota, Archaea and Eubacteria from left to right) and sorted as
shown in Figure S2.
doi:10.1371/journal.pone.0000847.g004
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contexts that could be easily described by the expressions

annotated on the side of each map (Figure 6A,B see also Figure

S5A,B for different thresholds of visualization). In almost all cases,

these codon-pair context rules fixed the last nucleotide of the first

codon and the first nucleotide of the second codon, confirming

that (N3-N1) positions shape codon context. Remarkably, the

major patterns that appeared in the filtered map for complete

genomes (Figure 6B) were related to UpA-rich hexanucleotides

that produce weak codon-anticodon interactions in coding regions

and should hence be under differential selective pressure in both

types of sequences.

DISCUSSION
Mistranslation is a poorly understood biological phenomenon

which is influenced by various protein synthesis factors and

mRNA primary structure features [13,33,34]. In order to shed

new light on how the later influences decoding error and extend

previous studies carried out mainly on the effect of codon usage on

mistranslation [25,35], we are investigating the effect of codon-

pair context on decoding fidelity. Our comparative genomics

approaches unveiled the effect of both genome replication and

translation specific biases on codon-pair context. The few studies

carried out to date on codon-pair context were unable to

distinguish those two types of biases [12,36–38]. Our large scale

approach confirmed the importance of genomic biases but also

unveiled important translational biases that shape codon-pair

context and should be primary targets for mistranslation hot spots.

Large-scale genomic analysis, such as the one that we have

performed, allows for obtaining a global view of mistranslation in

a way that is totally out of reach from analysis of single

ORFeomes. Indeed, comparison of large sets of codon-pair

context data unveiled the main codon-pair context patterns that

exist in the 3 domains of life. Interestingly, when the most

preferred or repressed codon-pair contexts of all organisms were

considered (Table 1), but also when common rules were selected

(Table 2), there was little or no overlapping between the context

patterns of the 3 domains of life. This suggests that genome

replication and/or mRNA translation in each domain imposes

specific constraints to decoding sequences which produce different

codon-pair context outcomes. Also, the phylogeny of individual

Figure 5. Genome dinucleotide bias has a strong influence on codon-
pair context. Since the most generalized negative codon-pair context
rule detected corresponds to the general expression NNU3-A1NN, which
includes the out-of-frame translation termination contexts NNU3-A1A2N
and NNU3-A1G2N, other out-of-frame context terminators were
analyzed separately. For this, the adjusted residuals of such contexts
were included in an ORFeome comparison map. It was clear that NNU3-
A1GN and NNU3-A1AN were indeed the most negative codon-pair
contexts bearing out-of-frame stops, followed by NUA3-G1NN. The
other groups of contexts tested did not generate codon-pair context
rules, although some of them contained the strongly repressed UpA
dinucleotide. The hypothesis that rejection of codon-pair contexts
containing out-of-frame stop codons, namely NNU3-A1A2N and NNU3-
A1G2N evolved to avoid premature termination was partially contra-
dicted by the existence of similar patterns of NNU3-A1NN-type contexts
that do not include any out-of-frame stops, namely NNU3-A1C2N and
NNU3-A1U2N. ORFeomes were arranged in the map by domain of life
(Eukaryota, Archaea and Eubacteria from left to right) and sorted as
shown in Figure S2. Adjusted residuals are colored in the maps so that
green cells correspond to preferred and red cells to rejected contexts.
doi:10.1371/journal.pone.0000847.g005

Figure 6. Some codon-pair context patterns are associated to mRNA
primary structure biases. A) In order to identify ORFeome specific
codon-pair context biases the two large scale context maps were
filtered in such a way that only cells that yielded residual differences
above 15 between the ORFeomes and total genomes sequences were
shown. All other cases were colored in black (see Figure S5 for different
display thresholds). Codon-pair context patterns specific of ORFeomes
are highlighted on the side of panel A. B) To visualize the patterns that
appear in genomes and are absent in ORfeomes, large-scale
comparative maps obtained with total genomes and ORFeomes were
subtracted and only the cells that yielded differences above 15 were
displayed. This highlighted patterns that are strongly preferred or
repressed in coding sequences and may correspond to mistranslation
hot spots.
doi:10.1371/journal.pone.0000847.g006
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species appeared as an important determinant of its codon-pair

context behavior (Figure 2), in a similar manner to that described

for codon usage bias [39] or dinucleotide genome signatures

[31,32].

Influence of genome wide biases on codon-pair

context
Our observation that ORFeomes and total genomes produce

similar patterns of codon-pair context (Figure 3) confirmed

previous studies [4,40,41]. This implies that most sequence

constraints that can be detected in coding sequences are not

imposed by the translational machinery, but arise from selective

pressure imposed by DNA replication and related biases. That

codon usage biases were mainly due to mutational pressure and

only secondarily to translational selection further confirmed the

relevance of DNA replication biases on codon-pair context [7]. In

this scenario, one is prompted to hypothesize that the translational

process may work with sub-optimized mRNA sequences since

codon-context fine tunes decoding fidelity [15,22,23].

Genomes are known to have biased dinucleotide frequencies

[31], a feature that has frequently been used to produce genomic

signatures of phylogenetical and taxonomical relevance [31,32]. At

the ORFeome level this bias influences codon usage [32] but may

also interfere with codon-context, whenever the last nucleotide of

one codon is associated with the first nucleotide of the second

codon of the pair. Indeed, (N3–N1) contexts explained part of our

results (Figure 6) and confirmed the good discrimination obtained

when one ORFeome map for codon context was arranged

according to the last position of the first codon and the first

position of the next codon (Figure 4A).

The association bias of two consecutive nucleotides is

a characteristic of genomes which results from global selective

pressures acting upon DNA at the level of repair and replication

mechanisms [32] or ecological constraints that may influence, for

instance, the overall G+C content of the genome [42–44].

Regulatory activity acting upon the entire genome is another

cause of dinucleotide bias. CpG dinucleotides, for example, are

signals for DNA methylation, a mechanism commonly used by

higher organisms to protect their genome from selfish DNA

elements and to regulate gene expression [5,6]. Our dinucleotide

bias analysis for the 119 organisms confirmed a clear rejection of

CpG methylation in coding sequences of high eukaryotes, as

would be expected, since methylated DNA becomes unavailable

for transcription and hence translation [5]. On the other hand,

UpA dinucleotides are highly repressed in DNA sequences of most

organisms [7,31,45,46]. Interestingly, UpA dinucleotides are sites

for preferential hydrolysis of RNA by macrophage ribonucleases

[45] destabilizing RNA molecules [7] and should hence be

avoided [45]. Furthermore, Duan and colleagues [7] proposed

that mRNA stability imposes strong selective pressure on

synonymous codon usage and it is likely that this is also true for

codon-pair context. Our data confirmed that hypothesis since

NNU3-A1NN contexts were highly repressed in the 119 different

genomes analyzed.

Influence of translational biases on codon-pair

context
As already mentioned, the unique universal rule that could be

detected in the 119 genomes analyzed was rejection of most

codon-pair contexts of the type NNU3-A1NN (Figure 3). Clearly,

this trend is a direct result of repression of the TpA dinucleotide in

total DNA sequences (Figure 3). However, it was surprising that

other UpA bearing contexts did not show strong rejection. For

example, NU2A3-A1NN contexts are mainly preferred in coding

sequences (Figure 5) indicating strong differences between codon-

pairs containing UpA dinucleotides and suggesting that translation

does influence codon-pair choice.

When a large-scale comparison of codon-pair context excluded

global genome biases (Figure 6A) it became evident that contexts

that were truly produced by translation-driven selection were

grouped in negative or positive rules depending on the phylogeny

of the organisms. This was in agreement with the previous

observation that strongly biased codon-pair contexts were different

between the 3 domains of life (Tables 1, 2), and supported the

hypothesis that differences in the translational machineries of

different organisms reshape mRNA primary structure in different

ways. For example, the NNC3-N4NN contexts pattern of higher

eukaryotes (B1 and B2 in Figure 6A) could be explained by specific

decoding rules of C-ending codons in Eukarya. Indeed, eukaryotic

species translate several C-ending codons by wobble pairing rules

using inosine [47], which recognizes A, C, or U at the wobbling

position [48] while bacterial species decode most C-ending codons

with Watson-Crick C-G base pairing between codon and

anticodon [47].

As to the other minor rules highlighted on the left side of

Figure 6, namely NNU3-G1G2R, NRU3-G1A2N and NG2N-

NG2N or NC2N-NC2N, they may be related to both canonical

decoding of U-ending codons in eukaryotes (A1 and A2 in

Figure 6A) and to the existence of runs of special sets of amino

acids, namely serine/proline/threonine/alanine and arginine/

glycine (C in Figure 6A). That contexts of repeated codons are

preferred in eukaryotic genes (Tables 1,2) and that proline, alanine

and glycine are frequently found in amino acid runs of human

genes [49] corroborates the above hypothesis.

On the other hand, most of the major genomic constraints that

were not present in coding sequences, namely NNU3-A1NN,

NYU3-A1RN and N(U/A)2U3-U1(U/A)2N or N(U/A)2A3-A1(U/

A)2N rules (Figure 6B) were associated to weak decoding

interactions involving A-U codon-anticodon pairing. Moreover,

these rules are produced by either strong genomic dinucleotide

bias against UpA (Figure 6B, rule D) or by rejection of error prone

UA-rich codon-pair contexts in coding sequences (Figure 6B, rule

F), in a clear confirmation of the additive effect of translational and

non-translational selective pressures. Finally, we could also see

a preference for trinucleotide repeats in non-coding sequences that

was not detectable in coding regions, at least in eukaryotes

(Figure 6B, rule E). This has already been described in primates

and is related to strong mRNA primary structure constraints

associated to high mRNA decoding efficiency [50].

Conclusions
Codon-pair contexts are biased in ORFeomes and such bias is the

result of both translation and non-translation driven processes.

Indeed, translational and DNA replication/repair and cis

regulatory elements act synergistically on codon-pair context.

This myriad of selective pressures creates significant difficulties to

the identification of codon-context biases associated to mRNA

translation only. Our large scale comparative genome approach

indicated that: i) there is a strong influence of non-translational

selective pressures upon coding sequences, especially in eukaryotic

organisms since these have a higher degree of resemblance

between ORFeome and total genome biases; ii) the strongest non-

translational selective pressures that could be identified were

dinucleotide biases, mainly imposed by regulatory cis-elements

linked to DNA methylation or mRNA stability [5,45], and

preference for trinucleotide repeats, usually associated with DNA

polymerase slippage during replication [51]; iii) apart from this
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non-translational noise, DNA coding sequences showed specific

features that could be related to mRNA translation, namely

repression of usage of premature termination or error-prone

contexts associated to weak codon-anticodon interactions. It will

now be most interesting to validate these in silico data in vivo, and

identify experimentally the codon-pair contexts that are strongly

selected for high mRNA decoding fidelity.

METHODS

Primary data sources
Nucleotide sequences, of complete genomes and assembled

ORFeomes, were downloaded from GenBank or Ensembl Web

sites (Genbank: ftp://ftp.ncbi.nih.gov/genomes/; Ensembl: ftp://

ftp.ensembl.org/pub/) between December 2005 and January

2006. These included the DNA sequences of 81 eubacterial, 18

archaeal and 20 eukaryotic species. Plasmid sequences were not

included in the analysis and all chromosomal sequences from one

genome were analyzed together by ANACONDA 2.0. The total

set of files downloaded and used in this study is documented as

supplementary data (Figure S2).

Statistical analyses
Two-codon context bias was studied in complete ORFeome

sequences using the residual analysis tools available in the software

package ANACONDA 1.0 (a detailed explanation of this software

can be found in [20,29]. ANACONDA is publicly available at

http://bioinformatics.ua.pt/submited-papers).

Briefly, this methodology counts all consecutive pairs of codons

and uses statistical analysis for contingency tables where

a multinomial distribution is assumed (Figure 1B). The final result

of such statistical approach is the calculation of adjusted residuals

for each codon pair present in any ORFeome. The adjusted

residuals give direct information about preference or rejection of

these codon pairs in relation to what would be expected assuming

independence of the distribution (Figure 1B).

Since, under independence between two consecutive codons,

the adjusted residuals dij have a standardized normal pro-

bability distribution [52], we have concluded that:

P {3vdijv3
� �

&0:9973, as the total number of observations is

very high. This means that, for a 99,73% confidence level, an

adjusted residue was statistically significant if its absolute value was

greater than 3 [20]. However, this approach was based on a local

analysis for each residual value. Herein, we considered a global

analysis for each species and have thus constructed a simultaneous

confidence region for all residual values. Since there are

K = 61664 different intervals we have introduced the Bonferroni

correction to ensure an overall level of significance of a (usually

a = 0.05, 0.01, 0.001). The Bonferroni correction is used for

correction where each interval is constructed at a 1006(1–a/K)

level (see, for example, [53]). Therefore, a–a to a interval at

a confidence level of 1006(12a/(61664)) was constructed for

each adjusted residual value dij. Considering again the asymptotic

normal distribution of dij [52] we had a<4,70341 when 1–a = 0,99,

a<5,15350 when 1–a = 0,999, a<8,16204 when 1–a = 0.016
10210. Thus, we assumed that the codon-pair adjusted residuals

that fall within the interval 25 to 5 were not statistically

significant, for a global confidence level of 99% (colored in black

in all maps shown herein).

The final output of residual analysis performed by ANACON-

DA is a codon-pair context map for each ORFeome being studied

(Figure 1C). These maps show one colored square for each codon-

pair, the first codon corresponding to rows and the second

corresponding to columns in the map. The color scale chosen for

this layout determines that preferred contexts are shown in green

while repressed ones appear in red (Figure 1C).

Taking advantage of the automated statistical analysis performed

by ANACONDA, individual maps for all 119 ORFeomes were built

(see Figure S3). In order to facilitate large-scale comparison of maps

these were converted into single lines and clustered together

(Figures 1D,E and 3). The patterns that appear in the resulting

comparative map were then characterized by the codon-pair

contexts that were present in each pattern. Also, the values of the

adjusted residuals calculated for each species were corrected for

ORFeome size to allow direct comparisons among ORFeomes.

The above approach was also used to study total genome

sequences of the same 119 species in order to differentiate between

the effect of translational selection acting upon coding sequences

alone and genome mutational biases. With the same purpose, the

bias for dinucleotides was studied in total genome sequences, and

shown as observed frequencies, colored in green or red whenever

the result was 1% above or below the expected value, respectively

(Figure 4B).

SUPPORTING INFORMATION

Figure S1 Data normalization. In order to correct the size

differences of ORFeomes, particularly between eukaryotes and

non-eukaryotes, the adjusted residuals were normalized for 21

million codons which correspond approximately to the larger

ORFeome analyzed (X. tropicalis). Normalization of codon-pair

data for human chromosomes 1, 2, 3, 22 and ORFeome are

displayed. The normalization effect is shown by the brightness of

the maps, which is variable in non-normalized maps (above) and

constant in normalized ones (below). After data normalization the

differences between maps could be compared as shown in the

DDM (right end of the Figure).

Found at: doi:10.1371/journal.pone.0000847.s001 (4.32 MB TIF)

Figure S2A List of species used. All species used in the study are

listed according to the download order. The database of origin and

respective accession numbers are indicated. A - Eukaryotes; B -

Archaea and Eubacteria; C - Eubacteria (cont.).

Found at: doi:10.1371/journal.pone.0000847.s002 (0.54 MB TIF)

Figure S2B

Found at: doi:10.1371/journal.pone.0000847.s003 (0.54 MB TIF)

Figure S2C

Found at: doi:10.1371/journal.pone.0000847.s004 (0.54 MB TIF)

Figure S3A Individual codon-pair context maps of the 119

species. The codon-pair context maps built with ANACONDA

software for individual ORFeomes are shown as ordered in Suppl.

Figure S2.

Found at: doi:10.1371/journal.pone.0000847.s005 (4.32 MB TIF)

Figure S3B

Found at: doi:10.1371/journal.pone.0000847.s006 (4.32 MB TIF)

Figure S3C

Found at: doi:10.1371/journal.pone.0000847.s007 (4.32 MB TIF)

Figure S3D

Found at: doi:10.1371/journal.pone.0000847.s008 (4.32 MB TIF)

Figure S3E

Found at: doi:10.1371/journal.pone.0000847.s009 (4.32 MB TIF)

Figure S3F

Found at: doi:10.1371/journal.pone.0000847.s010 (4.32 MB TIF)

Figure S3G

Found at: doi:10.1371/journal.pone.0000847.s011 (2.16 MB TIF)
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Figure S3H

Found at: doi:10.1371/journal.pone.0000847.s012 (2.16 MB TIF)

Figure S3I

Found at: doi:10.1371/journal.pone.0000847.s013 (2.16 MB TIF)

Figure S3J

Found at: doi:10.1371/journal.pone.0000847.s014 (2.16 MB TIF)

Figure S4 A and U bases are preferentially arranged in

polynucleotide strings. In order to check if the preference detected

for AA and UU dinucleotides in total genomes (Figure 4B) was due

to a tendency for these bases to appear as polynucleotide strings we

counted the number of times each individual base appeared

isolated or in strings of two, three or more equal bases. The result

of this approach points to a clear positive bias towards the

accumulation of 3 or more consecutive A or U bases in total

genomes.

Found at: doi:10.1371/journal.pone.0000847.s015 (0.10 MB TIF)

Figure S5A Codon-pair context patterns that are exclusive of

ORFeomes or genomes. The filtering technique that was used to

determine the biases of codon-pair contexts in coding and total

sequences (Figure 6) was further explored in here to evaluate the

strength of those biases. This was done by gradually increasing the

threshold of the residuals (D) that are significantly different in both

maps, i.e. those that were allowed to appear in their original colors

in the filtered map. When D was increased, only major differences

between ORFeomes and genomes were visible, corresponding to

differences between the residuals of ORFeomes and genomes

maps that stay above 15, 20, 30 or 50. The strongest rules detected

by this approach correspond to those identified as B1 and B2 in

the filtered map for ORFeomes (map A in Figure 6), and F1, F2

and E2 in the filtered map for genomes (map B in Figure 6),

because they are still visible when D = 50.

Found at: doi:10.1371/journal.pone.0000847.s016 (0.55 MB TIF)

Figure S5B

Found at: doi:10.1371/journal.pone.0000847.s017 (0.53 MB TIF)

Table S1 Codon-pair distribution similarities between the 3

domains of life. In order to compare the overall distribution of

codon-pair contexts among the 119 organisms we have calculated

the Spearman’s correlation coefficients between all pairs of

ORFeomes, producing a triangular colored map. The 119 species

were organized by domain of life and sorted alphabetically in each

domain. Pairs of species that were not statistically correlated (for

a level of significance of 5%) are colored in grey, while green

colored cells indicate pairs of species that were highly correlated

(correlation coefficient above 0,80), and blue colored cells

correspond to the major values fount inside each domain.

Found at: doi:10.1371/journal.pone.0000847.s018 (0.32 MB

XLS)
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