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Background. Alternative splicing plays an important role in generating molecular and functional diversity in multi-cellular
organisms. RNA binding proteins play crucial roles in modulating splice site choice. The majority of known binding sites for
regulatory proteins are short, degenerate consensus sequences that occur frequently throughout the genome. This poses an
important challenge to distinguish between functionally relevant sequences and a vast array of those occurring by chance.
Methodology/Principal Findings. Here we have used a computational approach that combines a series of biological
constraints to identify uridine-rich sequence motifs that are present within relevant biological contexts and thus are potential
targets of the Drosophila master sex-switch protein Sex-lethal (SXL). This strategy led to the identification of one novel target.
Moreover, our systematic analysis provides a starting point for the molecular and functional characterization of an additional
target, which is dependent on SXL activity, either directly or indirectly, for regulation in a germline-specific manner.
Conclusions/Significance. This approach has successfully identified previously known, new, and potential SXL targets. Our
analysis suggests that only a subset of potential SXL sites are regulated by SXL. Finally, this approach should be directly
relevant to the large majority of splicing regulatory proteins for which bonafide targets are unknown.
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INTRODUCTION
Intervening sequences called introns interrupt the majority of

genes in multi-cellular organisms. Spliceosomal introns are rare

(,4%) in the budding yeast but present in the majority (85–94%)

of genes in metazoans. Introns are removed and the coding regions

(exons) joined together via a process known as pre-mRNA splicing

before an mRNA can be translated. The 59 and 39 splice sites, the

branchpoint, and the polypyrimidine tract (Py-tract) are important

splicing signals in metazoans. Five small nuclear ribonucleopro-

teins (U1, U2, U4, U5, and U6 snRNPs), along with several

additional factors, recognize these signals and assemble onto the

pre-mRNA to form a large complex called the spliceosome.

Spliceosome assembly occurs in several distinct steps, involving

RNA-RNA, protein-protein, and RNA-protein interactions,

leading to two catalytic reactions [1,2].

Alternative splicing generates multiple mRNA and/or protein

isoforms from a single gene through the use of alternative 59 splice

sites, 39 splice sites, exons, and/or introns. Several genes are

known to encode .1,000 alternatively spliced mRNA isoforms.

For example, the Drosophila homolog of the human Down

Syndrome Cell Adhesion Molecule (DSCAM) gene potentially

encodes three times as many alternatively spliced transcripts

(,38,000) as the total number of predicted genes (,13,600) in the

fruitfly [3,4]. Thus, alternative splicing, among several processes

[5], provides a mechanism to generate enormous molecular

diversity from a single gene, and provides a rich source of

functional diversity in multi-cellular eukaryotes [6,7]. Alternative

splicing plays an important role in numerous cellular and

developmental processes such as cell growth and differentiation,

cell signaling, programmed cell death, and nonsense-mediated

decay [8,9].

The best-studied example of a developmental process controlled

by alternative splicing is the Drosophila melanogaster somatic sex-

determination pathway. It involves a hierarchy of alternative

splicing events in which the key sex determining genes (Sex-lethal

(Sxl), transformer (tra), double-sex (dsx), and male specific-lethal 2 (msl2)

are spliced differently in male (XY) and female (XX) flies. The

master sex-switch protein, SXL, is an RNA-binding protein that is

absent in male flies and present in females [10]. It affects the

splicing of three known pre-mRNAs by binding to uridine-rich

sequences or polypyrimidine-tracts (Py-tracts) that are present

adjacent to splice sites, leading to exon skipping in Sxl, 39 splice site

switching in tra, and intron retention in msl2 [6,11]. In female

somatic cells, SXL mediates sexual differentiation and courtship

behavior by allowing synthesis of the TRA protein, and allows

proper dosage compensation by preventing synthesis of the MSL2

protein [10,11]. In addition to its role in alternative splicing, SXL

also represses translation by binding to uridine-rich sequences in

the untranslated regions (UTRs) of the Sxl and msl2 mRNAs [11].

Furthermore, SXL also controls female germline development

[10]. Absence of SXL in the female germline causes mitotic and

meiotic defects, resulting in ovarian tumors or multicellular cysts of

small undifferentiated cells [12,13,14] and in defects in chromo-

some pairing and meiotic recombination [15].

Several independent studies have suggested that additional

targets of SXL exist. First, SXL associates with numerous loci on

polytene X-chromosomes, presumably binding to nascent tran-

scripts [16]. Second, SXL regulates the fit (female-specific independent

of tra) gene in a tra-independent manner in the soma, although it is

unlikely to be a direct target of SXL because of the lack of sex-

specific mRNA isoforms and lack of SXL-binding sites [17].

Third, SXL controls dosage compensation of some msl2-in-
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dependent gene(s) that remains to be identified [18]. Fourth,

although SXL has several important functions in the female

germline, previous attempts to develop a genetic handle on its

germline-specific targets have been unsuccessful [19]. Thus,

additional targets of SXL, particularly in the female germline,

have gone unrecognized, most likely because of subtle phenotypes,

redundant functions, or limitations of a particular genetic screen.

Here we present a computational strategy that allowed

identification of both new and potential SXL targets. This

approach may be used to identify potential targets of other

RNA binding proteins.

RESULTS

Computational strategy for the identification of

potential targets of SXL
Given that the Drosophila genome has been sequenced [3] and that

the SXL-binding site has been well characterized [20,21,22,23],

we searched the entire Drosophila genome using a weight matrix

corresponding to the SXL-binding site. Unlike string matching,

this approach provides a quantitative rather than a merely

qualitative description of a binding site by assigning weights to

the four nucleotides at each sequence position. We aligned the

SXL-binding sites (UUUUGUU(G/U)U(G/U)UUU(G/U)UU)

from sequences selected by SELEX from a random RNA library

[20] and converted this alignment matrix into a weight matrix of

log-likelihood scores (Supplementary Table S1), as described [24].

We searched each of the overlapping 16-nucleotide strings in the

Drosophila genome and calculated the total score for each string

based on the weight matrix. If the score was above a user defined

cut-off value (5.1 was used here to obtain only high-affinity binding

sites), the genomic location of the binding site was saved. However,

if the score was below the cut-off, the search engine advanced to

the next position (for additional details see materials and methods).

This score was carefully chosen to capture known high affinity,

long SXL sites such as those adjacent to regulated splice sites of tra,

Sxl, and msl2 transcripts, but ignore the majority of the short Py-

tracts, including those associated with 39 splice sites. We

empirically determined how far apart the hits were in the genome

sequence. For example, when the hits were on average 20,000

basepairs apart, we expected approximately 12,600 binding sites.

The cut-off (5.1) used here ignored most of the uridine-tracts such

as those present near 39 splice sites. We were aware that it

eliminated multiple copies of clustered, short Py-tracts, which

might be potentially regulated, because the number of hits became

unmanageable. For the matrix for the SXL-binding site,

a maximum possible score is 7.88 (Table S1).

Our search of both strands of the genomic DNA yielded 14,007

matches for putative high affinity SXL-binding sites (Figure 1A).

Given that there are approximately 13,600 predicted genes in

Drosophila [3], the initial number of matches was too large for

experimental analysis. Therefore, our in silico analysis included the

following filters in a step-wise manner to reduce the number of

candidates to an experimentally manageable size (Figure 1B). First,

we determined if there was an expressed sequence tag (EST)

within 3 kb on either side of the potential SXL-binding sites. This

was intended to eliminate the matches that were in the intergenic

region, which is particularly AT-biased [3]. Second, since SXL

controls the splicing of its known targets, the remaining candidates

were filtered on the basis of the proximity of potential binding sites

to known splice sites. For the initial screen, we selected only those

candidates (807) in which SXL-binding sites were located within

100 nucleotides of known 59 or 39 splice sites. The splice site

locations were assigned based on comparison of EST sequences to

the genomic sequence and on their match to the splice site consensus

[25]. Third, we discarded the candidates that were not present on

the sense strand of the relevant genes. This left us with 346

candidates. Fourth, since all known targets of SXL are regulated by

alternative splicing, we determined whether there was evidence of

alternative splicing for the potential candidates based on the

database of about 86,000 ESTs. We determined if splice sites

adjacent to potential SXL-binding sites were alternatively spliced by

aligning EST sets for each of the 346 candidates, using the ClustalW

multiple sequence alignment program. The total number of potential

candidates that met these multiple criteria was 33 (30 new)

(Figure 1A); this number was experimentally amenable. It should

be emphasized that this list included all 3 previously known targets of

SXL (Sxl, tra, and msl2), and that several candidates contained

multiple SXL-binding sites. Thus, this strategy successfully identified

all previously known SXL targets as well as potential new targets.

Seven candidates show sex-specific mRNA isoforms

in adult flies
SXL is present in females and absent in males. Furthermore, all

known targets of SXL are alternatively spliced in a sex-specific

Figure 1. Computational search identifies potential targets of SXL. (A)
Step-wise rationale for the identification of biologically relevant SXL
targets. The number of potential candidates with SXL binding sites
remaining after each step is indicated. (+3) represents that the three
known targets of SXL (Sxl, tra, msl2) were also identified. (B) Schematics
of how the search program works. Overlapping nucleotide windows are
scanned for sequences that match the consensus-binding site. When
a binding site is identified, the search program determines whether it is
within 100 nucleotides of a splice site, whether it is in the sense
orientation, and whether there is evidence of alternative splicing for
that site.
doi:10.1371/journal.pone.0000520.g001
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manner, generating sex-specific isoforms that differ in length and

that can be identified using Northern analysis. Thus, it was

anticipated that at least some of the additional candidates would

also generate sex-specific isoforms. To pursue them, we obtained

cDNA clones for each of the 30 new candidates and performed

Northern analysis using poly(A)+ RNA from male or female adult

flies. Twelve candidates showed expression but no sex-specific

isoforms, and eight candidates showed no detectable signal on

these RNA blots from adult flies (Figure 2). It remains possible that

these candidates have similarly sized alternative exons, low

abundance sex-specific transcripts, or sex-specific expression at

other stages during development. These candidates were not

pursued at this stage. Most importantly, seven candidates showed

sex-specific mRNA isoforms (Figure 2, see asterisks), indicating that

they might be potential SXL targets. CG3630 was found to have

a longer non-sex-specific transcript and a shorter female-specific

transcript. CG6422 had a shorter non-sex-specific transcript and

a pair of longer female-specific transcripts. CG11737 had a longer

non-sex-specific transcript and a shorter male-specific transcript.

Rm62 had a longer non-sex-specific transcript and two shorter sex-

specific transcripts, one male-specific and the other female-specific.

Act5c and e(r) both had a shorter non-sex-specific transcript and

a longer female-specific transcript. Finally, blow had a longer non-

sex-specific transcript and two shorter transcripts, one male-specific

and another female-specific.

SXL-binding site and sex-specific isoforms
Examination of the EST database revealed potential sources for

the sex-specific differences and suggested how SXL might regulate

these targets (Figure 3A). Four candidates (CG3630, CG6422,

CG11737, and blow) showed evidence of alternative 59 splice site

choice adjacent to the SXL-binding site. The SXL-binding site in

CG3630 was found within the exon upstream of the first

alternative 59 splice site, the SXL-binding site in CG6422 was

found downstream of the second alternative 59 splice site, and the

SXL-binding sites in CG11737 and blow were found between

alternative 59 splice sites. These scenarios are reminiscent of the

way in which SXL regulates 39 splice site choice in its known

target tra (Figure 3B) by binding to a site adjacent to the non-sex-

specific 39 splice site [26,27]. Three candidates (Rm62, Act5c, and

e(r)) showed evidence of alternative exon usage near SXL binding

sites (Figure 3A). Rm62 contained three identified SXL-binding

sites adjacent to alternative exons. Act5c and e(r) had SXL-binding

sites located adjacent to alternative exons. Since the difference in

the size of the alternative Act5c exons alone is insufficient to

account for the sex-specific isoforms we believe that the female-

specific isoform most likely reflects cross-hybridization to different

members of the highly conserved actin family [28]. The use of

alternative exons in Rm62 and e(r) is reminiscent of the regulation

of the known target Sxl (Figure 3B), in which exon skipping is

caused by SXL binding to sites flanking an alternative exon

[29,30]. As noted above, the new target e(r) was one of the

candidates that contained multiple SXL-binding sites; one

adjacent to an alternatively spliced exon and another downstream

of an alternative polyadenylation site. Our molecular character-

ization of e(r) showed that both alternatively spliced and

alternatively polyadenylated transcripts exist in vivo (data not

shown). We found that the latter makes the primary contribution

to sex-specific regulation, which occurs specifically in the female

germline [31]. This candidate was pursued in significant detail

because its regulation involved a novel mechanism. Our extensive

molecular genetic analysis involving mutations in Sxl and the SXL-

binding site and biochemical analysis using recombinant proteins

showed that SXL-dependent regulation of e(r) provides a molecular

mechanism for translational repression specifically within the

female germline [31].

Somatic versus germline expression of the

remaining sex-specific transcripts
As a first step towards determining any potential SXL-mediated

regulation, we analyzed the tissue-specificity of the sex-specific

transcripts for five of the remaining six candidates. The sixth

candidate, Act5C, had several homologs that were highly conserved

at the nucleotide level, raising the possibility that several individual

genes likely contributed to the pattern of transcripts observed in

Fig. 2. Thus, this candidate was not characterized further at this

time. The expression patterns of the remaining five candidates

were analyzed in the progeny of tudor (tud1/Df) flies, which lack

a germline, allowing the sex-specific transcripts to be sorted based

on somatic or germline origin. Three of the five candidates showed

consistent, reproducible results. The shorter male-specific tran-

scripts found in two of the candidates, CG11737 and blown-fuse

(blow), remained in the progeny of tudor (tud1/Df) flies (Figure 4A,

Figure 2. Screening for sex-specific isoforms. (A) Seven candidates show sex-specific mRNA isoforms by Northern analysis on poly(A)+ RNA from
adult flies. Asterisks indicate sex-specific isoforms. XY and XX indicate chromosomal sex. (B) (Top) Several candidates (bancal, Bap60, ImpL3, inx7, Moe,
Rala, Ric, Top2, Frq2, Cyp28a5, RpL36, and Dhc16F)a were present at equal levels in both sexes. (Bottom) Several others (fus, pUf68, CG8370, katanin-60,
vap, CG2967, CG5455, and aralar1)b showed no hybridization in adult flies.
doi:10.1371/journal.pone.0000520.g002
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panels 1 and 2, lane 3 versus lane 1) indicating that the transcripts are

somatic in origin. The third candidate, Rm62, exhibited the opposite

effect. The shorter female-specific transcript was not present in the

progeny of tudor (tud1/Df) flies (Figure 4A, panel 3, lane 4 versus lane

2), indicating that this transcript is germline specific.

Although the function of CG11737 is not known, the functions

of blow and Rm62, were intriguing. Blow is implicated in somatic

muscle development [32], and a male-specific somatic muscle had

been previously described [33]. Rm62 is an mRNA-binding

protein with ATP-dependent helicase activity that has been

implicated in alternative splicing [34,35], making it a potent

potential downstream target of SXL.

Candidates CG11737 and blow are downstream of

dsx in the soma
Expression of the sex-specific transcripts of CG11737 and blow in

somatic tissue raised the possibility that they might be targets of

SXL in the soma. Given that both of the sex-specific transcripts

were seen in males and that SXL is not present in males, the most

likely role for SXL would be the repression of these male-specific

transcripts in females. To test this hypothesis, we examined the

expression pattern of CG11737 and blow in female flies lacking

somatic SXL (Figure 4B, lane 3). Loss of SXL in these flies caused

the appearance of the male-specific transcript of both CG11737

and blow. This indicated that both CG11737 and blow are

downstream of Sxl in the soma.

Although CG11737 and blow were downstream of Sxl, the

observed effect could be due to indirect regulation through tra and

dsx. Therefore, we tested the effects of loss of TRA and DSXF on

the expression of the male-specific transcript. For both CG11737

Figure 3. Schematics of the relevant portion of the potential SXL
targets (A) and known SXL targets (B). Boxes, exons; horizontal lines,
introns; solid and dotted lines, alternative splicing pathways; asterisks,
potential SXL-binding sites. The SXL-binding sites identified are: CG3630
(UUUUUCUUGUUUUUUUU), CG6422 (UUUUUGUUUUUUUUUU),
C G 1 1 7 3 7 ( U U U U U G U U G U U U U U U U U U U U ) , R m 6 2
(UUUUUUUUUUUUUUUUU, UUUGUUGUUUUUUUCUUUGUGUUUG, and
U U U U U U U U ) , A c t 5 c ( G U G U U U U U U U U U U U U U U U ) , b l o w
( U U U U U U U U U U U U U U U U U U U U U U U U U U U G U U U ) , a n d e ( r )
(UUUUUUUUUUGUCUUUUUUUUUUUU and UGUGUGUGUUUUUGUGU-
GUUUCAAUGUUUUUUUGUG).
doi:10.1371/journal.pone.0000520.g003

Figure 4. The sex-specific transcripts of CG11737 and blow are
downstream of dsx in the soma. A. The sex-specific transcripts of
CG11737 and blow are somatic in origin, and the sex-specific transcript
of Rm62 is restricted to the germline. CG11737 and blow show no
changes in expression pattern in the progeny of tud mothers (lanes 3
and 4 versus 1 and 2), while the female-specific transcript of Rm62 is lost
(lane 4 versus lane 2). B. The sex-specific transcripts of CG11737 and
blow are downstream of Sxl in the soma. Loss of Sxl in XX flies causes
a switch to the male expression pattern (lane 3). C. The sex-specific
transcripts of CG11737 and blow are downstream of tra and dsx in the
soma. Loss of tra (lane 4) or dsx (lane 10) in XX flies causes a switch to
the male expression pattern.
doi:10.1371/journal.pone.0000520.g004
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and blow, loss of tra (Figure 4C, lane 4) or loss of dsx (Figure 4C,

lane 10) in females caused switching to a male expression pattern.

Thus, the sex-specific expression patterns of CG11737 and blow

are governed by genes in the somatic sex-determination pathway

downstream of Sxl. Moreover, these findings emphasize that

presence of an SXL-binding site is necessary but not sufficient for

SXL-mediated regulation. We conclude that the two genes are

indirectly regulated by SXL.

Rm62 is downstream of SXL in the germline
Since the female-specific transcript of Rm62 is expressed in the

germline, we tested whether SXL function in the germline was

necessary for its production. First, we examined Rm62 expression

in the flies with mutations in the sans fille (snf) gene (snf1621 and

snf148) that disrupt Sxl function in the female germline. Female flies

homozygous for either snf mutation did not express the female-

specific Rm62 transcript (Figure 5A, lanes 1 and 3), but introduc-

tion of an Sxl cDNA into these backgrounds restored expression of

the transcript (lanes 2 and 4). Second, females homozygous for the

Sxlf4 and Sxlf5 alleles also lacked the female-specific Rm62 tran-

script (Figure 5B, lanes 3 and 4 versus 1 and 2). The combined

results of these experiments demonstrate that SXL function in the

germline is necessary for expression of the female-specific, shorter

Rm62 isoform either directly or indirectly.

Given that the female-specific Rm62 transcript was produced in

the germline, it was possible that it was maternally deposited.

Examination of the Rm62 expression pattern in embryos showed

that the female-specific Rm62 transcript was specifically deposited

into embryos (Figure 5C, lane 1) but was replaced by the non-sex-

specific transcript after the maternal to zygotic transition

(Figure 5C, lanes 2–4). We conclude that Rm62 is downstream

of SXL in the female germline and is maternally deposited.

Thus, our genome-wide search fulfilled its main purpose - to

identify SXL targets near splice sites that showed evidence of

alternative splicing, to identify all of the previously known targets,

and to identify a novel target e(r) and a potential target Rm62.

Only a subset of SXL-binding sites are regulated by SXL in vivo.

The e(r) and Rm62 transcripts provide important downstream

handles to study the mysterious role of SXL in the female

germline.

DISCUSSION
The genome-wide screen presented here, combining a computa-

tional search, biological constraints, and molecular genetic

Figure 5. Germline SXL is necessary for expression of the female-specific Rm62 transcript. A. XX flies homozygous for the snf1621 or snf148 alleles,
which disrupt SXL function specifically in the germline, do not express the female-specific Rm62 transcript (lanes 1 and 3). Expression of a Sxl cDNA in
snf mutant backgrounds under the control of the otu promoter restores the synthesis of the female-specific Rm62 transcript (lanes 2 and 4). B. XX flies
homozygous for the Sxlf4 or Sxlf5 alleles show a loss of the female-specific Rm62 transcript (lanes 3 and 4). C. The female-specific Rm62 transcript is
maternally deposited, and is present only in mature ovaries.
doi:10.1371/journal.pone.0000520.g005
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analysis, identified both the previously known targets and a novel

target of SXL. Identification of transcripts that appear down-

stream of SXL in the female germline is an important step toward

understanding the role of SXL in the female germline.

Although previously known targets of SXL (tra and msl2) have

exclusively sex-specific functions, it is not unreasonable to expect

that certain targets could have both non-sex-specific and sex-

specific functions at different times or in different tissues during

development. These targets could have easily escaped previous

genetic screens that identified the known components of the sex-

determination pathway based on sex-specific phenotypes. In fact,

the germline-specific Sxl target e(r), which was identified in this

screen, is essential in both sexes during embryogenesis and is

regulated by Sxl in the female germline later during development

[31]. Similarly, whereas certain mutations in the Drosophila PTB

and the class VI unconventional myosin 95F (jaguar) are lethal,

others specifically affect spermatogenesis, resulting in a male-sterile

phenotype indicating that a gene can have both non-sex-specific

and sex-specific function and/or regulation [36,37,38]. Therefore,

we believe that additional Sxl targets that contribute to sexual

dimorphism but do not solely have sex-specific functions remain to

be identified. Among the potential new candidates that have SXL-

binding sites in relevant biological contexts (Figure 1B) and that

show sexually dimorphic expression patterns (Figure 2), Rm62 is

a potential target in the female germline, and the others (blow,

CG3630, CG6422, and CG11737) are indirectly regulated by

SXL via dsx in the soma. blow encodes a protein necessary for

myoblast fusion and proper mesoderm development during

embryogenesis, and the remaining candidates CG3630, CG6422,

and CG11737 have no known function or previously recognized

protein domain structure, although CG6422 is a putative member of

the YT521-B-like family, which has been shown to modulate splice

site selection in vivo [32,39,40]. Rm62, which is an ATP-dependent

RNA helicase that contains a DEAD-box domain and an RRM-type

RNA-binding motif [41,42], is inferred to be involved in the

regulation of alternative splicing [35] and interacts with components

of the RNAi machinery [43]. Given that the computational screen

identified the three known targets of SXL as well as a novel target of

SXL, characterization of Rm62 using molecular genetics should

provide important new insights into the function and regulation of

both previously characterized and uncharacterized genes, the

mechanisms of action of SXL, and the basis for sexual dimorphism.

Known molecular differences in the Rm62 transcripts represent both

alternative splicing and polyadenylation variants. Future studies

should address whether Rm62 is a direct or indirect target of SXL,

and what the molecular basis for the sex-specific Rm62 transcript is.

Independent biological information from one or more genome-

wide analyses may also be integrated to further refine the list of

candidates. For example, SXL may collaborate with cofactors for

increased specificity, as documented for the repression of msl2

translation in females by SXL and its cofactor UNR [44,45], and

for sex-specific splicing regulation of the dsx and fruitless transcripts

by TRA and its cofactor TRA2 [10]. Second, conservation of

short degenerate binding sites for RNA-binding proteins may be

revealed by cross-species sequence comparison as has been done

for C. elegans [46]. Third, direct in vivo RNA binding can be

revealed by immunoprecipitation coupled with microarray

analysis as has been done in Drosophila [47]. Thus, incorporation

of additional biological constraints should help overcome limita-

tions unique to any given approach and reduce the number of

candidates for detailed characterization. Incorporation of such

constraints could also allow searches for clusters of short uridine-

rich sequences, which occur frequently and were ignored in the

present study.

We note that recent experiments employing tiling arrays argue

for extensive transcription in the Drosophila genome [48], implying

that a subset of the putative SXL binding sites in regions annotated

as intergenic could have a role in post-transcriptional regulation of

non-coding transcripts.

In the future, the computational search presented here could

benefit from improvements in the following areas: availability of

full-length ESTs; improved annotations of gene structure,

especially at exon/intron junctions; identification of low-abun-

dance alternative transcripts; incorporation of quantitative in-

formation with respect to the frequency of alternatively spliced

isoforms; and improvement in the speed of the algorithm by using

indexing techniques and relational databases [49].

The majority of RNA-binding proteins, including splicing

regulators, tend to have short, degenerate binding sites that occur

frequently throughout the genome. Therefore, identification of

biologically relevant binding sites is one of the most important

challenges in the area of gene regulation. The most important

strength of the analysis presented here is that the SXL binding site,

although frequent throughout the genome, has biological con-

sequences only when present in specific contexts such as in the

proximity of alternative splice or polyadenylation sites. Moreover,

since not all SXL-binding sites are regulated by SXL, a co-factor

may collaborate with SXL to specify those that are regulated. Our

computational method is readily adaptable to any RNA-binding

protein for which a consensus binding sequence is known but the

targets are unknown [50], and should provide a powerful tool in

the search for target pre-mRNAs.

In conclusion, this approach has identified a novel target of

SXL, has provided an additional potential target, and can be

extended to numerous other RNA-binding proteins for which

binding sites have been identified.

MATERIALS AND METHODS

Databases and indexing
We downloaded the databases for the Drosophila genome

(na_geno.dros.RELEASE2.Z) from the Genome Annotation

Database of Drosophila Release 2 (GADFLY) (http://www.

fruitfly.org/sequence/dlMfasta.shtml) and the expressed sequence

tag (EST) database (na_EST.dros.Z) (http://www.fruitfly.org/

sequence/dlcDNA.shtml) from the Berkeley Drosophila Genome

Project (BDGP). Both the genomic and EST databases were

converted, using the formatdb command, from a fasta format to

a format usable by BLAST using the NCBI toolbox (ftp://ftp.ncbi.

nih.gov/toolbox/). In addition, both databases were indexed to

fetch sequences faster for intermediate steps during analysis.

Generation of the weight matrix for the SXL binding

site
The SXL weight matrix for the search was created from twenty-six

sequences selected by selection-amplification from a random RNA

library [20]. First, the sequences were arranged into an alignment

matrix, which defined the number of times each nucleotide was

found at a specific position within the alignment. The alignment

matrix was then converted into a weight matrix using the formula:

log
(ni,jzpi)=(Nz1)

pi

where N is the total number of sequences, pi is the a priori

probability of nucleotide i, and ni,j is the number of times

nucleotide i appears at position j (for detailed description see [24]).
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Sequence search
To identify SXL-binding sites, overlapping windows of 16

nucleotides were scored using the weight matrix (Table S1), and

strings that scored higher than the cut-off value of 5.1 were labeled

as potential high-affinity binding sites. The highest possible score,

which can be obtained by adding the highest value in each row of

Table S1, is 7.88 for the SXL matrix.

Biological filters
To determine if the identified binding site was near a gene, 6 kb of

genomic DNA (3 kb on each side) was used to BLAST against the

EST database using blastn. The blast results were used to align the

ESTs against the genome using ClustalW. Each alignment was

automatically screened in two ways. First, only alignments that

had both putative exons and introns within 100 bases of the

binding site were retained. Second, the putative exon and intron

junctions were examined, and those that matched at least partially

the splice-site consensus signals received high priority. Splice sites

were identified by searching the genome with weight matrices

created using the consensus 59 and 39 splice site signals [24,25]. To

search for SXL-binding sites in the EST database, every EST

containing a binding site was aligned with other ESTs from the

same CLOT (a group of homologous ESTs as defined by BDGP);

some CLOTs contained too many EST sequences to be aligned,

and were skipped. For each binding site the alignments were

converted into a post-script file and examined manually to ensure

that they met the above criteria.

All of the programs used here were written in Perl (http://www.

perl.org/). The entire code and instructions for its use are available

upon request.

cDNAs for analysis
ESTs, shown in parenthesis, for the following candidates were

purchased from the Research Genetics Inc., CA: CG3630

(HL02887), bancal (LD15857), CG6422 (LD12853), Bap60

(LD19076), ImpL3 (LP10507), inx7 (GH21056), fus (GH20047),

pUf68 (GH10982), CG11737 (LP01982), Moe (GH06344), Rala

(SD01661), Ric (GH14071), CG8370 (LD46954), Top2

(GH09845), katanin-60 (SD02251), vap (LP02818), Rm62

(LD17967), Frq2 (LP01723), CG2967 (GH19107), CG5455

(GH11517), Cyp28a5 (GH10483), Act5c (GH04613), blow

(LP06243), RpL36 (LP12131), aralar1 (GH01348), Dhc16F

(LP05023), and e(r) (LD36385). ESTs HL02887, LD15857,

LD12853, LD19076, and LD17967 had been cloned into the

pBluescript SK+ vector, and ESTs LP10507, GH21056,

GH20047, GH10982, LP01982, GH06344, SD01661,

GH14071, LD46954, GH09845, SD02251, LP02818, LP01723,

GH19107, GH11517, GH10483, GH04613, LP06243, LP12131,

GH01348, LP05023, and LD36385 had been cloned into the

pOT2 vector. Templates for Northern blot probes were generated

by PCR from the pBluescript SK+ ESTs using the T7 primer (59

GTAATACGACTCACTATAGGG 39) and the T3 primer (59

AATTAACCCTCACTAAAGGG 39, and from the pOT2 ESTs

using the T7 primer and the pm001 primer (59 CGTTA-

GAACGCGGCTACAAT 39).

poly(A)+ RNA extraction
Total RNA was isolated using TRI reagent (Sigma-Aldrich, MO).

Poly(A)+ RNA was isolated using the PolyATtract mRNA isolation

system (Promega, WI).

Northern analysis
For each lane, approximately 0.5–1.0 mg of poly(A)+ RNA was

separated by electrophoresis on a 1% agarose gel containing

formaldehyde. RNA was transferred to a Duralose-UV membrane

(Stratagene, CA), hybridized with 32P labeled probe at 42uC
overnight, washed extensively, and imaged on a Molecular

Dynamic Phosphorimager. Additional details for various geno-

types (tra, Sxl, dsx, and tud) can be found in [31,36]

SUPPORTING INFORMATION

Table S1 A weight matrix for the SXL binding site. Underlined

positions reflect preferred residues.

Found at: doi:10.1371/journal.pone.0000520.s001 (0.44 MB TIF)
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