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Background. Cerebellar Purkinje cells (PC) in vivo are commonly reported to generate irregular spike trains, documented by
high coefficients of variation of interspike-intervals (ISI). In strong contrast, they fire very regularly in the in vitro slice
preparation. We studied the nature of this difference in firing properties by focusing on short-term variability and its
dependence on behavioral state. Methodology/Principal Findings. Using an analysis based on CV2 values, we could isolate
precise regular spiking patterns, lasting up to hundreds of milliseconds, in PC simple spike trains recorded in both
anesthetized and awake rodents. Regular spike patterns, defined by low variability of successive ISIs, comprised over half of
the spikes, showed a wide range of mean ISIs, and were affected by behavioral state and tactile stimulation. Interestingly,
regular patterns often coincided in nearby Purkinje cells without precise synchronization of individual spikes. Regular patterns
exclusively appeared during the up state of the PC membrane potential, while single ISIs occurred both during up and down
states. Possible functional consequences of regular spike patterns were investigated by modeling the synaptic conductance in
neurons of the deep cerebellar nuclei (DCN). Simulations showed that these regular patterns caused epochs of relatively
constant synaptic conductance in DCN neurons. Conclusions/Significance. Our findings indicate that the apparent
irregularity in cerebellar PC simple spike trains in vivo is most likely caused by mixing of different regular spike patterns,
separated by single long intervals, over time. We propose that PCs may signal information, at least in part, in regular spike
patterns to downstream DCN neurons.
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INTRODUCTION
The cerebellum is crucial for the precise temporal control of motor

related tasks [1] and conditioned behaviors [2]. Yet, it is not clear

how the cerebellum may signal precise timing at the cellular level.

Prior studies of spike time coding in the cerebellum have focused

on the discharge of Purkinje cells (PCs), which form the sole output

of cerebellar cortex. However, thus far these studies only

considered mean firing rates of the simple spikes (SS) [3,4] or

complex spikes (CS) [5,6]. Little attention has been paid to their

fine-temporal structure, even though spike timing may encode

additional information in other systems [7–12]. In fact, for two

different strains of ataxic mice with mutations of voltage-gated

calcium channels expressed in PCs it was recently reported that

PCs show increased irregularity of firing [13,14].

A common measure to characterize the temporal structure of

spike trains is the coefficient of variation (CV) of the interspike

intervals (ISIs). The CV of SS firing of PCs recorded in vivo is

reported to be quite high [15,16]: close to or even higher than 1,

the CV of a Poisson process. Conversely, PCs in the in vitro slice

preparation fire very regularly [17,18]. To test whether this

difference in firing properties is as large as is commonly assumed

and to investigate its possible functional importance, we analyzed

the fine-temporal structure of SS trains in different preparations

and behavioral states in more detail, focusing on the short-term

variability.

MATERIALS AND METHODS

Recordings
Rats Sprague-Dawley rats (n = 26, 300–500 g, Iffa Credo,

Brussels, Belgium) were anesthetized with a mixture of ketamine

HCl (75 mg/kg; Ketalar, Parke-Davis, Warner Lambert

Manufacturing, Dublin, Ireland) and xylazine HCl (3.9 mg/kg;

Rompun, Bayer, Leverkusen, Germany) in normal saline (0.9%

NaCl, Baxter, Lessine, Belgium) by intraperitoneal injection. A

craniotomy exposing Crus I and II of the left cerebellar

hemisphere was performed [16]. Supplemental doses (one-third

initial dose) were given intramuscularly to maintain deep

anesthesia as evidenced by the lack of a pinch withdrawal reflex

and/or lack of whisking. Forty eight single unit recordings were

made in the cerebellar cortex with tungsten microelectrodes

(impedance ,10 MOhm, FHC, Bowdoinham, ME). Signals were

filtered and amplified (bandpass = 0.5–9 kHz; gain = 5,000–

10,000) using a multichannel neuronal acquisition processor

(Plexon Inc., Austin, TX) and collected spike trains were

analyzed off-line using NEX (Plexon Inc.). After recordings of

spontaneous activity, 12 stimulus-evoked responses were recorded

in 10 rats. Perioral receptive fields were explored as reported

elsewhere [16]. The punctate stimulus was applied at a rate of

0.5 Hz. In a separate series of experiments reported in more detail
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in [19], 8 transverse pairs of nearby PCs were recorded using

similar procedures. Electric lesions were made after recordings to

measure the distance between pairs and the distance between the

centers of lesions was measured. In the context of this paper, the

data from all these experiments were re-analyzed. All experimental

methods were approved by the University of Antwerp and

conformed to European Union guidelines.

Mice Extracellular activity was recorded in the cerebellar

flocculus and paramedian lobule using glass micropipettes filled

with 2 M NaCl (tip diameter: 2–5 mm; impedance: 2.5 MV at

1 kHz) in either restrained awake or anesthetized (with mixture of

ketamine (50 mg/kg) and xylazine (10 mg/kg)) C57BL/6 mice.

The electrode tip was positioned on the cerebellar surface under

visual guidance (Olympus VS-IV; Olympus Optical, Tokyo,

Japan) using a micromanipulator (David Kopf Instruments,

Tujunga, CA) and moved downward by a hydraulic microdrive

(Trent Wells) equipped with a stepping motor (TL Elektronik SMS

87). The electrode signal was amplified and filtered (bandwidth

10–6000 Hz; Dagan 2400; Dagan, Minneapolis, MN) and

sampled at 12.5 kHz (CED 1401plus, Spike2, Cambridge, UK).

Single-unit PCs were identified on-line by the presence of a brief

pause in simple spikes after the complex spike. In the off-line

analysis, SSs and CSs were detected and discriminated using

custom-made software implemented in Matlab (Mathworks,

Natick, MA). All experimental methods were approved by

Erasmus MC in Rotterdam, and conformed to European Union

guidelines.

Spike timing analysis
Data analysis of extracellular recordings Recordings were

83 to 1202 sec long and comprised 1,328 to 62,371 spikes.

Analysis was carried out using Matlab and Excel (Microsoft).

Short-term regularity was measured with CV2 = 2|ISIn+12ISIn|/

(ISIn+1+ISIn) [20]. The number of regular patterns was measured

using a threshold value for CV2 ranging from 0 to 2 with an

increment of 0.02. In each PC the numbers were normalized by

the maximum number of patterns to avoid an influence of the

difference between firing rates. The strength of synchronization of

regular patterns was measured using a standard score, the Z score

of the amplitude of the central peak of the cross-correlogram [21]:

Z = (Nc2Ne)/(SDe), with Nc the number of spikes in the central

peak (bin = 5 ms), Ne the mean number of spikes in a 2 sec

window between 21 and 1 sec, and SDe its standard deviation. To

determine whether the observed synchronization (Z score of 3 or

higher) reflected spike to spike precise synchronization or rather

co-modulation of firing rates [22,23], simulated spike trains were

generated by randomly shuffling the ISIs within blocks of 5

consecutive ISIs and the correlation analysis repeated for the

shuffled spike trains. The correlation between CSs and patterns

were analyzed in 32 PCs where CSs were well isolated. If the

duration from the ends of patterns to CSs was longer than 1.2

times the pattern mean ISI, it was considered longer than the

pattern mean ISI.

Data analysis of whole-cell clamp recordings Three

membrane potential traces recorded from 3 different

anesthetized rats were analyzed to investigate the relation

between spike patterns and the membrane potential [24]. The

sampling frequencies of the original recordings (50, 50, and

20 kHz) were sampled down to 10 kHz without loosing

discriminative power. Spikes were sorted by setting thresholds at

238 mV, 242 mV, and 232 mV in cell1, cell2 and cell3

respectively. Spikes were further sorted as either CS or SS by

checking the mean membrane potential between 2 and 4 ms after

a spike. If the mean membrane potential was higher than

238 mV, 238 mV, and 240 mV in cell 1, 2, and 3

respectively, the spike was sorted as a CS. Mean firing rate of

SS (CS) was 12.865.2 Hz (1.160.4 Hz). The threshold to

distinguish UP from DOWN states was set to 255 mV. Regular

patterns and single intervals were isolated as in the extracellular

recordings. Data are represented as mean6s.e.m., unless

otherwise stated. All p-values refer to Student’s paired or

unpaired t-test, unless otherwise specified.

Stochastic Modeling of Poisson processes
Both spontaneous and evoked spike trains were modeled using an

inhomogeneous Poisson process (see also [25]) with 2 ms of dead

time (which is equal to the detection window used in the

electrophysiological recordings). The probability density of the

process can be described as Pn(t)~rn e{rn tH(t{2), where t

denotes the time elapsed since the last spike, rn is the mean firing

rate at the n-th ISI, estimated by rn~ 5
Pnz2

i~n{2

ISI i

where n = 3, 4, …,

number of spikes-2, H (t22) is Heaviside function standing for 1

only when t is 2 ms or larger. The mean firing rates of realized

spike trains (51.762.4 Hz, N = 92) were statistically similar to those

of recorded SS trains (51.762.4 Hz, N = 92, p.0.6). For evoked

spike trains, firing rate was estimated from the rate distribution

around stimulation time (bin size: 1 ms, lag = 1 s). Based on these

estimates, model spike times were created trial by trial. Then, a final

spike train was constructed by concatenating spike times in

consecutive trials. Simulations were performed using Matlab.

Synaptic Conductance Modeling
The dynamics of multiple pulse depression of the synapse

between PCs and DCN neurons were described previously

[26,27]. The data reported in these papers are quantitatively

different, even though they report the same phenomena, probably

due to different experimental conditions (e.g. recording temper-

ature). Our phenomenological model is based on the Pedroarena

and Schwarz study [26], because it measured multiple pulse

depression at more frequencies over a large range (from 1 to

200 Hz). The depression is assumed to be caused by changes of

the presynaptic release probability (R). We fitted a deterministic

model for R to the multiple pulse depression data. This

deterministic approach is justified because the large number of

release sites from which transmitter can reach all receptors [28]

makes synaptic failures unlikely. We fitted equations for the steady

state level of release probability Rss and the time constant of

depression t to the data:

Rss (r)~0:08z0:60 e{2:84 r z0:32 e{0:02 r

t (r)~2z2500 e{0:274 r z100 e{0:022 r

where r is the instantaneous firing rate computed as the inverse of

the last interspike interval. Rss and t are updated at the time of

occurrence of each spike n and Rn is then computed as:

Rn~Rn�1z( Rss {Rn�1)(1{ e{ISIn
t )

with Rn21 is the release probability computed at the previous spike

time, ISIn is the interspike interval between the current spike and

the previous spike. See Figure 1 for the accuracy of the fit of our

model to the experimental data.

Synaptic conductance (Gsyn) during spiking was modeled by

a double exponential function multiplied by Rn and calculated over
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200 ms with a resolution of 0.1 ms following each spike:

Gsyn (t)~ Gpre zA
Gmax

t1 { t2
Rn( e

{ t
t1 { e

{ t
t2 )

Here, Gpre is the synaptic conductance caused by previous spikes,

A = 15.5 is a constant to scale the maximum conductance to the

experimental value of Gmax (11.7 nS), t1 is 12 ms, and t2 is 1.2 ms.

Gmax, t1, and t2, were chosen to fit the multiple pulse depression

traces shown in Figure 7 of Pedroarena et al [26]. The multiple

pulse depression following 10, 30 and 100 Hz stimulation of the

PC is shown in Figure 1.

RESULTS

Simple spike trains contain precise regular spiking

patterns
We analyzed spontaneous PC activity in 3 data sets: recordings

from the cerebellar hemisphere of anesthetized rats (AnR, n = 48)

and from the flocculus or paramedian lobule of anesthetized

(AnM, n = 21) and awake (AwM, n = 37) mice. Firing rates were

similar for all data sets (Table 1). As expected, CVs of the spike

trains were high: 3.9360.49 (AnR), 1.7460.47 (AnM) and

1.3960.38 (AwM), consistent with previous reports [6,16] and

suggestive of highly irregular firing in vivo. Nevertheless, careful

visual inspection of the individual spike trains revealed clear

patterns of regular firing (Figure 2A).

To characterize these patterns we used a short range measure

which compares two adjacent ISIs, i.e. the CV2 (cf. Materials and

Methods; [20]). Surprisingly, we found that in all data sets the

mean CV2 was low (AnR: 0.5160.03, AnM: 0.3060.02, AwM:

0.3960.02), suggestive of much more regular firing at short time

scales. In fact, most PCs showed a skewed CV2 distribution, with

a high proportion of low CV2 values (Figure 2B), indicating the

presence of regularity in spiking patterns. This was in clear

contrast to spontaneous spiking of neocortical neurons, which

showed uniform CV2 distributions as previously reported [20]

(Figure 2B, blue) and which are similar to realizations of

inhomogeneous Poisson processes (insets in Figure 2B, green).

We studied the properties of regular spiking patterns in PCs

whose CV2 distribution was significantly different from rate

modulated Poisson (AnR: n = 38, AnM: n = 21, AwM: n = 33,

p,0.05, x2 test) in more detail. Their pooled CV2 distribution

showed significantly more CV2 values of 0.2 or lower (p,0.001, x2

Figure 1. Simulation of PC to DCN synaptic conductance. (A)
Saturating level of release probability (Rss) taken from Pedroarena
and Schwarz (2003) could be modeled with a double exponential
function (red line, see Materials and Methods for details). (B) Simulated
synaptic conductance profiles in response to 10, 30 and 100 Hz PC
firing, respectively. These results should be compared to Figure 7A of
Pedroarena and Schwarz (2003).
doi:10.1371/journal.pone.0000485.g001

Figure 2. Regular patterns in cerebellar Purkinje cell simple spike
trains. (A) Raster plot of PC SS in an anesthetized rat (AnR). (B) CV2

distributions of SS trains recorded from anesthetized mice (AnM, left),
awake mice (AwM, middle, blue: neurons in cerebral motor cortex), and
mean of 92 CV2 distributions (Pooled, right) which were significantly
different from those of inhomogeneous Poisson processes with similarly
modulated firing rates (p,0.05, x2 test; *: p,0.001, x2 goodness of fit
residual test; red line: CV2 = 0.2). Insets and right panel: mean6s.e.m.
(black: PC, green: inhomogeneous Poisson process) (C) Extracting
regular spiking patterns by setting CV2 threshold at 0.2 (white dotted
lines). White dashes: CV2 values calculated from the two surrounding
ISIs, red: first ISI of regular patterns, pink: successive ISIs in regular
patterns, dark blue: ISIs not belonging to a regular pattern).
doi:10.1371/journal.pone.0000485.g002

Table 1. Summary of spontaneous simple spike firing properties of all PCs reported in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of PCs Mean firing rate %Long ISI (ISI.1 s) CV Mean CV2 Maximum pattern size

Anesthetized rats 48 45.564.1 0.4160.11 3.9360.49 0.5160.03 28.964.4

Awake mice 37 51.062.7 (p.0.2) 0.0160.00 (p,0.001) 1.3960.38 (p,1024) 0.3960.02 (p,0.001) 13.060.6 (p,0.001)

Anesthetized mice 21 49.863.6 (p.0.4,
p*.0.7)

0.0260.01 (p,0.001,
p*.0.1)

1.7460.47 (p,0.05,
p*.0.4)

0.3060.02 (p,1026,
p*,0.05)

24.962.8 (p.0.4,
p*,0.001)

p: comparison to anesthetized rats, p*: comparison to awake mice, Student t test.
doi:10.1371/journal.pone.0000485.t001..
..
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..

..
..

..
..
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..

..
..
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goodness of fit residual test) than the corresponding Poisson

processes did (Figure 2B, rightmost panel). To isolate the regular

spiking patterns in individual spike trains, we applied a threshold

of 0.2 on the measured CV2 values as illustrated in Figure 2C.

Whenever the CV2 value was below or equal to threshold (white

dotted line), the associated two ISIs were considered part of

a regular pattern (pink). If the next ISI also had a CV2 value below

or equal to threshold, it was included into the pattern (pink); if not,

this next ISI was either single (i.e. not belonging to a pattern; blue)

or the start of a new pattern (provided the next CV2 value was

again below or equal to threshold; red).

With this procedure, 57% (AnR), 67% (AnM) and 54% (AwM)

of ISIs belonged to regular patterns. To verify the effect of the

statistically defined CV2 threshold of 0.2, we compared the

number of patterns extracted using different thresholds (Figure 3).

Thresholds in the range 0.18–0.24 generated statistically similar

number of patterns as a threshold of 0.22, which generated the

maximum number of patterns (n = 92, p.0.1).

The mean ISIs of patterns were not uniformly distributed. Most of

the pattern ISIs were relatively short, so that the peaks of the overall

ISI distributions mostly consisted of regular patterns, while their tails

comprised only single ISIs. As a result, the 90 percentile of ISI for

patterns was significantly shorter than that of singles (Figure 4A).

Characteristics of regular spiking patterns change

with behavioral state
Regular patterns can be characterized by two parameters: pattern

size, defined as the number of ISIs in the pattern, and pattern

mean ISI. Examples of the distribution of these two parameters are

shown in Figure 4B. Observe that short patterns occurred with

a wide range of mean ISIs, whereas long patterns contained only

short ISIs (insets), though not the shortest. The wide range of

pattern mean ISIs and the fact that the fraction of pattern spikes

was only weakly (rats: linear correlation R2 = 0.371 compared to

a R2 = 0.666 for 92 inhomogeneous Poisson processes) or not

(mice: R2,0.1) dependent on the mean firing rates of PCs make it

unlikely that regular patterns were caused by refractoriness.

Pattern sizes showed a wide distribution. On average, 72% of

patterns comprised only 2–3 ISIs, but many patterns were much

longer (Figure 4B and 4C), lasting 45.063.5, 76.566.3, and

52.563.1 ms for AnR, AnM, and AwM, respectively. The size of

patterns depended on the CV2 threshold used, but this did not

affect the pattern mean ISI much (data not shown). Interestingly,

we found a significant difference in the proportion of long patterns

between anesthetized and awake rodents. In anesthetized rodents,

4.161.4% (AnR) and 3.560.8% (AnM) of patterns contained

more than 10 ISIs, while in awake rodents (AwM) only 0.460.1%

did (p,0.01), with maximum pattern sizes of 182, 61 and 21 ISIs,

respectively (Figure 4C). This significant difference between

pattern sizes of awake vs. anesthetized rodents indicates that

regular patterns may be influenced by the behavioral state of the

animal. Indeed, if regular spiking patterns were a specific signal by

which PCs transmit information, one would predict faster changes

in this signal, i.e. shorter patterns associated with a wider range of

pattern mean ISIs, in awake, active animals than in anesthetized

ones.

Simulation of the effects of regular spiking patterns

on target neurons
PCs inhibit neurons in the downstream DCN; any information

transmitted by regular PC spike patterns will be decoded at that

level. PC synapses onto DCN neurons show fast synaptic

depression [26,27], a property that is known to endow synapses

with low-pass filtering properties [29]. We developed a phenom-

enological model to reproduce the previously reported frequency-

dependent depression of this synapse [26] (cf. Materials and

Methods), allowing us to predict the effects of regular PC spike

patterns on synaptic conductance (Gsyn) in DCN neurons.

Specifically, we used this model to compare the Gsyn evoked by

recorded SS trains with that of simulated spike trains generated by

inhomogeneous Poisson processes of the same modulated firing

rates. Such Poisson processes have far fewer regular patterns: only

20% of ISIs belonged to patterns, 80% of which were of size 2 (cf.

Fig. 2B). A representative example of conductance traces

(Figure 5A) demonstrates that the long regular patterns in SS

trains induced epochs with little fluctuation of Gsyn, while Poisson

spike trains generated much more variable Gsyn (Figure 5A, green).

In almost all cases, the distribution of Gsyn of Poisson spike trains

was significantly different from that of real SS trains (Figure 5B;

Kolmogorov-Smirnov test, p,0.05, bin 0.01 s, AnR 35/38 cells;

AnM 33/33; AwM 20/21). Thus, the distribution of Gsyn of PCs

was mostly confined to a narrow range of values as is also evident

from its CV, which was significantly lower for PCs (0.5360.03,

0.4760.03 and 0.4960.03 for AnR, AnM and AwM, respectively)

than for simulated spike trains from Poisson processes (0.6660.05,

0.7560.04, and 0.7160.03, p,0.04).

Spikes of regular patterns are correlated, but not

precisely synchronized
In rats, each DCN neuron receives inhibition from 100 [30] up to

1000 [31] PCs. Anatomically, though, it is not clear whether all

Figure 3. Effect of CV2 threshold on patterns. (A) Mean (6 s.e.m.) of
normalized number of patterns in spike trains classified with different
values of the CV2 threshold, ranging from 0 to 0.5, in 92 PCs (filled
circles) and in simulated spike trains from Poisson processes with similar
firing rate profiles as in the PCs (open circles). Arrow: maximum number
of patterns, *: range where there was no statistical difference (p.0.05).
Inset: same distribution but for all possible thresholds. (B) Raster plots
with indication of the spike timings belonging to patterns (red dotted
lines: start of patterns, red solid lines: following spikes in each pattern)
and singles (blue). Black dots: difference in classified patterns when
threshold was 0.2 (upper trace) and 0.24 (lower trace).
doi:10.1371/journal.pone.0000485.g003
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Figure 4. Characteristics of regular spike patterns. (A) ISI distribution of overall ISIs (black), patterns (red) and singles (blue) from a representative
sample PC spike train of AnR (left), AnM (middle) and AwM (right). Insets: magnified plot of indicated area (lower) and 90 P (90 percentile, upper) of
each population, *: p,0.01, Student t test. (B) The relation between pattern mean ISI and pattern size in AnR (left, cyan), AnM (middle, magenta) and
AwM (right, yellow). Insets: maximum pattern mean ISI (90 percentile) of different pattern sizes. *: p,0.001, Wilcoxon signed rank test. (C) Percentage
ISIs belonging to patterns (upper, *: p,0.001, Student t test), Average maximum pattern size (middle, *: p,0.001, Student t test), and Pattern size
distribution (lower, p,0.05, x2 test). Cyan: AnR, magenta: AnM, yellow: AwM.
doi:10.1371/journal.pone.0000485.g004

Figure 5. Simulated synaptic conductance in PC to DCN synapse caused by spontaneous PC spiking. (A) A representative example of the simulated
synaptic conductance (Gsyn) induced by PC (black) of AnR (upper panel), AnM (middle panel) and AwM (lower panel), and by corresponding
realizations of an inhomogeneous Poisson process (green). Rasters: spikes belonging to patterns (black and green dotted lines: start of patterns, black
and green solid lines: following spikes in patterns, blue lines: singles), numbers: number of all spikes in the 500 ms window. (B) Distribution of Gsyn

values for PCs (black) compared to Poisson processes (green). Bin = 0.2 nS. Red bar: bins where PCs contained significantly more Gsyn values. p,0.05.
doi:10.1371/journal.pone.0000485.g005
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converging inputs are active at the same time. This convergence

raises the question whether regular patterns in the afferent PCs

coincide in time, causing periodic ripples in Gsyn during their

occurrence, or whether they are asynchronous, rendering Gsyn

more constant. We studied the correlation in time of regular

patterns in 8 simultaneously recorded transverse pairs of PCs in

AnR, separated by 69.869.4 mm (range: 50–100 mm). We found

that the spikes belonging to patterns revealed central peaks in the

cross-correlogram. These central peaks reflected significant

synchronization as their Z scores were higher than 3 (Figure 6A,

z = 5.060.4), but they were quite broad (full width at half peak

(HW) = 7068.6 ms). No synchronization was observed in pairs of

PCs on the same parallel fiber beam separated by more than

0.5 mm (n = 20, data not shown). We investigated several

mechanisms that could explain the broad width of the central

peaks. There was no significantly relation between HW and the

mean duration of patterns (R2,0.0001). Broad peaks in cross-

correlograms are often caused by firing rate co-modulation [23],

implying that patterns would coincide because they occur more

often during increased firing rates (Figure 4A). As properly

shuffled spike trains (cf. Materials and Methods) overlapped the

broad peaks largely (Figure 6A, insets), the central peaks observed

can indeed be largely explained by firing rate co-modulation. In

addition, we found in four of the pairs a significant, and much

more precise, correlation of the start of patterns (z = 5.660.9,

HW = 16.362.4 ms, Figure 6B inset). But although patterns

in these four pairs started together, their mean ISIs were

independent of each other (R2 = 0.1760.03, Figure 6B). We

conclude that while for a fraction of patterns the start was precisely

synchronized, overall pattern spikes were not precisely synchro-

nized but tended to co-occur in a loose manner because of firing

rate co-modulation.

Despite our lack of knowledge about detailed convergence

patterns of PCs onto DCN neurons, convergence is more likely for

adjacent pairs, where we observed coincident patterns, than for

distant pairs which did not show synchronization. In the case of

coincident converging patterns, the lack of spike synchronization

caused by their different spike frequencies will further reduce the

variability of their combined Gsyn [32]. Otherwise, the averaged

Gsyn of perfectly synchronized PCs would have the same

variability as that caused by single PCs. A similar reduction of

variability also occurs in completely irregular spike trains

generated by Poisson processes [32], but only when there are

many more active convergent inputs.

Tactile stimulation increases regularity of spiking
Next, the effect of sensory stimulation on regular patterns in the SS

response was investigated. To this end, we analyzed responses to

tactile stimulation in AnR (Figure 7) (n = 12). Typically, PCs

responded after a short delay with a significant increase in SS

firing rate in a 200 ms window, from 53.866.2 Hz to

74.267.3 Hz (p,0.003, Wilcoxon signed ranks test), as reported

elsewhere [33]. In the same window, we also found a significantly

increased proportion of ISIs belonging to regular patterns, from

49.364.5% to 62.565.1% (p,0.005, Wilcoxon signed ranks test).

Spike trains always become more regular at high firing rates

because spikes cannot fire arbitrarily close together, due to the

refractory period. Indeed, simulated Poisson processes with

refractory period that show similar rate changes (p.0.2; before:

53.366.3 Hz, after: 75.067.5 Hz; Figure 7E upper panel) as the

experimental data revealed a slight but statistically significant

increase of the fraction of ISIs belonging to regular patterns

(p,.005; before: 23.160.7%, after: 27.160.8%; Figure 7E lower

panel). However, this increase was proportionally (1862%) much

smaller than the increase in PCs (2963%) (p,0.03, Wilcoxon

signed ranks test). We conclude that the increase in patterns in PCs

was larger than expected from only the firing rate increase.

Regular patterns following stimulation were also faster and lasted

longer than before stimulation (Figure 7F).

To estimate the effect of this change of SS patterns on

downstream DCN neurons, we again computed the predicted Gsyn

and compared these with the results obtained from spike trains

realized from inhomogeneous Poisson processes (Figure 7C). The

real SS train induced a steady current of about 4.5 nS, while the

Poisson process produced a highly variable Gsyn, despite the

similar modulations of firing rates. The CV of Gsyn induced by the

real SS train dropped significantly (p,0.001) during a period of

116.7619.0 ms after stimulus onset compared to the effect of

Poisson spike trains (Figure 7D). This indicates that tactile

stimulation further reduced the variability of Gsyn in DCN

neurons by an increased regularity of PC spike timing.

Regular patterns and singles in relation to the PC

membrane potential
It has been shown that the membrane potential of PCs in

anesthetized animals can be bistable, showing up and down-states

[24]. Although PCs in awake behaving animals probably operate

predominantly in the up-state [34] and regular patterns in our

data tended to last much shorter than the reported duration of up-

states in the anesthetized preparation [24], the occurrence of

patterns might in principle be related to the state of the membrane

potential. We therefore applied our analysis method to whole-cell

Figure 6. Coincident patterns in nearby PC pairs in AnR. (A) Eight
cross-correlograms of timings of spikes belonging to regular patterns
extracted from recordings of nearby PC pairs, with each pair colored
differently. Insets: cross-correlograms of the shuffled spike trains of two
pairs (black) superimposed on original cross-correlogram of patterns
(blue and gray: pairs showing strongest and weakest synchronization
respectively). (B) The relation of pattern mean ISIs in 4 pairs in which
pattern starts coincided significantly (inset: cross-correlograms of the
first spikes of regular patterns in the 4 pairs). Red dotted line: diagonal.
doi:10.1371/journal.pone.0000485.g006
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clamp recordings from PCs of anesthetized rats in vivo (data

obtained from Loewenstein et al., 2005; Figure 8). As expected,

patterns occurred only during up-states (Figure 8, red spikes), but

a single up-state typically consisted of several patterns (4.861.1 for

the recording shown in Figure 8, 3.860.3 for all recordings).

Singles could occur during both up (92.163.7%; Figure 8, filled

dots) or down (7.963.7%, Figure 8, open dots) states. Thus, the

classification of SSs developed in this study allows for a sub-

categorization of spikes occurring during the up-state which may

be relevant at short time scales.

CSs may toggle transitions between up and down-states [24].

This is also the case for start of the two up-states shown in Figure 8.

We found that, except for patterns occurring at state transitions,

the start or end of patterns was not related to CS firing. This is

confirmed by the much higher frequency of starts of patterns

(7.4264.30 Hz, AnR, n = 32) than of CSs (0.7260.05 Hz).

DISCUSSION
Taken together, our main findings indicate that (1) interesting fine-

temporal properties of neuronal responses may be uncovered by

Figure 7. A representative example of regular patterns in tactile stimulus evoked PC SS responses. (A) Peri-event raster plot of patterns (red) and
singles (blue) during tactile stimulation in AnR. (B) Mean rate (6 s.e.m.) of overall spikes (black), realization of Poisson process (green), pattern spikes
(red) and singles (blue). Bin = 20 ms. (C) Simulated Gsyn for the trial indicated by arrow in (A) (bin = 1 ms). (D) CV (SD/Mean) of simulated Gsyn (*:
p,0.001, Student t test, bin 20 ms). Black dotted line: stimulation time. (E) Mean firing rate (upper panel) and percent ISIs belonging to regular
patterns (lower panel) in 200 ms before and after stimulation (upper panel) of simulated spike trains from inhomogeneous Poisson process (green)
and from recorded PCs (black). *: p,0.005, Wilcoxon signed ranks test. (F) Pattern mean ISI distribution before (dotted line) and after (solid line)
tactile stimulation. Inset: Pattern size distribution before (open) and after (filled) stimulation.
doi:10.1371/journal.pone.0000485.g007

Figure 8. Regular patterns and singles related to the membrane
potential (MP). Dendritic patch-clamp recording of PC in anesthetized
rat (data from Loewenstein et al. 2005). Voltage trace: large spikes are
complex spikes, small ones are simple spikes. Dotted black line:
threshold to define up and down-states (MP = 255 mV). Raster plot at
top: simple spikes were sorted as either pattern spikes (dotted red lines:
start of patterns, solid red lines: following spikes in each pattern) or
single spikes (blue lines). All patterns were during up-state, but singles
occurred both during up (filled circles) and down (open circles) states.
doi:10.1371/journal.pone.0000485.g008
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analyzing regular pattern structure on a single trial basis; (2) PC

simple spike trains contain distinctly more spike timing regularities

than hitherto known; (3) the high CV in in vivo recordings is most

likely caused by mixing of different regular spiking patterns,

separated by single, typically longer, ISIs; (4) the onset of patterns

can be synchronized in nearby PCs, but their member spikes are

not synchronized; (5) most regular patterns are not influenced by

complex spikes; (6) regular pattern properties change with

behavioral state and tactile stimulation; and (7) regular patterns

may cause epochs of close to constant synaptic conductance in

downstream DCN neurons.

Our extracellular recordings do not provide conclusive evidence

on the mechanisms causing regular patterns. However, as PCs fire

highly regularly in slice preparations in which their synaptic inputs

are blocked [17,18] and since they show increased irregularity

following mutations of their voltage gated Ca2+ channels [13], the

endogenous properties of PCs are likely to contribute to their

regularity of firing. However, the current observation that most

patterns occur within the up-state, combined with the finding that

PCs in awake behaving animals probably operate predominantly

in the up-state [34] suggests that additional mechanisms such as

short-term and long-term synaptic processes probably also play

a role in controlling the start and end of a regular pattern, as well

as its mean ISI. As CSs have little effect on patterns, it is most

likely that parallel fiber inputs combined with molecular layer

inhibition control the pattern properties. Furthermore, synaptic

plasticity can adapt the effect of both the excitatory parallel fiber

inputs and the inhibitory input from the basket cells and stellate

cells on the SS patterns [35,36]. Such mechanisms could explain

why the onset of patterns was synchronized in only a subset of

nearby PCs, and why even in those cases the pattern mean ISIs

were different.

The regular patterns discovered in this study comprised a large

part of the simple spike trains and were shown to be modulated by

behavioral state and stimulation, suggesting that they may have

functional significance. Our simulations of the effect of regular

patterns on Gsyn in downstream DCN neurons indicate that they

keep inhibitory conductance fairly constant. The interaction

between regular patterns and Gsyn may provide an explanation

of why these synapses depress so strongly [26,27] and forms the

basis for our hypothesis on the function of regular patterns. It is

generally assumed that cerebellar learning through induction of

long-term depression at the parallel fiber to PC synapse leads to

disinhibition of DCN neurons [35,37]. In addition, DCN neurons

respond strongly to disinhibition because of their post-inhibitory

rebound spike [38], which may form a powerful timing signal

[2,39]. Correspondingly, the activity of DCN neurons in adult

rodents consists of pauses, most likely caused by PC inhibition,

mixed with transient periods of fast bursting [40]. The

effectiveness of disinhibition to create a rebound spike depends

on the synchronicity of the disinhibition, which we recently

demonstrated to be significant among nearby PCs [19], and on the

level of preceding inhibition. Because the inactivation of calcium

channels expressed in the DCN neurons is strongly voltage

dependent in the relevant potential range [41], these channels are

very sensitive to even small changes in inhibitory input.

Consequently, the level of inhibition preceding the rebound spike

exerts a very strong effect on the amplitude of the rebound spike

[42].

We hypothesize that regular patterns encode a specific level of

inhibition in their firing rate and, as such, approximate a perfect

firing rate code [43], which should be completely regular. When

regular patterns from convergent PCs coincide, the summed

inhibition will be relatively constant over the duration of the

patterns and, consequently, keep the level of inactivation of

calcium channels steady. Thereby, the firing rates of regular spike

patterns in afferent PCs will control the amplitude of any rebound

spike that follows in the next second. The occurrence of a rebound

spike is evoked by synchronized pauses in the SS trains [19,44],

which are mostly not part of the regular patterns as they belong to

the tail of the ISI distribution.

In conclusion, we propose that the regular patterns, which

comprise the majority of spikes in PC SS trains, can control the

amplitude of subsequent timing signals by modulating the

amplitude of rebound spikes in downstream DCN neurons.
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