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Bats are the only flying mammals and have well developed navigation abilities for 3D-space. Even bats with comparatively
small home ranges cover much larger territories than rodents, and long-distance migration by some species is unique among
small mammals. Adult proliferation of neurons, i.e., adult neurogenesis, in the dentate gyrus of rodents is thought to play an
important role in spatial memory and learning, as indicated by lesion studies and recordings of neurons active during spatial
behavior. Assuming a role of adult neurogenesis in hippocampal function, one might expect high levels of adult neurogenesis
in bats, particularly among fruit- and nectar-eating bats in need of excellent spatial working memory. The dentate gyrus of 12
tropical bat species was examined immunohistochemically, using multiple antibodies against proteins specific for proliferating
cells (Ki-67, MCM2), and migrating and differentiating neurons (Doublecortin, NeuroD). Our data show a complete lack of
hippocampal neurogenesis in nine of the species (Glossophaga soricina, Carollia perspicillata, Phyllostomus discolor, Nycteris
macrotis, Nycteris thebaica, Hipposideros cyclops, Neoromicia rendalli, Pipistrellus guineensis, and Scotophilus leucogaster),
while it was present at low levels in three species (Chaerephon pumila, Mops condylurus and Hipposideros caffer). Although
not all antigens were recognized in all species, proliferation activity in the subventricular zone and rostral migratory stream
was found in all species, confirming the appropriateness of our methods for detecting neurogenesis. The small variation of
adult hippocampal neurogenesis within our sample of bats showed no indication of a correlation with phylogenetic
relationship, foraging strategy, type of hunting habitat or diet. Our data indicate that the widely accepted notion of adult
neurogenesis supporting spatial abilities needs to be considered carefully. Given their astonishing longevity, certain bat
species may be useful subjects to compare adult neurogenesis with other long-living species, such as monkeys and humans,
showing low rates of adult hippocampal neurogenesis.
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INTRODUCTION
Bats (Chiroptera) are the only mammals capable of active flight and,

together with marine mammals (Cetacea), navigate effortlessly in

their three-dimensional environments. Particularly fruit- and nectar-

feeding species benefit from a precise spatio-temporal memory to

relocate profitable food sources at flowering or fruiting plants [1]. In

rodents and bats, the hippocampus is thought to process spatio-

temporal relationships as indicated by the presence of neurons active

during spatial behavior (‘‘place cells’’) [2,3], the human hippocampus

is also required for establishing episodic memory. In agreement with

this view, the hippocampus of fruit- and nectar-feeding bat species is

enlarged relative to the size of the remaining hemispheres [4,5].

Adult proliferation of neurons in mammals is thought to be

restricted to two regions: a subventricular zone (SVZ) at the rostral

end of the lateral ventricles, from where newly formed cells migrate

towards the olfactory bulb, and a narrow zone below the granule

cells of the dentate gyrus in the hippocampus that forms an integral

part of the circuitry of this brain region. Proliferation of these

progenitor cells is coined adult hippocampal neurogenesis (AHN),

although this term also includes cells that later become glial cells.

Studies in rodents have shown that such newly formed neurons

integrate into the existing cells, form connections and show electrical

activity [6]. Likewise, rodent studies have found that proliferation

rate and survival of newly born cells is under physiological

regulation, the most replicated findings being increased proliferation

after voluntary physical exercise [7], and suppression of neurogenic

activity by psychological stress [8]. It is also commonly recognized

that AHN declines with age, and that cell proliferation may occur

reactively after injuries or pathological processes affecting the brain

[9]. Two lines of research have emerged. One aims to understand

AHN and its relevance for restoring brain functions, particularly in

humans, the other is searching for the functional role of AHN in the

normal brain. The latter approach has largely focused on

demonstrating relations between experimentally altered AHN and

spatial learning abilities of rodents, variations in neurogenesis being

taken as a marker for hippocampal functions. However, experimen-

tal rodent data about the functional relevance of hippocampal

neurogenesis for learning and memory are contradictory, resulting

just as often in a total lack of evidence as in positive findings [10]. A

possible shortcoming of many previous studies is that small

laboratory test arenas might not be sufficient to trigger plasticity

mechanisms that evolved for coping with natural large-scale

orientation requirements typical for wild living animals. This
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interpretation is offered by studies where neurogenesis was de-

termined for wild living rodent species whose learning experiences

had taken place through natural activities in their ecological

environments [11,12]. Here, rates of neurogenesis correlated very

clearly with the ecological requirements for spatial orientation

ability. Since the species with the largest territory (Apodemus flavicollis)

also had the longest life span, the high levels of AHN in these mice

might counterbalance the age-related decline, offering minimal

functional levels of AHN even at advanced age. From these results

based on rodents, we predicted that high rates of neurogenesis should

also be expected in wild living bats with high ecological demands on

their spatial orientation abilities, the latter being moreover required

throughout their long life span. The present study was therefore

conducted with the intent to broaden the empirical basis of the

previous findings, and to examine to which degree the findings in

rodents can be extrapolated to other species. We investigated twelve

tropical species belonging to five different families (Fig. 1), compri-

sing three nectar- and fruit eating Neotropical and nine Paleotropical

insectivorous species with different foraging strategies. Proliferating

cells were identified with antibodies against Ki-67, a chromosome-

associated protein present in the active phase of the cell cycle [13],

and MCM2, a licensing factor for cell division [14]. Young migrating

or differentiating neurons were detected with antibodies against

Doublecortin (DCX), a microtubule-associated protein present in

migrating neuroblasts and during maturation of developing neurons

[15], and NeuroD, a transcription factor regulating neuronal fate

[16]. Contrary to our expectation, however, we did not find the

predicted high rates of hippocampal neurogenesis.

RESULTS

No proliferating cells in the hippocampus in nine of

twelve bat species
Proliferating cells, detected with Ki-67 and MCM2, in the

subgranular layer of the dentate gyrus were absent in Hipposideros

cyclops (Fig. 2B, F), Nycteris thebaica and macrotis, Neoromicia rendalli,

Scotophilus leucogaster and Pipistrellus guineensis. In the Neotropical

bats (Phyllostomus discolor (Fig. 2A, E), Glossophaga soricina and Carollia

perspicillata), we found none or occasionally one proliferating cell

per section within the dentate gyrus proper. We found sparse

proliferation activity in Mops condylurus (Fig. 2D, H) and Chaerophon

pumila. Hipposideros caffer (Fig. 2C, G) showed moderate pro-

liferation activity in the subgranular layer. With MCM2 antibody

we tested whether bats harbour quiescent precursor cells in the

hippocampus. Although MCM2 antibody recognized slightly

more positive cells than Ki-67, we did not observe MCM2

positive cells in animals with no Ki-67 staining (Table 1).

Neuronal fate of proliferating cells confirmed with

Doublecortin
With Doublecortin (DCX), we detected young migrating neurons

in the subgranular layer of the hippocampus only in M. condylurus

(Fig. 2L), C. pumila and H. caffer (Fig. 2K). The two molossid species

showed low to moderate numbers of new neurons in the caudal

(temporal) hippocampus but none or only low levels in the rostral

(septal) part. We found the highest levels of DCX positive cells in

Figure 1. Phylogenic tree of all extant bat families. Names of species included in this study in brackets behind the corresponding family (adapted
from Teeling et al. 2005 [43]).
doi:10.1371/journal.pone.0000455.g001
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the hippocampus of H. caffer (Fig. 2K). There were no DCX

positive cells in the hippocampus of the Neotropical bats (Fig. 2I,

Table 1), which indicates that the few proliferating cells detected

with Ki-67 and MCM2 may have a glial fate.

Adult neurogenesis outside the hippocampus
We detected moderate to ample proliferating cells (Fig. 3 A–D, Ki-

67 positive cells) and migrating young neurons (Fig. 3 E–H, DCX

positive cells) in the rostral migratory stream in all species. In N.

macrotis, N. rendalli, S. leucogaster and G. soricina few DCX positive

cells were present in the rostral migratory stream and the olfactory

bulb. In N. thebaica, the antibody against DCX could not detect any

antigen (Table 1).

Differentiation of granule cells
All hippocampal granule cells were homogeneously positive for

NeuroD in P. discolor (Fig. 3I) and S. leucogaster, slightly less intensely

so in G. soricina and C. perspicillata. No NeuroD was detected in

Figure 2. Proliferating and migrating young neurons in the hippocampus of four representative bat species. In the dentate gyrus of nectar and
fruit eating Phyllostomus discolor (A,E,I) as well as in the insectivorous Hipposideros cyclops (B,F,J) we did not detect any proliferating cells with
antibodies against Ki-67 (A,B) and MCM2 (E,F), no migrating new neurons can be found with antibody agains DCX (I,J). In contrast, in the sister species
Hipposideros caffer (C,G,K) and in Mops condylurus (D,H,L), proliferating as well as migrating cells can be detected in the subgranular layer of the
hippocampus (Ki-67: C,D; MCM2: G,H; DCX: K,L) Molecular layer in all examples on the right side of the granule cell layer, arrows indicate immuno-
positive cells. Scale bar is 20mm.
doi:10.1371/journal.pone.0000455.g002
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granule cells of H. caffer (Fig. 3K), H. cyclops (Fig. 3J), C. pumila, M.

condylurus (Fig. 3L), N. thebaica and N. macrotis. For N. rendalli and P.

guineensis no NeuroD immunoreactivity data was obtained.

DISCUSSION
In nine out of twelve African (Paleotropical) and Central/South

American (Neotropical) bat species we found no indication for

young neurons in the dentate gyrus of the hippocampus. Due to

small sample size in some of the species, our data have preliminary

character. However, positive staining controls in the brains of all

bats indicate that our negative findings in the hippocampus are not

due to inappropriate methodology. The large proportion of bat

species without apparent adult neurogenesis in the hippocampus is

surprising. It indicates that in the second-largest mammalian order

after rodents, functionality of the adult hippocampus in terms of

large-scale spatial behavior does not necessarily require neurogen-

esis. Bats appear to share low rates of adult neurogenesis with some

large-sized primates, including humans. While our data provide

a counter-example to some widely held views derived from

observation in rodents, they may be helpful in developing novel

views in understanding the physiological role of adult neurogenesis.

Low rates of adult neurogenesis in bats do not

reflect problems in immunohistochemical sensitivity
An obvious concern in comparative studies using immunohisto-

chemical mapping of proteins is whether the technique employed

misses species-specific epitopes, thus providing false negative data.

However, this is almost certainly not the case here. (i) Adult

neurogenesis has been assessed by different cell markers indicating

proliferation (Ki-67), juvenile stages of neurons (DCX), and slowly

dividing precursor cells (MCM2). Both Ki-67 and MCM2 are

evolutionarily highly conserved proteins that have thus far been

found in all vertebrate species investigated [14,17]. (ii) We have

employed a standardized procedure that has been used for

comparative studies of various small rodent species, in which

differences in rates of adult neurogenesis could be detected reliably

[12]. (iii) Most importantly, the same immunohistochemical

procedure visualized numerous immunopositive cells in the

subventricular zone and the rostral migratory stream in bats

(Fig. 4 B, close up E) and mice (Fig. 4 A, and close up C), whereas

proliferating, Ki-67 positive cells in the same sections can be found

in the mouse subgranular layer (Fig. 4, D) but not in those of the

bat (Fig. 4, F). The staining pattern as shown in Figure 4 indicates

that missing or scarce proliferation activity in the granule cell layer

is restricted to the hippocampal formation in bats. In rodents,

a widely used technique for labeling dividing cells is the

immunohistochemical visualization of the intraperitoneally in-

jected thymidine analogue bromodeoxyuridine (BrdU) that is

incorporated in to the DNA during mitosis. BrdU is cleared from

rat brains within a short phase of 2 hours [18]. Endogenous Ki-67

is expressed during active cell cycle, which has been estimated to

last for 12–14 hours in mice [19]. Thus, the use of BrdU would

require repeated injections and housing of the animals for at least

14 hours in order to obtain the same sensitivity as the labeling

technique employed by us, which can be applied to brains of

animals sacrificed immediately after capture.

Low levels of adult hippocampal neurogenesis

across bats do not permit correlative analysis with

ecological parameters yet
Previous studies have indicated that the relative size of the

hippocampus in bats might be correlated to habitat size, diet or

foraging strategy. Clearly, missing adult hippocampal neurogenesis

or low levels thereof show that between-species variations of this

trait are not crucial for a variety of functions and behaviors

thought to depend on the hippocampus of bats, unless one assumes

that minor differences in the proliferation rate of granule cells

might be functionally important. For example, Hipposideros caffer

with the relatively highest amount of adult neurogenesis in our

sample uses small to medium sized territories, while species with

sparse or no adult neurogenesis include both, species with very

small home ranges (Hipposideros cyclops) [20]) and species with

comparatively large home ranges (e.g. Phyllostomus discolor, Chaero-

phon pumila). Our sample contains no species known for long

distance migration, and ecological data on some of the species in

our sample are incomplete or missing. However, the observation

Table 1. Summary of investigated animals and qualitative immunohistochemical results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family Species N = Mean BW Hippocampus Hippocampus SVZ/RMS SVZ/RMS

Ki-67 MCM2 DCX KI-67 MCM2 DCX

Phyllostomidae Glossophaga soricina 2 (m) 10 g 0 0 0 * * *

Phyllostomidae Carollia perspicillata 6 (3m/3f) 25 g 0 * 0 ** ** ***

Phyllostomidae Phyllostomus discolor 2 (f) 45 g 0 0 0 *** *** ***

Hipposideridae Hipposideros caffer 2 (m) 7 g ** ** *** *** ** ***

Hipposideridae Hipposideros cyclops 1 (m) 29 g 0 0 0 ** * **

Molossidae Chaerophon pumila 3 (m) 9 g * * ** ** 0 ***

Molossidae Mops condylurus 6 (m) 30 g * * ** ** ** ***

Nycteridae Nycteris thebaica 1 (f) 10 g 0 0 0 * * 0

Nycteridae Nycteris macrotis 6 (m) 15 g 0 0 0 *** ** *

Vespertilionidae Neoromicia rendalli 1 (m) 10 g 0 – 0 * ** *

Vespertilionidae Pipistrellus guineensis 1 (m) 3.5 g 0 – 0 ** ** **

Vespertilionidae Scotophilus leucogaster 1 (m) 17 g 0 0 0 ** ** *

Footnotes: f female; m male; BW body weight; SVZ subventricular zone; RMS rostral migratory stream; *** high immunopositive signal; ** moderate immunopositive
signal; * low immunopositive signal; 0 no immunopositive signal; – no data collected;
doi:10.1371/journal.pone.0000455.t001..
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that nectar-eating bats with highly developed spatial reference

memory (knowing where to go) and spatial working memory

(knowing which host plant has been visited and when) [21,22]

demonstrates that such cognitive abilities do not depend on adult

cell proliferation in the hippocampus. Assuming that the

hippocampus is indeed crucially involved in spatial navigation

and memory of bats, this observation would imply that adult

hippocampal neurogenesis is not of general necessity for superior

performance in spatial abilities.

Seasonal variations, longevity and neurogenesis

A possible source for missing neurogenesis might be seasonal

variations, as observed, for example, in the song control nuclei of

songbirds [23]. Investigations of wild-living squirrels captured over

the year reveal no difference in proliferation activity, despite

considerable behavioral adaptation due to seasonally changing

needs for spatial learning and memory [24]. Given that our data

are from tropical bats, it would seem rather unlikely to expect

Figure 3. Neurogenesis is not abolished in the rostral migratory stream; NeuroD immunoreactivity has an irregular distribution. Examples of
proliferating cells in the rostral migratory stream detected with antibody against Ki-67 (A–D) as well as their neuronal fate visualized with DCX (E–H)
are illustrated for Phyllostomus discolor (A,E), Hipposideros cyclops (B,F), Hipposideros caffer (C,G), and Mops condylurus (D,H). Thus, animals with and
without hippocampal neurogenesis do not differ in their neurogenetic activity in the rostral migratory stream. In Phyllostomus discolor, all granule
cells in the hippocampus are positive for NeuroD (I), in Hipposideros cyclops (J), Hipposideros caffer (K) and Mops condylurus (L) no reactivity to the
antibody against NeuroD could be detected. Scale bar is 20mm.
doi:10.1371/journal.pone.0000455.g003
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seasonal variations in adult hippocampal neurogenesis yet sparing

the SVZ and RMS. Cell proliferation in the hippocampus, always

highest in subadult individuals, is known to decline with age in

wild as well as laboratory rodents [12,25], and also in humans

[26]. It thus appears to be the most general constraint on adult

hippocampal neurogenesis. Bats live up to 3.5 times longer than

other mammals of comparable size [27]. The Neotropical bats in

our sample are reported to have wild live spans between 9 (P.

discolor), 10 (G. soricina) and 12.4 years (C. perspicillata), which is

much longer than in same sized rodents, and close relatives of the

three species showing neurogenesis have similar life spans as the

Neotropical species [27]. Due to the difficulty of accurate age

determination in adult bats, our samples probably contain young

adults as well as older animals. However, in the species where we

investigated several individuals we did not observe any marked

individual differences in terms of neurogenesis activity. This

implies that we have not been investigating selectively old animals,

and that the paucity of proliferating cells occurs already in adult

and not only in old animals.

Species comparisons of adult hippocampal

neurogenesis: what can we learn from negative

findings?
Based on our findings in wild-living rodents, and current ideas

about the functional role of adult hippocampal neurogenesis, we

undertook this study expecting to find high rates of neurogenesis in

bats, hopefully co-varying with ecological parameters so manifold

in Chiroptera. While the missing or low proliferation rates in many

bat species clearly impede the search for ecological covariates of

adult hippocampal neurogenesis (yet not for other co-varying

brain traits), they also require a re-consideration of some widely

held beliefs in the field. These beliefs tend to neglect or downplay

comparative issues, and are often based on a ‘‘more-is-better’’ view

of adult hippocampal neurogenesis. Yet, out of negative findings,

interesting functional and clinical hypotheses and approaches may

emerge.

Behavioral flexibility and adult neurogenesis? From

a comparative point of view, we hypothesize that high and

unrestricted rates of proliferation in the adult hippocampus might

be a feature of short-living mammals, where neurogenesis may be

affordable and sufficient to supply the plasticity functions attributed

to newly generated cells throughout a fairly short life span. During

their short life, most rodents are strongly predated upon, requiring

permanent adjustment of spatial relations and behavioral reactions,

in short, high levels of behavioral flexibility throughout life,

particularly as related to avoidance and escape behavior.

Assuming longevity and lower ecological predation pressure for

most bats and certainly humans, these species might afford to

sacrifice behavioral flexibility regarding spatial abilities, relying

instead on an established set of memory relations between objects

and places. In humans, this could correspond to the well-known (and

debated) transition from juvenile ‘‘fluid’’ intelligence to the

‘‘crystallized’’ intelligence of middle-aged and elderly persons

[28,29]. Whether physiological adult hippocampal neurogenesis in

humans is related to different forms of intelligence is likely to remain

an open question. On the other hand, loss of spatial behavioral

flexibility in humans as indicated by path routines is an often

observed event in life history. Likewise, many bat species use

stereotypical flight paths when commuting between roosts and

foraging areas permitting researchers to catch them there with nets.

Even the nectar-eating bats with their excellent spatial memory need

hundreds to thousands of trials to attain object-shape discrimination

when the objects change location [30], while mice can learn

conceptually related tasks in 50–100 trials [31]. Bats and primates,

including humans [32,33] may share the trait for low rates of adult

neurogenesis when compared to rodents.

Loss of function or down-regulation? Recent investigations

in healthy adult humans using endogenous markers showed missing

or low ongoing proliferation in the hippocampus, whereas in the

young individuals in these studies proliferation activity could always

be detected [26,34–36]. At first glance, this appears to be an age-

dependent loss-of-function phenomenon in species with long life

span. However, it is not unlikely that sparse or missing adult

Figure 4. Mice and bats show similar proliferation activity in the RMS, but not in the hippocampus. Immunohistochemistry against Ki-67 in wild
trapped adult wood mouse (Apodemus flavicollis: A,C,D) shows intense proliferation activity in the RMS (A, insert C) as well as in the subgranular layer
of the dentate gyrus (A, insert D). The same protocol applied to a neotropical bat (Phyllostomus discolor: B,E,F) visualizes a continuous band of
proliferating cells along the RMS (B, insert E), but proliferating cells are completely missing in the granule cell layer (B, insert F). Scale bar in A,B is
1mm, in C-F 25mm.
doi:10.1371/journal.pone.0000455.g004
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hippocampal neurogenesis is actually caused by down-regulation of

mitogenic activity in the subgranular zone, as proliferation is

regularly observed in the SVZ , RMS and olfactory bulb of bats

(Fig. 3, A–H; Fig. 4, B,E) and, possibly, in humans [37–39].

Proliferation of new cells in the mammalian brain can also be

triggered by insults [40], suggesting likewise the presence of

hippocampus-specific down-regulating factors. For clinically

oriented neuroscience, such relations would imply that bat hippo-

campi of any other than juvenile age may correspond functionally to

those of middle-aged or elderly humans. This bears the promise of

using, selectively and focused, some bat species as animal models

corresponding better to the human condition, particularly when

searching for regulatory factors. Clearly, more comparative studies

are needed, not only in bats, to identify species that model the

characteristic of human adult hippocampal neurogenesis.

Conclusions and outlook

N 1 Low rate (25%) or missing (75%) adult hippocampal

neurogenesis in twelve bat species with different home ranges,

foraging habits and relative hippocampal sizes indicate that

such proliferation is not necessary for their home-range spatial

behavior, pending investigations in migratory bats.

N 2 This result was not a methodological artifact since persisting

proliferation in the subventricular zone and the presence of

a rostral migratory stream of young neurons was clearly

demonstrated.

N 3 The wide ecological radiation and a corresponding range of

behavioral and neural adaptations within the order Chiroptera

offers excellent possibilities to test empirically evolutionary

adaptations predicted by findings from other species.

N 4 The most interesting correlate of low or absent adult

hippocampal neurogenesis is the remarkable longevity of bats;

low rates of adult neurogenesis combined with long life spans

are also found in monkeys and humans.

N 5 Given this similarity, bats might prove to be a useful animal

model for analyzing the functionality of adult neurogenesis and

associated cellular processes in humans, be this for natural or

pathological conditions. An interesting possibility might be the

search for local down-regulating factors

N 6 This study underlines the necessity to investigate the

phenomenon of adult hippocampal cell proliferation across

many species if a more complete understanding of evolutionary

mechanism in neuronal plasticity in mammals is to be reached.

This is not to deny the usefulness of the widespread mouse or

rat models, but species-specific peculiarities must be assessed

across a broader range of species.

MATERIAL AND METHODS

Animals
Neotropical bats were provided from breeding colonies at the

University of Munich, Germany. African animals were trapped in

Forêt Classée de la Lama in the Zou province, Republic of Benin,

West Africa using standard bat trapping techniques and perfused

rapidly after trapping. All animals in the sample were adult but

their exact ages are unknown. In the field, animals were identified

as adults by confirming complete closure of the epiphyseal growth

plates in the metacarpal-phalangeal joint of the finger bones [41].

All research in Benin, export of brains and specimens to

Switzerland was covered by permits of the Faculté des Sciences

Agronomiques, Université d’Abomey-Calavi (FSA-UAC) and was

in concordance with the laws of the Republic of Benin. None of

the captured species are threatened or protected (www.redlist.org).

For complete list of animals see Table 1. All experimental

procedures were conducted in accordance with the Swiss animal

welfare guidelines for the care and use of laboratory animals and

approved by the cantonal veterinarian office of Zürich, Switzer-

land.

Neurohistology
Animal where anesthetized intraperitoneally with Nembutal and

perfused transcardically with phosphate buffered saline (PBS),

followed by 0.6% sodium sulphide solution and 4% paraformal-

dehyde. Brains were removed and postfixed over night. After

saturation with 30% sucrose solution, brains were frozen. Coronal

cryostat sections (40 mm) in African and sagittal sections (40 mm)

in American bats of right hemispheres were collected in series of 4,

6 or 12 according to brain size and used for free floating

immunohistochemistry. Sections were rinsed in Tris buffered

saline (TBS) containing 0.05% Triton. For epitope retrieval, tissue

was incubated in citric buffer, pH 6.4 for 40 minutes at 95uC,

rinsed again and incubated for 1 hour in TBS containing 0.25%

Triton, 2% normal serum of the animal the secondary antibody

was raised in, and 1% bovine serum albumin (BSA). Primary

antibodies MCM2 (polyclonal goat antibody, Santa Cruz Bio-

technology 1:500), Ki-67 (NCL-Ki-67p, polyclonal rabbit anti-

body, Dianova 1:1000) and NeuroD (polyclonal goat IgG, Santa

Cruz Biotechnology 1:500) were diluted in the same diluent, and

sections were incubated at 4uC over night. Incubation with

secondary antibodies (rabbit anti goat, goat anti rabbit Vectastain

Elite ABC kit) was followed by avidin-biotin complex according to

manufacturer’s instructions and stained with DAB as chromogen.

For Doublecortin (DCX, polyclonal goat antibody, Santa Cruz

Biotechnology, 1:1000) sections were not heat treated. Endoge-

nous peroxidase activity was blocked by incubation of the sections

in 0.6% hydrogen peroxidase for 30 minutes. All other steps

followed the protocols described above. Sections were mounted,

embedded and investigated on an Olympus BX 40 microscope

using 206 and 406 objectives. For each marker and animal,

between 2 and 12 sections containing the hippocampal structure

were analyzed qualitatively. Immunohistochemical visualization of

cell proliferation by means of Ki-67 has been validated against the

bromodeoxyuridine labeling technique elsewhere [42], showing

high correlations between the two methods.
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