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In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human
pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland
transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig
model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in
the first 24 h of tick attachment — and not later — is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart
tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic
understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission.
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INTRODUCTION
The black-legged tick Ixodes scapularis is a vector of Borrelia

burgdorferi, the agent of Lyme disease [1] and of pathogens

responsible for anaplasmosis [2], babesiosis [3], and tick-borne

encephalitis [4]. I. scapularis nymphs transmit these pathogens

during their 3–8 days of attachment [5] and feeding [6,7]. The

tick’s salivary components facilitate microbial transmission [8,9].

Defining tick proteins critical for feeding and transmission is

essential for a molecular basis of new vaccines against tick-borne

pathogens. Towards this goal, research efforts focused on salivary

gland proteins expressed in ticks that fed for 3–4 days or longer,

primarily due to the ease of obtaining protein and RNA from fed,

compared with unfed, ticks [10,11,12]. Several tick salivary

proteins with pharmacological activities that block host haemo-

static cascades and immune responses have been identified in this

way [11,12,13,14,15,16,17,18,19,20,21]. The potential of these

proteins to serve as efficient vaccines to block feeding, however,

has not yet been demonstrated. In recent studies, Subolesin, a tick

protein identified from an I. scapularis embryonic cell-line [22,23],

and 64TRP [24] a recombinant version of a secreted salivary

gland cement protein from Rhipicephalus appendiculatus have demon-

strated potential as vaccines to impair tick infestation. Immunity

against 64TRP, a potential broad-spectrum vaccine candidate was

shown to also decrease the transmission efficiency of TBE by I.

ricinus nymphs [25].

The research impetus to identify tick salivary proteins critical for

feeding has been driven largely by the phenomenon of acquired

tick-immunity, first described by William Trager [26]. Trager

showed that guinea pigs repeatedly infested by Dermacentor variabilis

larvae acquired immunity against ticks, which was characterized

by cutaneous reactions marked by edema and inflammatory

infiltrates that led to impaired engorgement, decreased tick weights

and increased mortality. Studies since then have described the

phenomenon of acquired tick-immunity in a wide variety of tick-

host species and ascribed the phenomenon to the elaboration of

host humoral and cellular responses to tick salivary antigens

secreted into the feeding site [27,28,29]. Importantly, acquired

tick-immunity also impaired the transmission of pathogens to the

vertebrate host [27,30]. Research efforts for several decades

endeavored to identify the components of tick saliva that reacted

with tick-immune sera with the search shifting in vain between

unfed and fed ticks [12,31,32,33,34]. We now examine why

proteins from unfed and fed ticks, despite their reactivity with tick-

immune sera, demonstrated only a limited role in provoking tick-

immunity. We offer evidence that the transcriptome and proteome

of the tick salivary glands is dynamic during feeding and address

the impact of host immunity against the 24 h tick salivary proteins

on tick engorgement and Borrelia transmission.

RESULTS

The I. scapularis salivary gland proteome at 24 h is

different from that at 66 h of feeding
We addressed two time points of feeding, 24 h representing an

initial phase when feeding commences and 66 h representing

a later phase of nymphal feeding prior to repletion. A comparative
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analysis of the protein profile of salivary glands from 24 h and

66 h fed I. scapularis nymphs was carried out by two-dimensional

gel electrophoresis. While a majority of the proteins were

represented in comparable amounts in both 24 and 66 h fed

salivary glands, at least 6–10 proteins were differentially expressed

(Fig 1A.1). We highlight a few of these including proteins

corresponding to positions 3 and 4 which were uniquely

represented in the 24 h salivary glands, and proteins at positions

1and 2 observed only in the 66 h salivary glands. Histogram of the

global analysis as generated by the DeCyder (GE Healthcare, NJ)

software package demonstrated that several proteins were greater

than three fold differentially expressed between the two popula-

tions (Fig 1A.2). Further, western analysis of 24 and 66 h salivary

gland proteins separated on a one dimension SDS-PAGE using I.

scapularis nymph-immune rabbit serum showed a differential

reaction with 24 and 66 h proteins (Fig 1B).

Fractionation of total protein from 24 and 66 h salivary glands

on a C4 reverse phase HPLC column also revealed differences in

the profiles of the 24 and 66 h salivary glands (Fig 2A) and dot-blot

western analysis of the fractions also showed that nymph-immune

rabbit serum reacted differentially with the 24 and 66 h salivary

proteins (Fig 2B).

I. scapularis salivary gland transcriptome at 24 h is

different from that at 66 h of feeding
An oligonucleotide mini-array representing a subset of genes

encoding for secreted salivary proteins was utilized to interrogate

the expression profile of 24 and 66 h fed I. scapularis nymphs. Array

elements that showed significant and consistent hybridization

patterns in all replicate experiments are listed in Table 1. Differences

in the expression profiles of several genes (Table 1) in the 24 and 66 h

salivary glands showed that the tick transcriptome changes during

the process of feeding. These observations were validated by

quantitative RT-PCR of at least 10 selected salivary genes (Fig 3).

Salivary proteins expressed in the first 24 h of

feeding are sufficient to elicit tick-immunity
Repeated tick-infestation of the vertebrate host provokes a vigorous

immune response directed against tick salivary proteins and as

a result, ticks feeding on tick-immune hosts are rejected within 24–

48 h [27,35,36]. To begin to define I. scapularis salivary proteins

that elicit tick-immunity, we immunized guinea pigs with salivary

gland extracts from 66–72 h fed nymphs and confirmed by

western analysis that the immunized guinea pig sera reacted with

protein extracts from fed tick salivary glands (Fig 4A-inset). Upon

challenge of the guinea pigs with nymphs, tick fall-off rates and

engorgement weights on immunized animals were not significantly

decreased when compared to that on naı̈ve guinea pigs

(Fig 4A)(P = 0.12). This raised the possibility that proteins

contained in the 66–72 h salivary gland extracts may not play

a critical role in provoking tick-immunity. Evidence that the tick

salivary gland transcriptome and proteome is dynamic, prompted

us to examine whether tick-immunity is perhaps directed against

salivary proteins expressed in the first 24 h of attachment. To

circumvent the tediousness involved in generating 24 h salivary

gland extracts for immunization, we infested guinea pigs with I.

scapularis nymphs and manually removed the nymphs 24 h after

attachment to ensure that the guinea pig immune response was

directed only against salivary proteins expressed in 24 h fed

nymphs. This 24 h infestation was repeated at least 4 times, and

these guinea pigs will henceforth be referred to as 24 h tick-

immune animals. In contrast, guinea pigs that had been repeatedly

infested with ticks that were allowed to feed normally [37] will be

referred to as replete tick-immune animals. Each of the 24 h tick-

immune guinea pigs, when challenged with 30 I. scapularis nymphs,

demonstrated all the major hallmarks of acquired tick-immunity

including erythema at the sites of tick attachment (Fig 4B), rapid

rejection of ticks within 24–48 h (Fig 4C) and significantly lower

tick engorgement weights (Fig 4D)(P,0.05) compared to ticks that

fed on naı̈ve guinea pigs. These observations suggested that host

immunity directed against 24 h tick salivary proteins is sufficient to

impair tick feeding and confirmed the posit that acquired tick-

immunity is predominantly directed against 24 h salivary proteins

and not against proteins expressed in 66–72 h or later.

Histopathology of the skin at tick attachment sites

on 24 h tick-immune guinea pigs shows increased

dermal inflammation
Skin samples obtained 24 hours after tick attachment from the 24 h

tick-immune animal revealed increased number of dermal in-

flammatory cells, comprised predominantly of heterophils (Fig 5A,

Panels c and d), and inflammation was significantly higher in the

24 h tick-immune samples compared to naı̈ve samples (Fig 5B)

(P,0.001). Skin biopsies of the 24 h tick-immune animal showed

significantly higher number of basophils/mast cells both at 24 and

Figure 1. Proteome profile of 24 h and 66 h fed salivary glands. A.1.
Differential 2D Fluorescence Gel Electrophoresis (DIGE) of 50 mg of
proteins from 24 and 66 h fed salivary glands. Highlighted are proteins
at positions 1 and 2 preferentially expressed at 66 h, while proteins at
positions 3 and 4 are differentially expressed in 24 h salivary glands.
A.2. Histogram of the global protein profiles plotted as a log ratio of
spot intensity of Cy5/Cy3 (66 h/24 h) shows a set of proteins that are
greater than 3 fold differentially expressed in 24 h (indicated by red
circles) and 66 h (indicated by blue circles). Proteins less than 3 fold
differentially expressed (indicated by green circles) are represented
within the bell curve. B. A western blot of 5 mg of proteins isolated from
24 and 66 h fed salivary gland extracts probed with nymph-immune
rabbit serum shows greater reactivity with proteins from the 24 h
extracts than from the 66 h fed extracts.
doi:10.1371/journal.pone.0000451.g001
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48 h (Fig 5C) compared to skin samples from a naive animal

(P,0.001) and was characteristic of cutaneous basophil hypersen-

sitivity [38]. These observations underscore the hypothesis that

salivary proteins expressed in the first 24 h of tick feeding play a key

role in eliciting tick-immunity in the vertebrate host.

24 h tick-immunity impairs Borrelia burgdorferi

transmission to the vertebrate host
Earlier work [37] had shown, using a guinea pig model of tick-

immunity, that tick-immunity thwarts Borrelia transmission to the

vertebrate host. We now examined Borrelia transmission in the context

of immunity against 24 h tick salivary proteins. 24 h tick-immune

guinea pigs were each challenged with 5–6 B. burgdorferi-infected I.

scapularis nymphs. Naı̈ve guinea pigs were similarly challenged and

served as controls. At least 20 animals were used in each experimental

and control group. Ticks feeding on 24 h tick-immune animals were

rejected within 24–48 h and showed decreased engorgement weights

(Fig 6A). Four weeks after tick fall-off, RT-PCR analysis of skin punch

biopsies obtained from each of the animals also showed that Borrelia

transmission was significantly decreased (P = 0.01) in 24 h tick-

immune guinea pigs compared to naı̈ve animals (Fig 6B). Skin

punches (obtained from each of the animals two weeks after tick fall-

off) when cultured in BSK-H medium for 10 days showed the

Figure 2. HPLC fractionation of 24h and 66 h fed salivary gland proteins. A. Chromatogram of the profiles of protein extracts from 24 h (shown in
red) 66 h (shown in black) fed salivary glands fractionated on a C4 hydrophobic column shows differences in the protein composition of the two
populations. Fraction numbers are indicated next to prominent protein peaks. B. A dot-blot analysis of the HPLC fractions using tick-immune rabbit
serum demonstrates differential reactivity with 24 and 66 h protein fractions. Numbers next to the cross-reacting spots correspond to HPLC protein
peaks.
doi:10.1371/journal.pone.0000451.g002
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presence of viable spirochetes in 12 out of 16 animals in the control

group while only 4 out of 18 animals (P,0.01) in the 24 h tick-

immune group showed viable spirochetes (Fig 6C).

Tick-immunity targets salivary components critical

for Borrelia transmission to the vertebrate host
Mice serve as reservoir hosts of I. scapularis [1], and do not readily

express resistance to tick feeding [39]. Hence a mouse model of B.

burgdorferi transmission by I. scapularis nymphs was utilized to

examine the impact of acquired tick-immunity on pathogen

transmission without the overlying impact of tick-immunity on tick

engorgement. Unlike guinea pigs, rabbits elicited a robust humoral

response to tick salivary proteins upon repeated infestations with I.

scapularis nymphs (Fig 1B) that resulted in rapid rejection of ticks

within 24 h of attachment (Fig 7A) and significantly decreased tick

engorgement weights on the tick-immune animals (1.0 mg60.11

SEM) (n = 25) compared to that on control animals (3.79 mg6

0.17 SEM) (n = 45) (P,0.0004). Nymph-immune rabbit serum was

tested on a western blot to confirm that there was no reactivity to

Table 1. Expression profiles of Ixodes scapularis salivary genes at 24 and 66 h of feeding.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene accession number Putative function/homology Ratio of 24 h/66 h pixel intensities P value

AF483716 Protease inhibitor 210 6e-5

AF483714 Putative protease inhibitor +4 1e-2

AF483727 Putative serpin +10 1e-2

AF483726 Protease inhibitor +10 1e-2

AF483689 Secreted protease inhibitor 23 1e-2

AF483712 Salp10-like +10 6e-5

AF278575 Salp10 220 1e-2

AF483719 Salp13 -like 1 6e-5

AF483720 -Salp13-like 22 9e-3

AF209912 Salp13 2100 1e-2

AF483728 Secreted carboxypeptidase 210 6e-5

AF483731 Secreted metalloprotease 1 6e-5

AF483740 Secreted 10.2 kDa 23 6e-5

AF483688 Secreted convertase protease 25 1e-3

AF483729 Transmembrane serine protease 210 1e-3

AAY333959 Thoredoxin peroxidase 220 1e-3

AF483690 Secreted protease +7 5e-4

AF483743 Secreted lipocalin 26 6e-5

AF483722 Lipocalin-like 1 6e-5

AF209920 Histamine binding protein 220 1e-2

AF483718 Histamine-binding protein +10 1e-2

AF209918 Salp25B-Histamine binding 210 1e-2

AF483721 Salp25A-like 1 1e-1

AF209922 Salp25A-Histamine binding 28 5e-4

AF483734 5.3 Kda protein/defense 1 6e-5

AF483737 Secreted protein 210 6e-5

CD052513 Similar to Virilizer +3 6e-5

AF209916 Salp17 220 6e-5

AF483659 Salp14-like 1 1e-4

AF483662 Salp14-like 1 1e-4

AF483665 Salp14-like +2 5e-4

AF483660 Salp14-like +2 1e-2

AF483663 Salp14-like 1 1e-2

AAY66642 Secreted protein +10 1e-2

AF209921 Salp14- anticoagulant 24 1e-2

AF483663 Salp14-like 1 1e-2

AF483703 Secreted protein 210 2e-4

AF483681 Secreted protein 22 5e-4

AF483686 Secreted protein 2100 1e-2

Results presented as a ratio of the median of normalized intensities from Cy5 (24 h salivary gland) to the median of normalized intensities from the Cy3 (66 h salivary
gland). P values calculated from the paired signed-rank test are shown.
doi:10.1371/journal.pone.0000451.t001..
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B. burgdorferi protein extract (Fig 7A, Inset) and then transferred to

naı̈ve C3H/HeN mice 24 h prior to placement of B. burgdorferi-

infected nymphs. Control mice received naı̈ve rabbit serum. The

nymphs fed comparably on both groups of mice with no significant

differences in engorgement weights on control (1.19 mg60.19)

(n = 25) and on experimental mice (1.09 mg60.27) (n = 26). The

Borrelia burden in the midguts and salivary glands of nymphs, as

assessed by quantitative RNA-PCR (Fig 7B, Inset), was not

significantly different (P.0.1) in experimental or control groups.

Although all animals in both control and experimental groups got

infected, the transmission efficiency of Borrelia to mice that received

tick-immune sera was decreased when compared to control mice,

as evaluated by decreased spirochete burden in the skin (P = 0.04)

and bladder (P = 0.05), 21 days after the ticks had detached

(Fig 7B).

DISCUSSION
I. scapularis ticks are obligate hematophagous arthropods that

vector several human pathogens. With the goal of developing

vaccines to block tick feeding and the ensuing microbial trans-

mission, molecular and immunological approaches [12,23,31,

40,41] have been used to characterize the critical antigens. In

1939 Trager showed that [26] repeated tick infestations provoked

guinea pig immunity against D. variabilis salivary proteins

characterized by cutaneous reactions at tick feeding sites that

resulted in tick rejection within 24–48 h of attachment. Studies in

numerous vertebrate host species showed that these cutaneous

responses, the hallmark of acquired resistance to ticks, were

primarily due to a rapid degranulation of mast cells and basophils

at the feeding lesion triggered by the engagement of tick-antigen

and antigen-specific antibodies to Fc receptors [29,35,36]. Upon

repeated infestations of vertebrate hosts, antibodies to tick proteins

were increasingly elaborated [33,42,43] and tick-immune serum

passively transferred to naı̈ve animals conferred partial protection

from tick challenge, demonstrating a contribution of the humoral

response [44,45]. This phenomenon of acquired tick-immunity

has therefore been exploited for several decades to identify

proteins critical for feeding in tick saliva and salivary glands, based

on their reactivity to tick-immune serum [27,31,46], but have

provided limited success.

In this study, we demonstrate definitively that the I. scapularis

transcriptome and proteome is dynamic and present a paradigm

shift in the search for salivary proteins critical for establishing tick

feeding. While several earlier observations on ixodid ticks sug-

gested that the composition of the tick saliva changes during

feeding [47,48,49,50], the paucity of molecular tools to dissect the

tick proteome and transcriptome perhaps confounded a detailed

analysis and the full importance of these initial observations was

not recognized. The I. scapularis genome is being sequenced [51],

and the transcriptome of fed nymphs and adults partially cataloged

[10,11]. We utilized this partial database [10] and generated an

oligonucleotide array representing a subset of genes that encode

for secreted tick salivary proteins. Since most of the genes repre-

sented in this array correspond to genes identified from fed

nymphs and adults, it was not surprising that most of the genes

were not expressed or expressed at lower levels in 24 h fed salivary

glands compared to that in 66 h fed salivary glands. At this

juncture, in the absence of whole genome information, it is not

possible to infer the physiological significance of the changing

transcriptome. The observation that the transcriptome of I.

scapularis salivary glands contained structural paralogs of several

genes suggested that paralogy might offer a potential strategy to

evade host immunity. It was reasoned that different paralogs

would be expressed at different stages of feeding. However, the

expression levels of most of the salp14 paralogs were not

dramatically altered during feeding and, the expressions of

AF483703, AF483681 that are paralogs of AF483786 appeared

to be increased at 66 h of feeding (Table 1). Cross-hybridization of

transcripts corresponding to different structural paralogs on arrays

cannot be ruled out and careful design of PCR primers will be

required to assess the expression profiles of individual paralogs.

Importantly, this sub-set mini-array analysis has demonstrated that

the tick transcriptome at 24 (early phase) and 66–72 h (late phase)

of feeding is different (Table 1, Fig 3). Consistent with the observa-

tions made using the mini-array, the proteome analysis by DIGE

and HPLC analysis iterated that the salivary gland proteome

changes during feeding (Fig 1 and 2). It is well established that tick

feeding proceeds in different phases [52], hence, it is logical to

expect that the different phases of feeding may be driven by

concomitant changes in the expression profile of tick salivary genes

and therein perhaps, lies the essence of successful tick feeding.

Since acquired tick-immunity resulted in rejection of ticks

within the first 24–48 h of feeding, we hypothesized that tick-

immunity must be directed against proteins expressed early (in the

first 24 h) during engorgement. Underpinning this assumption was

the observation that immunization with salivary gland extracts

from 66 h fed nymphs did not provoke immunity to ticks (Fig 4A).

Further, protein fractions from the 24 and 66 h salivary glands

showed differential reactivity with rabbit tick-immune serum

(Fig 1B and 2B) and 24 h salivary fractions reacted more avidly

than the 66 h fractions. Interestingly, Dharampaul et al [47] had

observed that the antigenic composition of A. hebraeum ticks

changed with engorgement size and tick-immune serum against A.

hebraeum readily reacted with salivary gland extracts from ticks with

smaller engorgment size.

We recognize that immunization of guinea pigs with 24 h

salivary gland extracts would require a vast number of ticks to

generate sufficient protein, standard immunization regimens

requiring up to 100 mg of protein/animal. We therefore tested

our hypothesis using an alternative strategy wherein ticks were

Figure 3. Quantitative RT-PCR demonstrates differential expression
of salivary gland genes at 24 and 66 h of feeding. Relative
quantitation of gene expression for selected set of salivary genes
confirmed the observations made using the subset oligonucleotide
array (Table 1). Fold change in gene expression at 66 h relative to 24 h.
Error bars represent Mean fold change6SD. Expressions of most of the
genes were increased at 66 h when compared to the levels at 24 h of
feeding. The expression of at least 2 genes was increased at 24 h
compared to that at 66 h (Inset) presented here as fold change in gene
expression at 24 h relative to 66 h.
doi:10.1371/journal.pone.0000451.g003
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Figure 4. Proteins expressed within 24 h of tick feeding provoke tick-immunity. A. Guinea pigs challenged with I. scapularis nymphs subsequent
to immunization with protein extracts from 66 h fed nymphal salivary gland extracts (66 h SGE); or after 3 tick infestations (Tick-immune). Naı̈ve
guinea pigs served as control. Inset. Immunoblots of tick salivary gland extracts (1 mg/lane) probed with immune sera from three 66 h SGE-
immunized animals (lanes 1–3). Results are one representative of three replicate experiments. B. 24 h tick-immune guinea pigs when challenged with
ticks showed erythema at the tick attachment sites within 24 h of tick attachment; no redness was apparent on naı̈ve animals. C. Ticks feeding on
24 h tick-immune guinea pigs were rapidly rejected and the number of attached ticks decreased significantly (P = 0.01) within 48 h when compared
to that on naı̈ve animals. D. Ticks feeding on 24 h tick-immune animals showed decreased engorgement weights compared to ticks that engorged
on naı̈ve animals. Error bars represent Mean6SE.
doi:10.1371/journal.pone.0000451.g004
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Figure 5. Histopathology of skin punch-biopsies from 24 h tick-immune animals shows increased inflammation. Representative hematoxylin and
eosin-stained sections of guinea pig skin punch biopsies obtained at 24 h near tick-attachment sites (*) from naive control (a, b), and 24 hour tick-
immune (c, d). Samples from the 24-hour tick-immune animal had the highest number of inflammatory cells (c) which was characterized by
a predominance of heterophils (d). In comparison inflammatory infiltrates were markedly reduced and comprised predominantly of mononuclear
cells in 24-hour naı̈ve animals (a, b). Scale bar = 500 mm (a, c); Scale bar = 100 mm (b, d). B. Dermal inflammatory cells in skin sections of 24 h tick-
immune animals showed a statistically significant (P,0.001) increase in the numbers compared to naı̈ve animals. C. Toluidine blue positive cells
representing basophils/mast cells also showed a statistically significant increase (P,0.05) in skin biopsies of 24 h tick-immune animal compared to
naı̈ve animal (Error bars represent6SEM)
doi:10.1371/journal.pone.0000451.g005
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Figure 6. Immunity against 24 h tick salivary proteins impairs Borrelia burgdorferi transmission. A. The efficiency of B. burgdorferi infected
nymphs to feed on 24 h tick-immune animals was significantly decreased (P,0.02) compared to that on naı̈ve animals and ticks were rejected within
48 h of attachment. B. Quantitative PCR analysis of guinea pig skin punch-biopsies 4 weeks after tick detachment showed a significant decrease
(P = 0.01) in spirochete burden in 24 h tick-immune animals compared to naı̈ve animals as evaluated by B. burgdorferi flaB amplicon levels. C. Culture
of skin punch-biopsies in BSK-H medium demonstrated a significant decrease (P,0.01) in the number of 24 h tick-immune animals that harbored
viable spirochetes when compared to naı̈ve animals. (Error bars represent Average6SD)
doi:10.1371/journal.pone.0000451.g006

Tick Salivary Antigens

PLoS ONE | www.plosone.org 8 May 2007 | Issue 5 | e451



allowed to repeatedly feed for 24 h to ensure that the animal was

exposed only to antigens expressed in the first 24 h of feeding and

demonstrate for the first time that immunity directed against

proteins expressed in the first 24 h of feeding elicits all the

hallmarks of acquired tick-immunity including redness, early tick

rejection and decreased engorgement weights (Fig 4). Histopa-

thology of skin biopsies from 24 h tick-immune animals demon-

strated cellular infiltrates composed predominantly of mast cells

and basophils (Fig 5). This was consistent with earlier observations

made on tick-immune animals that showed the sequence of

increasing cellular infiltrates and invoked the role of degranulated

mast cells, eosinophils and basophils in mediating the immediate

type hypersensitivity associated with rapid tick-rejection within the

first 24 h of attachment on tick-immune animals [29]. Taken

together, these results obtained using a guinea pig model of tick-

immunity against I. scapularis ticks suggest that antigens expressed

in the first 24 h of tick feeding are key players in expressing tick-

immunity in the vertebrate host and represent therefore proteins

critical to establish the onset of feeding. We anticipate that this

finding when extended in future studies to other tick species and to

other animal-models of tick-immunity will fuel the discovery and

design of novel anti-tick vaccines.

The major enthusiasm with acquired tick-immunity stems from

the earlier observations that ticks feeding on tick-immune animals

are not able to transmit pathogens efficiently [46,53,54] and is

underscored by a recent study that residents of Lyme disease-

endemic areas who have had multiple exposures to uninfected

ticks may also be protected from Lyme disease [55]. Nazario et al

[37] showed that ticks remained attached to tick-immune guinea

pigs for longer than 24 h but were unable to efficiently transmit

Borrelia. Earlier, Piesman’s work [56] had shown that B. burgdorferi-

infected I. scapularis ticks can transmit spirochetes to a naı̈ve

vertebrate host if they remain attached for longer than 24–36 h on

the host; this time essential for the replication and migration of

spirochetes from the midguts to the salivary glands from where

they exit the tick vector [6]. Nazario et al’s [37] observation

suggested that tick-immunity may impair pathogen transmission

by additionally targeting tick proteins critical perhaps for Borrelia

growth in the ticks and its migration to the salivary glands for

transmission. It was therefore important to examine if immunity

directed against proteins expressed in 24 h would be sufficient to

also impair Borrelia transmission.

Using a guinea pig model of B. burgdorferi transmission, we

evaluated whether immunity directed against the 24 h salivary

gland proteins impaired Borrelia transmission. Similar to Nazario’s

observations, although Borrelia-infected ticks fed poorly on 24 h

tick-immune guinea pigs, but at least some remained attached up

to 48 h (Fig 6A), providing sufficient time for spirochete

transmission to the vertebrate host. However, the ability of

Borrelia-infected nymphs to transmit spirochetes to 24 h tick-

immune guinea pigs was drastically impaired (Fig 6B and 6C).

Unlike guinea pigs, rabbits provided a robust humoral response

to tick salivary proteins upon repeated infestations with I. scapularis

nymphs (Fig 1B) that resulted in rapid tick rejection within 24–

48 h of attachment, as shown in a representative animal (Fig 7A)

and impaired tick engorgement as observed in guinea pigs (Fig 4D).

Also, consistent with the hypothesis that tick-immunity is directed

against salivary proteins expressed in the first 24 h of tick

attachment, tick-immune rabbit sera reacted readily with 24 h

tick salivary proteins (Fig 1B and 2B). Thus, although, nymphs

were allowed to feed to repletion on the rabbits, rabbit tick-

immunity may also be predominantly directed against 24 h

salivary antigens. We therefore transferred I. scapularis nymph-

immune rabbit serum to experimental C3H mice and naı̈ve rabbit

serum to control C3H mice and then challenged with Borrelia-

infected I. scapularis nymphs. The engorgement weights of ticks and

Borrelia burdens in the midguts and salivary glands were

comparable in both control and experimental groups. Interesting-

ly, Borrelia transmission efficiency of ticks feeding on mice that

received tick-immune serum was significantly decreased when

compared to ticks feeding on control mice (Fig 7B). An earlier

study by Wikel et al [39] showed that ticks feeding on mice

repeatedly infested by I. scapularis nymphs were able to feed

successfully, but were not able to transmit Borrelia efficiently. It is

also interesting to note that in our recent study, Salp15, a tick

salivary protein, facilitated the transmission of B. burgdorferi to mice

[9] and reacted readily with rabbit tick-immune serum [12].

Ablation of salp15 expression impaired Borrelia transmission to

mice but did not alter the ability of ticks to engorge on mice and

did not impair spirochete growth and migration within ticks [9].

Figure 7. Passive transfer of rabbit tick-immune serum to mice
impairs the ability of B. burgdorferi infected nymphs to transmit
spirochetes to mice. A. The ability of nymphs to feed on rabbits upon
repeated infestation was decreased. Inset. Immunoblot of B. burgdorferi
protein extract probed with anti-Borrelia antiserum (lane 1) or nymph-
immune rabbit serum (lane 2). B. Inset. Quantitative RT-PCR assessment
of Borrelia burden as scored by levels of flaB amplicons in the midguts
(MG) and salivary glands (SG) of nymphs feeding on mice that received
rabbit tick-immune serum (RTIS) or naive serum (NRS); and quantitative
PCR assessment of Borrelia burden in the bladder and skin of mice that
received rabbit tick-immune serum (RTIS) or naı̈ve (NRS) serum.
doi:10.1371/journal.pone.0000451.g007
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These observations gather evidence in favor of the premise that

acquired tick-immunity may target additional events redundant

for feeding but critical for pathogen transmission and provokes the

possibility that immunity against tick proteins critical for trans-

mission can serve as a novel approach to block microbial

transmission.

The passive transfer experiment suggested that tick feeding and

pathogen transmission might require different salivary proteins. It

is also likely that salivary proteins critical for enabling tick feeding

on rabbits/larger mammals may indeed be different from proteins

critical for feeding on mice. That the tick transcriptome may

change not only during feeding, but also on different hosts has

been suggested by Nuttall’s earlier work on Rhipicephalus appendi-

culatus ticks [50] and is underscored by our observations.

These results provide biological evidence that immunity against

24 h salivary proteins expresses all the characteristics of and is

indistinguishable from tick-immunity expressed by natural re-

peated tick-infestations. The current study shifts the focus from

late phase proteins and provides evidence that proteins expressed

within 24 h of feeding play a critical role in establishing the early

phase of tick-host interaction and enabling pathogen transmission.

Defining these proteins will be the next step that will reveal how

these proteins may function in the initial events that allow the

vector to engage with the host and why these events also determine

the success of B. burgdorferi transmission. The last decade has been

a turning point for tick genomics with concerted efforts from

various research groups promoting not only an increasing

knowledge of tick genes and proteins but also providing novel

molecular techniques to examine their functions [51,57]. The field

now stands poised, to better identify these 24 h tick salivary

proteins and determine their role in establishing feeding and in

pathogen transmission.

MATERIALS AND METHODS

I. scapularis ticks
I. scapularis nymphs and larvae were obtained from a tick colony at

the Connecticut Agricultural Experiment Station (New Haven, CT).

B. burgdorferi-infected mice and nymphs
A low-passage-number clonal isolate of B. burgdorferi N40 that is

infectious to mice [58] was used to inoculate C3H mice. Roughly,

100 ml of 16105 N40 spirochetes/ml was injected subcutaneously.

Skin punch biopsies were collected from each mouse 2 weeks after

inoculation and DNA isolated using the DNeasy kit (QIAGEN,

Valencia, CA) and tested by PCR for the presence of spirochetes

as described below. I. scapularis larvae were placed on B. burgdorferi-

infected C3H mice and fed larvae molted to generate B. burgdorferi-

infected nymphs.

2D protein analysis
A qualitative analysis of the I. scapularis salivary gland proteome

was carried out by Differential 2D Fluorescence Gel Electropho-

resis (DIGE) at the W.M Keck Facility at Yale University. Salivary

gland extracts from 200 I. scapularis nymphs fed for 24 and 66 h

were suspended in a cell lysis buffer (7M urea, 2M thiourea, 4%

CHAPS, 25 mM Tris, pH 8.6 at 4uC) and protein concentration

estimated by amino acid analysis at the W.M Keck Facility at Yale

University. Equal amounts of protein (50 mg) from 24 and 66 h

salivary gland extracts were then differentially labeled in vitro with

Cy3 and Cy5 N-hydroxysuccinimidyl ester dyes as described in the

Ettan DIGE manual (GE Healthcare, NJ). A third dye (Cy-2) as an

internal (pooled 25 mg of 24 h+25 mg 66 h salivary gland extracts)

standard to permit normalization of multiple gels and for internal

normalization was also included. Rehydration Buffer was added to

a total volume of 400 microliters, and isoelectric focusing was

carried out in the first dimension on 24 cm Immobiline (IPG)

Drystrips (GE Healthcare, NJ) using a pH 3–10 range, and

a 12.5% polyacrylamide gel in the second dimension. The gel was

then sequentially scanned at all three wavelengths using the

Typhoon 9410 Imager (GE Healthcare, NJ) and images exported

into the DeCyder (GE Healthcare, NJ) software package to assess

differentially expressed protein spots. The DeCyder software

automatically outputs a listing of significant differences in protein

expression including t-test values, using the Cy-2 internal

standard. The protein spots were not excised for identification.

Fractionation of salivary gland extracts by High

performance Liquid Chromatography (HPLC)
Salivary gland protein extracts from nymphs fed for 66 and 24 h

were suspended in water and 50 mg of each protein extract in

a volume of 50 ml was loaded on a 1 mm625 cm Vydac C-4

(5 micron particle size, 300 pore size) reverse-phase column and

fractionated on a Hewlett Packard 1090 HPLC system equipped

with an Isco Model 2150 Peak Separator. The column was

equiliberated with 98% buffer A (0.06%TFA) and 2% Buffer B

(0.052% TFA, 80% acetonitrile). The protein was eluted at 5 ml/

min with the following gradient program: 0–60 min (2–37% B),

60–90 min (37–75% B) and 90–105 min (75–98% B) and fractions

detected by their absorbance at 210 nm and collected in

Eppendorf tubes.

Array construction
All I. scapularis protein sequences in the NCBI database (www.ncbi.

nlm.nih.gov) (as of the start of the experiment) were downloaded

into a zipped file and inserted into a Microsoft Access database.

Irrelevant sequences were parsed out to retain only I. scapularis

sequences. A Visual Basic macros embedded in the Access

database was then used to pass each sequence through WoLF

PSORT (located at http://wolfpsort.seq.cbrc.jp) to identify

cellular localization of the protein; and the Signal P 3.0 server

(www.cbs.dtu.dk/services/signalP/) to identify if the proteins are

secreted. Output from these programs was recorded and the data

exported to Microsoft Excel. The FASTA files of the nucleotide

sequences for membrane and secreted proteins were processed

twice using the program ArrayOligoSelector 3.8.1(http://.source-

forge.net/projects/arrayoligosel) to generate unique 50 mers

corresponding to the 39 and 59 ends of the gene. Since the

genome sequence of I. scapularis is not available, we bear in mind

that the oligo’s selected by the ArrayOligoSelector, may have

similarities to sequences in the genome that are not yet identified.

Several paralogous gene families have been identified in the I.

scapularis salivary gland transcriptome with very high levels of

polymorphisms in certain groups [11]. We did not include all

members of a paralogous family, especially if they differ by very

few nucleotides among themselves. An arbitrary cut off of 80%

identity was set to exclude representation of members of a family

that are 80% or more identical to each other. The output from the

ArrayOligoSelector was also analyzed using BLAST 2.2.9 to

ensure specificity. The oligonucleotides synthesized at 100 mM

concentration (Sigma Genosys, MO) were diluted to a concentra-

tion of 5 mM in 50% DMSO and maintained in 96 well plates.

Using a Beckman Biomek FX robotic liquid handler the 96-well

plates were condensed to 384–well plates containing the diluted

oligonucleotides. The DNA from these plates was printed onto

25 mm675 mm UltraGAPS Coated slides (Corning, NY) using

a BioRad VersArray Pro Micoarrayer (BIO-RAD Laboratories,
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CA). The oligonucleotides were immobilized, by UV cross-linking

at 2000 mJoules using a Stratalinker (Stratagene, CA). The

oligonucleotides corresponding to each gene was spotted in

triplicate, to increase precision of spot intensity measurements

[59].

Array hybridization
Approximately 20–25 nymphs were placed on each naı̈ve mouse

and allowed to feed for 24 or 66 hours. Fed ticks were removed,

dissected to remove salivary glands and total RNA isolated as

described [60] and pooled in groups of 20 ticks separately. At least

4 separate pools of biological triplicates for each 24 h and 66 h

samples were generated and RNA quantity assessed by spectro-

photometry. Equal amounts of RNA from 24 and 66 h fed salivary

gland samples were amplified using the Amino Allyl MessageAmp

aRNA Amplification and Labeling kit (Ambion Inc, Austin TX).

This procedure utilizes an aRNA amplification procedure de-

veloped by Van Gelder [61] and does not significantly skew the

representation of individual mRNA species in the RNA popula-

tion[62,63]. The amplification was conducted in the presence of

amino allyl UTP so as to incorporate the aaUTP into the aRNA.

The aRNA was purified and quantified by spectrophotometry.

About 5 mg of aRNA prepared from 24 h and 66 h fed salivary

gland RNA was used for labeling with amine reactive dyes Cy3

and Cy5 (CyDye Post-Labeling Reactive Dyes, Amersham

Biosciences, NJ) respectively using the protocol described in the

aRNA Amplification and Labeling kit (Ambion Inc, TX). In

parallel we also set up a technical replicate in which the dyes were

switched/swapped between each set of 24 and 66 h samples to

overcome bias due to the dye itself [64]. This experimental set-up

included 4 biological replicates with at least 2 dye-swap technical

replicates. The array slides were pre-hybridized (5xSSC, 5XDen-

hardts, 1%SDS and 0.1 mg/ml salmon sperm DNA) for 1h at

42uC and hybridized to the aRNA probe in fresh pre-

hybridization solution containing 50% formamide overnight at

42uC. The slides were then washed as described in the UltraGAPS

Coated Slides instruction manual (Corning, NY). The washed

slides were scanned on a GenePix 4000A scanner and data

manipulated with GenePix software (Axon Instruments, CA). The

data were then first quantile normalized [65] and significance of

differential expression was then assessed with the Wilcoxon rank

sum test [66]

Array validation by quantitative RT-PCR
Ten genes that were differentially expressed at 24 and 66 h as

observed by the array analysis were selected for validation by

quantitative RT-PCR. RNA was prepared from pools of 5–6

nymphal salivary glands isolated from nymphs fed for 24 and 66 h

on C3H/HeN mice as described above and cDNA was synthesized

using the iScript RT-PCR kit (BIORAD, CA). At least 4 pools were

examined. cDNA was analyzed by PCR for the expression of

selected genes (indicated by their GenBank Accession numbers)

using the following primer pairs: AF483728: 59gatgcctccaataaac-

cact39; 59ccgacggagaagaggaat39; AF483712: 59aacggcgccctcaatcca-

39: 59gcagccgaaaaagcagacacc39; AF483686: 59gacaaccttgcaatcccc-

taca39: 59gagcgcgtcggcaataatct39; AF483737: 59attgggggcttcattcttg-

39: 59agtcacttgggccgcttctc39; AF209921: 59agaccaaatcatgggacc39:

59cagtgggcgcaggagtatag39; AF209918: 59gctccccctgaagaagaccc39:59-

gcgtcgtgttgcaatattc39; AF278575: 59gagctcggatggcgaaccaac39:59gg-

taccgcaatcctcaagtgtg39; AF209912: 59attccaacccgcttatctc39:59agg-

cattgctggacaca39; AF483729: 59acggcgagctttgcggtcttt39:59gttggatt-

cagcggcgttttcttc39; AAY333959: 59gctctcggacttcaacaagc39: 59cgtgctt-

ctccacaaactg39; AAY66642: 59tcgtctcatttgcgctcttctg39: 59tttcccgatgc-

taccgtcaca39. Quantitative PCR was performed using the iQ Syber

Green Supermix (Biorad, CA) on a MJ cycler (MJ Research, CA).

Data was normalized to tick actin and fold change in gene expression

in 66 h salivary glands estimated relative to the levels in 24 h salivary

glands or vice versa using the equation 22DDCt [67].

Tick-immune guinea pigs
To generate guinea pigs immune to tick salivary antigens

expressed specifically in 24 h fed nymphs, 30 pathogen-free

nymphs were placed on 6–8 week old female guinea pigs and ticks

allowed to attach and feed for 24 h and deliberately removed. The

animals were allowed to rest for 2 weeks and the process of 24 h

infestation repeated 2 more times with 30 pathogen free nymphs

on each animal. Age-matched female guinea pigs maintained

without tick infestations served as the naı̈ve control group. At least

4 animals were used in each group in individual experiments and

the experiment was repeated at least 4 times. Tick-immune guinea

pig serum was collected after the 4th challenge by retro-orbital

bleed or by cardiac puncture using protocols approved by the Yale

Animal Care and Use Committee. To immunize guinea pigs with

salivary gland extracts (SGE) from engorged nymphs, at least 3

age-matched female guinea pigs (6–8 weeks old) were immunized

subcutaneously with 30–50 mg of SGE (isolated from nymphs fed

to repletion on guinea pigs) in incomplete Freunds Adjuvant (IFA)

in 4 to 5 sites along the flank and boosted at 14 and 28 days with

same amounts of SGE in IFA. Complete Freunds Adjuvant (CFA)

was avoided as it resulted in immunization sores. Immune sera was

collected and analyzed for reactivity to engorged nymph salivary

gland extracts by routine western blot analysis as described below.

The experiment was conducted a least three times.

Tick feeding
In experiments to assess the impact of 24 h tick-immunity on tick

feeding, 30 pathogen-free nymphs were placed on each naı̈ve and

24 h tick-immune guinea pigs and allowed to feed to repletion.

The animals were monitored everyday for redness and erythema

at tick feeding sites, tick numbers and tick engorgement weights

recorded as and when the ticks detached. The impact of

immunization with 66 h SGE on tick feeding was also performed

as above.

Tick-immune rabbit
To generate tick-immune rabbits at least 100 clean I. scapularis

nymphs were placed on each ear of 4–5 week old female New

Zealand white rabbits and ticks allowed to attach and feed to

repletion. The animals were allowed to rest for 2 weeks and the

process of infestation repeated 3 more times. Age-matched rabbits

maintained without tick infestations served as the naı̈ve control

group. At least 4 animals were used in each group. Tick-immune

rabbit serum was collected after the 4th challenge by ear-bleed or

by cardiac puncture using protocols approved by the Yale Animal

Care and Use Committee. This serum was tested for reactivity to

tick salivary gland extracts by western blot analysis as described

below. An immunoblot of cultured Borrelia (N40) total protein

extracts (5 mg) was also probed with the rabbit nymph-immune

sera by routine western blot analysis to test for reactivity to B.

burgdorferi. Rabbit anti-Borrelia serum generated earlier in the

lab [9] served as a positive control.

Histology of skin punch-biopsies
Three, 3 mm punch tissue biopsies per animal were fixed in

Zenkers solution (Fisher Scientific, MA) and transferred to 70%

ethanol, processed (Excelsior Processor; Thermo Electron Corpo-
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ration, Pittsburgh, USA), embedded in paraffin (Blue Ribbon,

Surgipath Medical Industries, Inc., Richmond, USA), and serially

sectioned (20 slide each) at 5 microns. The 1st, 5th, 10th, 15th,

20th slides were stained with hematoxylin and eosin (HE) and the

9th and 14th stained with toluidine blue (T-Blue) by routine

methods to evaluate the severity of inflammation (HE) and mast

cell/basophil (T-blue) infiltrates by microscopic examination.

Observers were blinded to the study conditions until after the

histopathologic features were assessed. To semiquantitatively

assess the number of mast cells/basophils within the dermis, the

entire tissue field was examined at 406magnification and all cells

with purple (basophilic) cytoplasmic granules recorded for each

tissue section on the T-Blue- stained slides for a total of 12 sections

of tissue examined per animal. To assess the severity of

inflammation (macrophage, lymphocyte, heterophil) within the

dermis, a semiquantitative method [68] was used where in-

flammatory cells were counted manually on a Denominator

laboratory counter (The Denominator Co, Inc., Woodbury, CT)

for a 100 square (1 mm61 mm) grid (KR-406B, Klarmann

Rulings Inc. Litchfield, NH) for each of three fields at 406 for one

each of the three tissue sections per slide. Thus, a total of 5 sections

per punch biopsy, 15 sections per animal and 45, 100 square grid

areas were evaluated per animal. The nature of the inflammatory

infiltrate was classified as predominantly mononuclear, predom-

inantly heterophilic or mixed. Digital light microscopic images

were recorded using a Zeiss AxioScope microscope, AxioCam

MRC Camera and AxioVision 4.5 imaging software (Carl Zeiss

Microimaging, Inc., Thornwood, NY, USA), and optimized in

Adobe Photoshop 8.0 (San Jose, CA).

B. burgdorferi transmission
In experiments to address Borrelia transmission to guinea pigs, 5–6

B. burgdorferi (N40) infected nymphs were placed on each 24 h tick-

immune and experimental guinea pig (at least 4 animals in each

group) and allowed to feed to repletion. The experiment was

performed at least 4 times. After tick detachment, transmission was

assessed by culture and by quantitative PCR of skin punches at 2

and 4 weeks respectively.

Quantitative PCR to estimate spirochete burden
Guinea pig skin punch biopsies were obtained from sites near and

distal to tick attachment sites at 2 and 4 weeks respectively, after

tick engorgement and suspended in DNAeasy suspension buffer

(QIAGEN, CA) and processed for DNA isolation according to the

manufacturer’s protocol. The resultant DNA was analyzed by

quantitative PCR using the iQ Syber Green Supermix (Biorad, CA)

on a MJ cycler (MJ Research, CA) for the presence of Borrelia using

flaB primers (provided below) and results normalized using actin

primers as shown. Data were analyzed using Microsoft Excel

software. A two-tailed Student’s t-test was used to analyze qPCR

data. A P value ,0.05 was considered to be a significant difference.

Culture
Guinea pig skin punch biopsies were cleaned with Betadine,

suspended in 10 ml of complete BSK-H medium (Sigma-Aldrich,

St Louis, Mo) and spirochetes allowed to grow for 12–14 days at

30uC. The spirochetes were then visualized under a dark-field

microscope (Axiostar, Zeiss) and scored for presence or absence of

spirochetes.

Passive transfer of tick-immune serum to mice
Serum obtained from tick-immune rabbits were passively trans-

ferred by intraperitoneal inoculation into C3H/HeN mice 24 h

prior to placement of B. burgdorferi-infected nymphs. Control mice

were inoculated with 500 ml of naı̈ve rabbit serum. At least three

mice were used in each group. At least 5–6 B. burgdorferi-infected

nymphs were placed on each mouse and ticks allowed to feed to

repletion. Tick engorgement weights were recorded as before and

tick salivary glands and midguts dissected for RNA isolation as

described below

Tick RNA isolation and RT-PCR
The nymphs fed on control and experimental animals were

dissected and salivary glands (in pools of three pairs) and midguts

(in pools of 2) suspended in Trizol and RNA isolated according to

the manufacturer’s protocol (Invitrogen, CA). cDNA was synthe-

sized using the iScript RT-PCR kit (BIORAD, CA) and analyzed

by PCR for the expression of tick actin and flaB genes using the

primers listed: tick actin F-59ggcgacgtagcag 39 and tick actin R-

59ggtatcgtgctcgactc 39; flaBF-59ttcaatcaggtaacggcaca 39 and

flaBR-59gacgcttgagaccctgaaag 39. Quantitative PCR was per-

formed using the iQ Syber Green Supermix (Biorad, CA) on a MJ

cycler (MJ Research, CA). Data were analyzed using Microsoft

Excel software. A two-tailed Student’s t-test was used to analyze

the data and a P value ,0.05 was considered to be a significant

difference.

Western Blot and Dot-Blot analysis to assess

differential reactivity to salivary gland extracts
Salivary glands were isolated from 24 and 66 h fed nymphs. The

tissues were suspended in sterile PBS (100 ml of PBS per 50

salivary gland pairs) and homogenized. Total protein was

quantified by the Bradford method. Equal amounts of salivary

gland protein (2 mg) from 24 and 66 h fed ticks were electro-

phoresed on an SDS 4–20% gradient polyacrylamide gel,

transferred to nitrocellulose membranes and processed for

immunoblotting. The immunoblots were incubated separately

with nymph-immune rabbit sera or with naı̈ve rabbit sera. Bound

antibodies were detected by using horseradish peroxidase-

conjugated goat anti-rabbit secondary antibodies (Sigma–Aldrich,

St. Louis, MO). The immunoblots were developed using a Western

Lightening chemiluminescence kit (Perkin Elmer Life and

Analytical Sciences Inc, Wellesley, MA). For analysis of guinea

pig humoral response to immunization with 66 h SGE, fed tick

extracts were electrophoresed as described above and incubated

with guinea pig anti-66 h SGE sera. Bound antibodies were

detected by using alkaline-phosphatase-conjugated goat anti-

guinea pig antibody (Sigma-Aldrich, MO) and the phosphatase

substrate, NBT-BCIP (Kirkegard and Perry, MD). For analysis of

the HPLC fractions of 24 and 66 h salivary gland extracts, equal

percentages of each of the fractions were lyophilized to dryness on

a DNA110 Speedvac (Savant Instruments, NY), resuspended in

10 ml of water and spotted on to 0.2 mm nitrocellulose membrane

(Bio-Rad, CA). The membranes were air-dried and processed as

described above for the western blots using nymph-immune rabbit

sera.
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