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Background. Ubiquitin and ubiquitin-like proteins (Ubl) are designed to modify polypeptides in eukaryotes. Covalent binding
of ubiquitin or Ubls to substrate proteins can be reversed by specific hydrolases. One particular set of cysteine proteases, the
CE clan, which targets ubiquitin and Ubls, has homologs in eukaryotes, prokaryotes, and viruses. Findings. We have cloned
and analyzed the E. coli protein elaD, which is distantly related to eukaryotic CE clan members of the ULP/SENP protease family
that are specific for SUMO and Nedd8. Previously misannotated as a putative sulfatase/phosphatase, elaD is an efficient and
specific deubiquitinating enzyme in vitro. Interestingly, elaD is present in all intestinal pathogenic E. coli strains, but
conspicuously absent from extraintestinal pathogenic strains (ExPECs). Further homologs of this protease can be found in
Acanthamoeba Polyphaga Mimivirus, and in Alpha-, Beta-and Gammaproteobacteria. Conclusion. The expression of ULP/
SENP-related hydrolases in bacteria therefore extends to plant pathogens and medically relevant strains of Escherichia coli,
Legionella pneumophila, Rickettsiae, Chlamydiae, and Salmonellae, in which the elaD ortholog sseL has recently been
identified as a virulence factor with deubiquitinating activity. As a counterpoint, our phylogenetic and functional examination
reveals that ancient eukaryotic ULP/SENP proteases also have the potential of ubiquitin-specific hydrolysis, suggesting an early
common origin of this peptidase clan.
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INTRODUCTION
Ubiquitin, as well as Ubls such as Nedd8 and SUMO, are proteins

(almost) exclusively expressed by eukaryotes [1]. Ubiquitination

controls many cellular processes, including degradation of proteins

by the proteasome and intracellular trafficking. Nedd8 is

a ubiquitin-like modifier that regulates the rate or extent of

ubiquitination, whereas SUMO1 is involved mostly in regulation

of transcription factors and in nuclear import. The attachment of

ubiquitin or ubiquitin-like modifiers to substrate proteins is

covalent, yet reversible [2]. A large family of eukaryotic cysteine

proteases is involved not only in generation of ubiquitin(-like)

proteins from their precursors, but also in their removal from

modified substrates [3,4]. Pathogens can tamper with the

ubiquitin-proteasome system to cripple the cell’s defenses [5].

For instance, ubiquitination and proteasomal degradation of p53,

initiated by a Human Papillomavirus protein [6], or stabilization

of Ikb-a by Yersinia deubiquitinases [7] have been described. The

continuing discovery of new deubiquitinating proteases in viruses

broadly hints at how important it is for these pathogens to seize

control of posttranslational modifications in host cells [8–10].

Here, we focus on cysteine proteases of the CE clan [11], as

defined by the MEROPS database [12]. CE peptidases are

expressed by viruses, bacteria and eukaryotes. In eukaryotes, this

clan represents the family of Ubl-specific proteases (ULP/SENP),

which remove SUMO or Nedd8 from substrate proteins [13,14].

Viral homologs of ULP/SENPs can act as deubiquitinases, but

they also cleave unrelated proteins, as long as a glycine motif is

present at the C-terminus of the substrate [15,16]. Examples of

bacterial deubiquitinases include YopJ and ChlaDUBs. First, YopJ

is a protease that is secreted into host cells by Y. pestis [17], and

homologs to this peptidase can be found in other bacteria, too

[18,19]. Injection of YopJ eventually suppresses the inflammatory

response in affected cells. The precise molecular mechanism of

YopJ family peptidases has not yet been solved, as they lack

a hallmark tryptophan following the active-site histidine [20]. Yet,

in vitro and in vivo data strongly suggest that these proteins are

indeed proteases with specificity for ubiquitin or SUMO [7,18,19],

although their effectiveness as virulence factors might depend on

additional functions such as acetylation [21,22]. A second example

of bacterial CE peptidases can be found in pathogenic Chlamydiae.

We have shown that pathogenic Chlamydiae, but not a non-

pathogenic environmental strain, express proteases that specifically

recognize ubiquitin and Nedd8. They do so presumably to remove

both modifiers from target proteins of the host cell, as Chlamydiae–

like most other bacteria-possess neither a ubiquitin nor a Nedd8

homolog [23].

Intrigued by the finding of CE peptidases in bacteria and

considering their functional similarity to eukaryotic ULP/SENP

proteases, we explored whether additional bacterial homologs with

deubiquitinating activity might exist.

RESULTS
To search the sequenced genomes of bacteria for new members of

the CE protease clan, we employed PHI-BLAST [24] to find

proteins with the typical catalytic triad of histidine, aspartate (or

glutamate or asparagine), and the active-site cysteine [25].

Candidate proteins were subjected to a second round of analysis,

in which we excluded proteins without the hallmark oxyanion-

stabilizing group, consisting of at least one glutamine (or
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asparagine) close to the active-site cysteine. Lastly, the predicted

secondary structure of candidate proteases was compared to the

solved structure of eukaryotic CE clan homologs [26,27]. Apart

from YopJ and the ULP/SENP homologs in Chlamydiae, we found

potential CE peptidases in Alpha-, Beta-, and Gammaproteobac-

teria (Figure 1), but not in bacteria from other branches. We also

found a peptidase homolog in the giant Acanthamoeba Polyphaga

Mimivirus [28] and in African Swine Fever Virus, the first virus in

which a ubiquitin conjugating enzyme was discovered and for

which deubiquitinating activity has been suggested [29–32]. The

bacteria we identified share a close (symbiotic or pathogenic)

relationship with eukaryotes, and all viruses with CE proteases

possess a dsDNA genome. The sequence variations among these

peptidases are too extensive to allow for significant bootstrap values

and it is therefore not possible to faithfully infer phylogeny from this

dataset. Yet, this is also true for the eukaryotic ULP/SENPs, which

fall into three functional classes, specific for either SUMO (ULP1

and ULP2 group) or Nedd8 (SENP8 group). While best reciprocal

BLAST hits and consensus phylogram trees tend to correctly predict

to which functional class a particular ULP/SENP homolog belongs,

bootstrap support is generally not significant [33].

We were especially interested in the protein elaD (belonging to

‘‘group II’’, see Figure 1), expressed by E. coli and with orthologs in

Legionella pneumophila and in all currently sequenced strains of

Salmonella (Figure 2). E. coli is an abundant commensal in the

human gut and also a relevant pathogen. Nonetheless, little is

known about genes that define pathogenicity of various E. coli

strains, apart from those that encode obvious toxins [34–36]. We

furthermore chose elaD, because it represents one of the more

distantly related hits in our bioinformatics screen and we aimed to

test the robustness of our prediction by examining this protein’s

function.

Figure 1. Phylogram representation of CE clan proteases in viruses, bacteria, and eukaryotes. Eukaryotic peptidases (in blue) belong to the C48
subfamily and can be separated into three groups: ULP1 (including the mammalian proteases SENP1, 2, 3, and 5), ULP2 (including SENP6 and 7), and
the SENP8 group with proposed specificity for SUMO (ULP1 and ULP2 group) and Nedd8 (SENP8 group), respectively. Bacterial proteins are indicated
with a preceding ‘‘B’’, viral proteins with a ‘‘V’’. We have further divided microbial protease homologs by color: green for biochemically tested
proteases, red indicating the absence of published data on the function of these putative proteases, and yellow for the group representing elaD and
its orthologs. The C5 family contains Adenovirus proteases with deubiquitinating activity, C55 comprises the bacterial YopJ homologs, and C57 the
Vacciniavirus I7 peptidases. Based on sequence similarity, two bacterial C48 family groups can be distinguished: a group of Proteobacteria (located at
one o’clock) which appear to be closely related to fungal SENP8 homologs (common node indicated with a circle, bootstrap support.60%), and
Chlamydiae, for which we had previously shown the presence of deubiquitinating and deneddylating activity. Three additional groups have not yet
been assigned to specific CE clan subfamilies in the MEROPS database, including Mimivirus (‘‘group I’’), Gammaproteobacteria (‘‘group II’’), and
Rickettsiae (‘‘group III’’). The African Swine Fever Virus protease and the I7 Vacciniavirus protease have not been tested for deubiquitinating or Ubl-
specific activity, but they both require a glycine-based motif at the C-terminus of the substrate, as found in ubiquitin or Ubls. The unrelated CD clan
peptidase Clostripain is used as outgroup in this phylogram. For clarity, this tree does not contain all orthologs and paralogs of the different groups
or families. Sequence information is provided in Table 2.
doi:10.1371/journal.pone.0000381.g001
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The goal of our first experiment was to confirm protease activity

and to determine the substrate specificity of elaD. Because of its

relationship to ULP/SENPs, we hypothesized that elaD might

recognize Ubls or ubiquitin. We expressed elaD by in vitro

transcription/translation in rabbit reticulocyte lysate and incubated

the metabolically labeled polypeptide with electrophilic probes, in

which a Michael acceptor was added to the C-terminus of ubiquitin

or the Ubls SUMO1, Nedd8, and ISG15 [14]. As shown in Figure 3,

elaD readily forms a covalent adduct with the ubiquitin probe and to

a much lesser extent also with the Nedd8 probe, but not detectably

with SUMO1 or ISG15. Moreover, when mutating the putative

active-site cysteine at position 313 to serine, covalent binding to the

electrophile is abolished. This indicates that the cysteine residue in

elaD is essential for catalytic activity, as has been observed for YopJ

[7], for the Chlamydia protease CT868 [23] and for the eukaryotic

ULP/SENPs [2]. To date, specific labeling of putative proteases with

activity-based probes has shown excellent correlation with enzymatic

activity [14,37,38].

Next, we assessed enzyme kinetics by measuring hydrolysis of

fluorogenic substrates derived from ubiquitin, SUMO1 and

Nedd8. For these experiments, we expressed elaD in E. coli. The

growth rate of the bacteria was unaffected when overexpressing

elaD, but we only recovered about 50% of the wildtype protein

when compared to the amounts of C313S mutant (Figure 4A). As

demonstrated by release of the fluorophore 7-amino-4-methylcou-

marin (AMC), elaD cleaves ubiquitin-AMC, but not SUMO1-

AMC or Nedd8-AMC, and the C313S mutant of elaD fails to

cleave either substrate (Figure 4B and data not shown). The initial

rate of hydrolysis with 100 nM ubiquitin-AMC and 50 nM elaD is

in the order of 0.3–0.6 per minute, defining elaD as a moderately

active deubiquitinase, compared to the rapid Isopeptidase T with

a rate of ca. 8 per minute [39] or to the much slower ubiquitin-

protease USP14 with a rate of,0.01 per minute (data not shown). It

should be noted that we could not assess Vmax, because the

enzymatic rate increased linearly with substrate concentration (we

tested up to 20 mM ubiquitin-AMC; 50 nM elaD then hydrolyzed

ubiquitin-AMC at an initial rate of 5 per minute). Similar

observations have been made with the SARS virus deubiquitinase

[8]. Overall, our functional analyses confirm the prediction of our

bioinformatics screen and define elaD as a deubiquitinating protease.

Why do eukaryotic CE peptidases show specificity distinct from

their prokaryotic counterparts? Could this indicate a profound

discrepancy, hinting towards a separate origin of these two protease

groups? We set out to challenge the presently held notion that ULP/

SENP proteases do not exhibit ubiquitin-specific activity [13], while

most tested bacterial homologs apparently do. To this end, we chose

to biochemically define CE clan members of a more deeply

branched class of eukaryotes. Pezizomycotina, a subgroup of fungi

that includes A. fumigatus, A. nidulans, M. grisea, N. crassa, and G. zeae

encode putative SENP8 proteases that are related in amino acid

sequence to a group of yet uncharacterized bacterial C48 homologs

(Figure 1). In our phylogram, the common node between the

respective prokaryote C48 group and SENP8 homologs of

Pezizomycotina replicates with a bootstrap support of.60%. We

cloned, expressed and tested the putative SENP8 protease of G. zeae,

as a representative of Pezizomycotina. Unlike mammalian SENP8,

the G. zeae ortholog displays dual activity towards Nedd8 and

ubiquitin, similar to the previously defined CE clan protease CT868

Figure 2. Sequence comparison between SENP8 and its homologs in human pathogenic bacteria. Multiple sequence alignment of the catalytic
core region of human SENP8 (NCBI protein sequence identifier GI: 33942066, shown are residues 100–165) with the homologs in C. trachomatis
(CT868, GI: 76789615, residues 199–284) [23], E. coli (elaD, GI: 15832411, residues 228–319), L. pneumophila (GI: 52843101, residues 189–265), and S.
typhi (sseL, GI: 29141091, residues 197–264) [42]. The arrows indicate active-site histidine, aspartate (or asparagine), the catalytic cysteine, and the
oxyanion-stabilizing group. Predicted secondary structures are shown at the bottom and have been confirmed with the solved structure of SENP8
[27].
doi:10.1371/journal.pone.0000381.g002

Figure 3. Biochemical assay for substrate specificity of elaD. 35S-methionine-labeled in vitro translated wildtype elaD forms covalent adducts with
suicide inhibitors based on ubiquitin (ubiquitin-vinylmethylester, VME) and Nedd8 (Nedd8-vinylsulfone, VS), but not with probes based on SUMO1
and ISG15. All probes were tested for activity with bona fide substrates (not shown) [14]. Mutation of the active-site cysteine at position 313 to serine
abolishes adduct formation of elaD to electrophilic probes. Samples were resolved by reducing SDS-PAGE and visualized by fluorography. Indicated
at the right is the molecular mass in kDa.
doi:10.1371/journal.pone.0000381.g003
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Figure 4. A. Expression of recombinant elaD and elaDC313S in bacteria. Coomassie staining of a 10% SDS-PAGE, showing the relatively higher
expression levels of elaDC313S , compared to wildtype elaD. The purity of elaD was increased to 30–40% after a second round of size exclusion
chromatography (not shown). Similar to in vitro translated elaD, the bacterially expressed protein also reacts with ubiquitin-VME. Molecular mass
indicated at the left (in kDa). B. Biochemical assay for hydrolytic activity of elaD. His-tagged elaD was expressed in and purified from E. coli and
incubated with fluorogenic substrates based on ubiquitin, SUMO1 and Nedd8. No hydrolytic activity of elaD was observed on SUMO1-AMC and
Nedd8-AMC (data not shown). In contrast, the C-terminal peptide bond of ubiquitin-AMC is efficiently cleaved by elaD, leading to release and
dequenching of the fluorophore AMC. Depicted is a representative experiment in which variable concentrations of purified elaD were incubated with
500 nM ubiquitin-AMC for 40 min. The C313S mutant of elaD has no proteolytic activity and wildtype elaD can be inhibited by alkylation of its active-
site cysteine with 5 mM N-ethylmaleimide (data not shown). The y-axis shows relative fluorescence units, the x-axis represents the time scale with
measurements every 2 minutes.
doi:10.1371/journal.pone.0000381.g004
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of the prokaryote C. trachomatis (Figure 5) [23]. This result indicates

that ubiquitin-specificity is not restricted to bacterial or viral CE

peptidases, but also exists in some ancient eukaryotic members of

this protease clan.

DISCUSSION
We have found previously undescribed CE peptidase homologs in

several bacterial and in one viral species (Figure 1). We have

furthermore proven that one of the more distantly related

homologs–the protein elaD in E. coli–can act as a deubiquitinating

enzyme in vitro. Earlier, we had shown that related Chlamydia

proteases also have deubiquitinating activity and similar observations

had been made regarding the YopJ protease family. This suggests

that the yet undefined bacterial CE peptidases could also display

ubiquitin-or Ubl-specificity, especially considering their even closer

sequence relationship to eukaryotic ULP/SENP proteases. These

findings raise two important questions. First, are these proteases

really specific for ubiquitin in vivo, or are we simply measuring an off-

target artifact, with the true substrates merely resembling ubiquitin?

Second, why are these proteases-which are present in every

eukaryote-so widely distributed in bacteria and viruses as well, and

what can we learn about their genetic origin?

One might argue that the bacterial CE clan peptidases have

distinct specificity for bacterial substrates. For instance, it has been

Figure 5. A. Biochemical assay for substrate specificity of GZ8, the SENP8 homolog of the fungus G. zeae. Like the chlamydial deubiquitinase/
deneddylase CT868 [23], GZ8 reacts with the electrophilic traps ubiquitin-vinylmethylester and Nedd8-vinylsulfone, but not with SUMO1-vinylsulfone
or ISG15-vinylsulfone. Shown is SDS-PAGE and fluorography of 35S-Methionine-labeled in vitro translated GZ8. The cysteine-alkylating agent N-
ethylmaleimide (NEM) abrogates activity of the cysteine protease GZ8. Molecular weight markers are indicated at the left (in kDa). B. Biochemical
assay for hydrolytic activity of GZ8. Like CT868, but unlike human SENP8, GZ8 exerts hydrolytic activity on ubiquitin-and Nedd8-AMC conjugates.
Fluorescence measurement was assayed 16 hours after incubation of human SENP8, GZ8, and chlamydial CT868 (values defined as 100%) with
ubiquitin-AMC and Nedd8-AMC. GZ8 and CT868 hydrolyze both substrates, whereas human SENP8 only cleaves Nedd8-AMC. Hydrolysis is sensitive to
NEM treatment (not shown). The y-axis depicts relative fluorescence. Shown are the mean values of a representative experiment with triplicate
measurements+/2standard deviations.
doi:10.1371/journal.pone.0000381.g005
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proposed that the origin of the ubiquitin system predates the split

between eukaryotes and prokaryotes [40,41]. Factors that distantly

resemble Ubls and their conjugating and deconjugating enzymes

can be found in bacteria. In this manner, the cleavage of ubiquitin

by elaD could just be an artificial byproduct of our assays, while

the true substrate is of bacterial origin. Similarly, the Adenovirus

CE protease has relaxed specificity for a consensus site that is

present in ubiquitin, but also in certain viral substrates [15,16].

However, we have extended our analysis of elaD’s specificity to the

ubiquitin homologs Nedd8 and ISG15. Both share significant

sequence similarity to ubiquitin, and ISG15 is even identical at the

critical C-terminal region. We observed no reactivity between

elaD and ISG15-vinylsulfone, and the binding of elaD to Nedd8-

vinylsulfone was significantly weaker than to the ubiquitin probe.

Furthermore, we detected hydrolysis of the C-terminal peptide

bond in ubiquitin-AMC, but not in Nedd8-AMC. These features

clearly distinguish elaD from the more promiscuous viral CE

peptidases. Given the similarity of primary, secondary and tertiary

structure among these Ubls, we conclude that hydrolysis of

ubiquitin by elaD reflects a highly specific interaction. With the

exception of A. avenae, no bacterial strain in our dataset encodes

a homolog of ubiquitin, making it likely that the substrate of elaD

is indeed eukaryotic ubiquitin. Moreover, the ortholog of elaD in

Salmonella–sseL-has recently been shown to be a virulence factor

and to display deubiquitinating activity in vitro and in vivo [42]. This

enzyme is encoded by all currently sequenced Salmonellae, but only

present as a pseudogene in Shigellae [43]. Likewise, elaD is not

essential for E. coli under laboratory conditions [44]. A comparison

of the genomes of all 16 sequenced E. coli strains reveals that elaD

is present in the commensal E. coli strain K12, and in all intestinal

pathogenic strains (EAEC, EHEC, EIEC, EPEC, ETEC), but

absent from all ExPEC strains (APEC, NMEC, UPEC) (Table 1).

To answer the second question raised above, the fact that all CE

proteases show the same signature motifs at the catalytic domain

and that they have substrate specificity for ubiquitin, Ubls, or

related products, suggests a common genetic and functional

origin of these proteases. The viral and bacterial organisms that

express these CE proteases all share an intimate relationship with

eukaryotes, either as commensals, symbionts or as pathogens.

Additionally, lateral gene transfer has been proposed between

eukaryotes and dsDNA viruses [28], as well as between eukaryotes

and bacteria such as Chlamydiae, Rickettsiae, and L. pneumophila

[45,46]. The notion of a dynamic horizontal gene transfer

involving deubiquitinases is further underscored by the distribu-

tion of ubiquitin-specific proteases in Chlamydiae: all pathogenic

strains express CE peptidases, except for C. pneumoniae, which

instead encodes a homolog of the eukaryotic otubain-type

deubiquitinating enzymes [47]. Also, one group of bacterial C48

peptidases in particular clusters close to the SENP8 homologs of

Pezizomycotina (Figure 1). The sequence relationship and the

shared habitat of these organisms-plant symbionts and phyto-

pathogens vs. environmental fungi-raises the possibility of gene

transfer between them [48]. From a functional perspective, we

could show that a homolog of SENP8 in Pezizomycotina does

exert ubiquitin-specific hydrolase activity, like previously charac-

terized bacterial CE proteases (Figure 5). The dual specificity of

SENP8 from the fungus G. zeae towards ubiquitin and Nedd8 is

not trivial. Although Nedd8 is arguably the closest relative to

ubiquitin, there are sequence differences that require distinct

conjugating machineries and deconjugating proteases [27,49]. In

particular position 72–an arginine in ubiquitin, and an alanine in

Nedd8–can act as a compatibility switch and a single replacement

at this side chain can cause ubiquitin to mimic Nedd8 and vice

versa [50,51]. In this respect, the recognition of both ubiquitin and

Nedd8 by the SENP8 homolog of G. zeae is in contrast to what has

been observed in mammalian SENP8 [27].

One possible explanation for these observations is that CE

proteases originally derived from a deubiquitinase, a protease

specific for this most conserved eukaryotic protein. As CE

peptidases in eukaryotes structurally diversified to accommodate

the evolving family of Ubls, protease counterparts in bacteria,

viruses, and some deeply branched eukaryotes retained their

specificity for the ‘‘ur-substrate’’ ubiquitin.

Together with the published literature, our data supports the

notion that the clan of CE proteases was acquired by bacteria and

viruses via horizontal gene transfer from eukaryotes. Why this

family of enzymes forms such a particularly attractive substrate for

genetic exchange is an intriguing question. The distribution of CE

proteases in symbiotic and pathogenic prokaryotes and viruses is

suggestive of a general role in host-microbe interactions, as

exemplified by the Salmonella protease sseL [42].

MATERIALS AND METHODS

Phylogenetic Analysis
Protein and DNA sequence data were obtained from the National

Center for Biotechnology Information (www.ncbi.nlm.nih.gov), the

Institute for Genomic Research (www.tigr.org), and the University of

Wisconsin E. coli Genome Project (www.genome.wisc.edu). Protein

sequence identifiers are listed in Table 2. Sequences containing and

surrounding the catalytic core of the proteases were aligned with the

ClustalX algorithm (default parameters) (bips.u-strasbg.fr/fr/Docu-

mentation/ClustalX) [52], manually edited with Genedoc (www.psc.

Table 1. Expression profile of elaD in different E. coli strains.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group Strain elaD

EAEC 101-1 Yes

EHEC O157:H7 EDL933 Yes

O157:H7 Sakai Yes

EIEC 53638 Yes*

EPEC B171 Yes

E22 Yes

ETEC E110019 Yes

E24377A Yes

commensal K12/W3110 Yes

HS No (pseudogene)

APEC APEC O1 No

NMEC O18ac:H7 K1 RS218 No

UPEC 536 No (pseudogene)

CFT073 No

F11 No (pseudogene)

UTI189 No

The gene encoding elaD can be found in all intestinal pathogenic E. coli strains,
and in the commensal strain K12. The gene is absent in APEC, NMEC, and two
uropathogenic strains, and encoded as a pseudogene in three other strains.
Interestingly, all pseudogenes in E. coli and Shigellae begin with the same
single-nucleotide deletion, resulting in a frame shift and downstream sequence
deterioration. Formally, the strain 53638 also encodes elaD as a pseudogene
(indicated with an asterisk), but careful inspection suggests that this is just the
result of sequencing slippage in an adenosine-rich region of the elaD gene.
APEC, NMEC, and UPEC belong to the group of extraintestinal pathogenic
strains (ExPEC).
doi:10.1371/journal.pone.0000381.t001..
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edu/biomed/genedoc/) (by K.B. Nicholas&HB Nicholas Jr), using

the active-site amino acids as anchor, and visualized with JalView

(http://www.jalview.org) [53]. Secondary structures were predicted

with JPred (www.compbio.dundee.ac.uk/,www-jpred/) [54]. Phy-

lograms were constructed with the MEGA software package [55],

using the Neighbor-Joining Method with Poisson correction (all

substitutions, homogeneous pattern, c-distribution 2.0) and pairwise

deletion of gaps. Figure 1 shows a consensus tree based on 100

bootstrap replications.

Cloning, expression, and biochemical analysis of

elaD and G. zeae SENP8
The full-length elaD gene (NCBI protein sequence identifier GI:

16130204) was amplified by PCR from the K12 strain BL21

(Novagen) and cloned into pET28a (Novagen). PCR was performed

with the Platinum Supermix (Invitrogen), following the manufac-

turer’s instructions (Ta 55uC, 32 cycles) and with these primers for

NdeI/XhoI insertion into pET28a: Forward: 59 GGGAATTCCA-

TATGATGATGGTTACAGTTGTC AGCAATT 39; Reverse: 59

CCGCTCGAGTTAACTCACTCTTTTGCCGGATGC 39. The

elaDC313S mutant was generated with the Phusion Site-Directed

Mutagenesis kit (New England Biolabs), according to the manu-

facturer’s suggested protocol with the following 59 phosphorylated

and PAGE-purified primers: Forward: 59 AGCGGTGCAT

TTGTGTGCATGGCAGCC 39; Reverse: 59 ACTTTGGCT-

TAAGTATTGCTGAAG 39. The cDNA library of nitrogen starved

Gibberella zeae was obtained from the Fungal Genetics Stock Center

(University of Missouri) [56]. The catalytic core region of the G. zeae

SENP8 homolog (protein sequence identifier GI: 46121295),

spanning from residues 1-228, was cloned via PCR and EcoRI/

SalI insertion into pET28a, using Platinum Supermix (Ta 65uC, 36

cycles) and these primers: Fwd.: 59 GGCCGGGAA TTCATGC-

CGTTTCGTCAGAGGATGG 39; Rev.: 59 GGCCGGGTC-

GACTCAGCG TGTTTGGATCACCTTG 39. The final cloning

products were fully sequence confirmed with primers for the T7

promoter and terminator site of pET28a (Novagen primers 69348-3

and 69337-3). All three proteins were expressed in E. coli BL21(DE3)

(Novagen) after induction with 1 mM IPTG for 3–4 hours at 37uC,

and isolated with Nickel NTA-Agarose under native conditions (see

‘‘The QIAexpressionist’’ handbook; http://www1.qiagen.com/

HB/QIAexpressionist). The initial purity was 5–10% (elaD and

elaDC313S) and 70% (G. zeae SENP8), respectively and improved

after size exclusion chromatography (Superdex75-prep, Amersham)

to a final purity of 30–40% (elaD and elaDC313S) and.90% (G. zeae

SENP8), as assessed by Coomassie staining. Importantly, the quality

of the final preparations was identical for elaD and elaDC313S. For

the specificity screen, the proteases were expressed by in vitro

transcription/translation in reticulocyte lysate (TNT T7 Quick

coupled IVT kit, Promega) in the presence of 35S-methionine

(PerkinElmer NEG709A), and then diluted 3–46with a buffer

containing Tris (50 mM, pH 7.5), NaCl (150 mM) and DTT

(2 mM or 5 mM N-ethylmaleimide for the negative control), before

0.1 mg of the electrophilic probes were added for 20–40 min at room

temperature. The AMC hydrolysis screen was conducted in the

same dilution buffer as described above, with an additional 1 mg/ml

bovine serum albumin. 100 nM to 20 mM of ubiquitin-AMC,

SUMO1-AMC, and Nedd8-AMC (Boston Biochem) were in-

cubated with various concentrations of bacterially expressed elaD

or elaDC313S at 27uC for the indicated time points. The G. zeae

SENP8 experiments were conducted as endpoint measurements

(100 nM AMC substrates, 60 nM protease, and 16 hours reaction

time). Fluorescence was analyzed with a Spectramax M2 multi-

detection microplate reader (Molecular Devices).
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