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Chromodynamics of Cooperation in Finite Populations
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Background. The basic idea of tag-based models for cooperation is that individuals recognize each other via arbitrary signals,
so-called tags. If there are tags of different colors, then cooperators can always establish new signals of recognition. The
resulting “chromodynamics” is a mechanism for the evolution of cooperation. Cooperators use a secret tag until they are
discovered by defectors who then destroy cooperation based on this tag. Subsequently, a fraction of the population manages
to establish cooperation based on a new tag. Methodology /Principal Findings. We derive a mathematical description of
stochastic evolutionary dynamics of tag-based cooperation in populations of finite size. Benefit and cost of cooperation are
given by b and c. We find that cooperators are more abundant than defectors if b/c > 1+2u/v, where u is the mutation rate
changing only the strategy and v is the mutation rate changing strategy and tag. We study specific assumptions for vand vin
two genetic models and one cultural model. Conclusions/Significance. In a genetic model, tag-based cooperation only
evolves if a gene encodes both strategy and tag. In a cultural model with equal mutation rates between all possible
phenotypes (tags and behaviors), the crucial condition is b/c > (K+1)/(K—1), where Kis the number of tags. A larger number of
tags requires a smaller benefit-to-cost ratio. In the limit of many different tags, the condition for cooperators to have a higher
average abundance than defectors becomes b > ¢
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INTRODUCTION

The green beard effect was introduced by William D. Hamilton as
a thought experiment in sociobiology: a gene that leads both to
a visible tag (such as a green beard) and the tendency to help
others with the same tag allows evolution of cooperation [1-11].
But if tags and behaviors evolve independently, then cheaters can
undermine the system. Defectors might display the correct tag
without providing any help. They will spread in the population,
because they enjoy the support of cooperators without incurring
the cost of cooperation. Thus, tag based cooperation seems to be
a problematic idea.

Nevertheless, tags are abundant in social systems and provide
good opportunities for distinguishing between in-group and out-
group [12]. Tribal costumes or school uniforms are visible tags
that indicate common grounds, possibly leading to cooperation.
Fashionable clothing can be a secret sign among the few that are
aware of the trend. Later, when the trend is picked up by many,
the early adaptors switch to a new fashion. Wearing an uncom-
fortable tie can be a signal of conforming with social expectations.
Cooperation can be based solely on these observable tags without
the need of reputation or prior interactions (as is assumed in the
framework of indirect reciprocity [13]).

There are also examples for tag based cooperation among
animals. In the social amoeba Dictyostelium discoideum, single
genes have been found that control both the tag and the corre-
sponding helping behavior [14]. Because homophilic cell adhesion
is responsible for both properties, cheating is not possible. The
same mechanism seems to exclude cheating in green beard
mechanisms found in conflicts of parental investment into
offspring during pregnancy [15,16]. Lizards cooperate based on
the color of others, which serves as an indicator of male strategy
[17]. There seem to be genetic constraints that do not allow
disentangling throat color (and its recognition) from the behavioral
strategy. Ant workers kill queens, who try to initiate reproduction,
if they do not share a certain gene. This leads to tag based spiteful
behavior [18]. Again, genetic constraints seem to exclude the
possibility that ants create the odor cue that serves as a signal for
the gene, but not the corresponding behavior. While the original

@ PLoS ONE | www.plosone.org

green beard effect excludes defectors a priori, more general forms
of tag based cooperation as the one described here consider
situations in which individuals may have the tag, but not the
corresponding behavior.

An example of tag-based cooperation on the internet are peer-
to-peer networks [19-21]. In these networks, computer programs
and files are shared among participants. A cooperator is someone
who contributes his own high quality files, whereas defectors just
download from the community. Often it is not easy to assess the
quality of these networks from the outside and different mechan-
isms are applied to prevent defectors from joining networks, such
as restricting new membership to acquaintances of old members.
However, in the long run such mechanisms can fail and coopera-
tion might break down. Then new networks have to be initiated by
the cooperators.

There have been several theoretical approaches to tag based
cooperation. Riolo et al. [5] have introduced a model with a con-
tinuum of tags, but which does not include the possibility of
cheating against somebody who uses the same tag [6]. The basic
aspects of this model can be understood by considering a system
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Figure 1. Payoff matrix for chromodynamics of cooperation. Interac-
tions that lead to nonzero payoffs only occur between individuals using
the same tag. For a given tag, defectors always dominate cooperators.
By continuously changing the 'secret handshake’ (=tag), cooperators
can run away from defectors. For a cultural model, it turns out if
b/c>(K+1)/(K—1), then cooperators can run faster than defectors.
doi:10.1371/journal.pone.0000270.g001

with only two tags [7,8]. Axelrod et al. [9] have shown that tags
can lead to cooperation in the presence of cheaters in structured
populations. Jansen and van Baalen [10] have considered tag
based cooperation in a system with one gene for the tag and
a second gene for the strategy. In their spatial model, tags lead to
high levels of cooperation even if no cooperation is expected based
on the population structure alone.

Cooperators might recognize each other by a secret handshake
[22]. Once defectors find out about this handshake, it loses its
value. Cooperators must establish a new handshake. There is
a permanent race between cooperators and defectors: cooperators
are trying to encode new handshakes, while defectors attempt to
break their code. The crucial question is under which conditions
can cooperators run faster than defectors? Here, we will answer
this question based on an analysis of a model similar to that of
Jansen and van Baalen [10], but formulated for finite, well-mixed
populations. In contrast to the model of Jansen and van Baalen
where the coexistence of many tags is possible, the analytical
description of our model considers only two tags at a time and tag
diversity is only reflected by the mutation rates.

In our model, the number of possible tags is given by A.
Individuals interact with others who have the same tag. For each
tag, 1= 1,...,K there are cooperators, (;, and defectors, D;. In total
there are 2K different strategies. Cooperators help all others with
the same tag at a cost, ¢, for the donor and a benefit, b, for the
recipient. The payoff matrix is shown in Figure 1. This payoff
matrix has the property that the sum of the diagonal elements is
the sum of the offdiagonal elements. However, not all subgames
have this property: For example, the 2x2 game between defectors
and cooperators with different tags does not have this property.
While our analysis does not rely on the particular choice of this
payoft matrix, it allows us to write our results in a form that is easy
to Interpret.

We consider evolutionary game dynamics in finite populations
of size N including the effects of selection, mutation and random
drift [23]. The population is well mixed. As update rule we use
pairwise comparison [24-27]. In each time step, two individuals
are chosen at random. The first individual adopts the strategy of
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Green Beards and Red Queens

the second individual with probability (1+¢™P™ —m.)~". Here m,
and Ty denote, respectively, the payoffs for the first and second
individual. The parameter f measures the intensity of selection. It
behaves like an inverse temperature in statistical physics [27]. For
B—oe, the process always follows the gradient of selection. The
case of weak selection is given by B << 1/N [28]. This stochastic
process is very similar to the frequency dependent Moran process
[29,30]. For weak selection, the two processes have the same
fixation probabilities.

With a small probability an individual ‘mutates’ to adopt
a randomly chosen strategy. Computer simulations of the resulting
mutation selection process are shown in Figure 2.We start with
a population of cooperators using tag :=1. After some time,
defectors emerge who uses the same tag and can therefore exploit
the cooperators. The whole population turns to defection.
Eventually, a cooperator arises with a different tag. As long as
only a single cooperator with a different tag is present, it is neutral.

But as soon as neutral drift leads to more cooperators with this
tag, they become advantageous. These cooperators dominate the
population until they are again ‘discovered’ by defectors, who then
destroy cooperation based on this tag. Cooperators with a new tag
arise and so on. Reminiscent of a ‘red queen’ mechanism [31]
cooperators have to change their tag continuously to free
themselves from defectors. This concept is called ‘chromodynam-
ics’ by Jansen and van Baalen [10,32].

RESULTS AND DISCUSSION

The analysis of our model is very different in finite populations
differs considerably from infinite populations. When a small
fraction of defectors of every possible tag is present, this hampers
the evolution of cooperation in our model, as there are no niches
where invading cooperators can thrive. This happens when the
population is very large and extinction takes a long time. In finite
populations, this situation occurs if the mutation rates between the
different strategies are large and all types are continuously
produced. Nonetheless, our numerical simulations show that
cooperation can evolve in finite populations even for high
mutation rates if the benefit to cost ratio is sufficiently high. An
analytic calculation of evolutionary chromodynamics in finite
populations is possible in the limit of small mutation rates [33,34].
In this case, we can describe the evolutionary dynamics by
transitions between homogeneous states. There are four types of
relevant transitions: (i) from G; to D, (i) from C; to D, (iii) from D;
to G, and (iv) from Dito (. In the Appendix, we show how to
calculate these transition rates. For weak selection (small B), the
transition rates are given by

P(C; - D)) = 1+§(b—c+cN) up

P@*mzl—%—dNﬁ+D
o . 1)
P(D; - C) = 1—§(b—c+cN) uc

@www—ﬂw

The parameters u. and u; denote the mutation rates changing the
strategy, but not the tag. The parameters v and v, denote the
mutation rates of changing the strategy and the tag.

The system will spend more time in cooperator states, if the sum
of the transition rates into cooperator states exceeds the sum of the
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Figure 2. Evolutionary chromodynamics in finite populations. The red cooperator population is invaded by red defectors at t=1200. At t=4500,
cooperation is established based on blue tags. Blue defectors invade at t=6000. The time unit is given by one individual learning event (pairwise
comparison). For example, after t=5000 each individual had 700 learning events on average. The following parameters are used: population size
N =50, intensity of selection = 1.0, cost of cooperation c=0.5, benefit from cooperation b= 1.0, mutation rate u=0.01.

doi:10.1371/journal.pone.0000270.9g002

transition rates out of cooperator states,
P(D; - C) + P(D; - C;)) > P(C; » D;) + P(C; = Dj). (2)

In this case cooperators are risk-dominant over defectors [29,35].
This inequality leads to

uc{l - g(b —c+ cN)} + ve {1 —+ g(b — (N — 2)}
3)

> ug{l + g(b —c+ cN)}—I— vD{l — g(b — o)(N — 2)}
In the limit of vanishing selection, B—0, we obtain

uc + ve > up + vp 4)

In this limit, any potential asymmetry in the mutation rates decides
which strategy is risk dominant and selection terms have no
influence. To perform a meaningful weak selection analysis, we
must therefore assume that the mutation rates are symmetric in
the sense that

Uc + ve = up + vp (5)

Using eq. (5), inequality (3) leads to

(ve + 2vp)(b — ¢)(N — 2) > 3(uc + up)(b — ¢ + ¢cN) (6)
For large populations, we obtain
(7

Note that this condition is based on the constraint given by eq. (5).
For u=uc=up and v=0v¢ =vp, inequality (7) leads to

b u
s 1422
pie + . (8)
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Now let us make some specific assumptions about the relative
magnitude of the mutation rates « and .

At first, we consider a genetic toy model where the genotype is
given by a bit string of length Z+7. One bit encodes the strategy;
0 denotes cooperation, and 7 denotes defection. L bits encode the
tag. Hence, there are 2" possible tags. With a mutation rate of L
per bit, we have u= u(]—u)Land v= uQL(]—u)L_J (neglecting
double mutations in the tags). For these mutation rates we obtain

b 1 —u
->14+2— 9
o> + i 9)

This inequality suggests that a very large benefit to cost ratio is
needed for the case of a small mutation rate, W, which is required
for the validity of our analytical approximation.

As a second model, we consider a pleiotropic gene given by a bit
string of certain length. This gene encodes both the behavioral
strategy and the tag. The parity of the first n bits determines the
strategy: the genotype encodes cooperation if there is an even
number of Is; the genotype encodes defection if there is an odd
number of Is. We use the parity because (i) any mutation in the =
bits changes the strategy and (ii) the mutation rates in both
directions are equally fast. The last m bits determine the tag. We
have 2" possible tags. We assume that the two regions have an
overlap of L bits, see Fig. 3. A mutation in the strategy that does
not change the tag occurs with rate ¥ = (n—L)p. The mutation rate
that simultaneously changes tag and strategy is v = Ljl, neglecting
terms of the order of 2. This leads to the condition

> — (10)

b 2n — L
c L

The critical benefit to cost ratio is small as long as L is a sizable
fraction of n.

Finally, let us consider a system with 2K phenotypes consisting
of a pair of strategy and tag. The mutation rate between all
phenotypes is constant and given by L. Therefore, we have u =p
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Figure 3. Consider a pleiotropic gene that encodes both strategy and
tag. The first n bits encode the strategy according to a parity rule: if the
sum of the first n bits is even, the strategy is cooperation, otherwise it is
defection. The last m bits encode the tag. Each sequence encodes
a different tag. Hence there are 2™ possible tags. There is an
overlapping region of L bits which affect both the strategy and the
tag. This setup allows evolution of tag based cooperation if b/
c>(2n—L)/L is fulfilled.

doi:10.1371/journal.pone.0000270.g003

and v = (A—1)p. This yields
b K+1

c T K—-1

(11)

At the very least, two different tags are needed. For K'=2, the
crucial condition for risk dominance of cooperation is 6/¢>3. If
there are many tags, A>>>1, we only require b/¢>1. This is the
minimum condition for any evolution of cooperation, see Fig. 4. If
b does not exceed ¢ then cooperation does not generate an overall
benefit. Thus, 4/¢>1 implies that cooperation evolves for free. For
large K, cooperators have always higher average abundance than
defectors. We call this limit ‘altruistic freedom’.

Jansen and van Baalen [10] essentially assume that the tags and
strategies are encoded by different genes. In the context of our

Green Beards and Red Queens

model, this leads back to a condition similar to [9]. For this choice
of mutation rates, the critical benefit to cost ratio is independent of
the number of tags A" and becomes very large for small mutation
rates. Therefore, in the model of Jansen and van Baalen [10]
cooperators are not expected to dominate in a well-mixed
population. Their model relies on spatial structure. In a genetic
model, it seems natural to assume that tag and behavior are
encoded by different genes. In this case, the mutation rates of
Jansen and van Baalen apply and evolution of cooperation based
on tags requires the help of spatial structure.

For a cultural model, which is based on learning and imitation
of strategies, it not unreasonable to assume that each phenotype is
given by a combination of tag and behavior and that mutations
among phenotypes occur at equal rates. For example, someone
who has realized that cooperation based on a ‘red tag’ is no longer
possible and therefore behaves as a ‘red defector’, might have the
idea to establish cooperation based on a ‘blue tag’ and hence
‘mutate’ from red defection to blue cooperation. Later, another
red defector might mutate to become a blue defector. It is
conceivable that both mutation events occur with similar rates. If
there is a roughly constant mutation rate among phenotypes, then
tag based models can facilitate the evolution of cooperation even
in well-mixed (non-spatial) populations.

There is a simple intuitive way to justify our main result, eq.
(11). The evolutionary dynamics of our model are determined by
two different types of transitions. The first type describes
a competition between cooperators and defectors who use the
same tag; the resulting game is described by the standard
Prisoner’s Dilemma payoff matrix

G D;
C; b —c —c
D; b 0

The second type of transition describes a competition between

(12)

cooperators and defectors who use different tags; in this case the

T T T T T T T T T T T T T T T

T T
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Figure 4. In a model with 2K phenotypes consisting of a pair of strategy and tag, cooperation evolves depending on the benefit to cost ratio. For
small mutation rates, the critical benefit to cost ratio for evolution of cooperation is given by b/c>(K+1)/(K—1) (red line). If the benefit to cost ratio
exceeds this critical value, then cooperators are more abundant than defectors averaged over time. With increasing mutation rates, the populations
become more mixed which favors defectors. Hence, the critical benefit to cost ratio increases with a higher mutation rate, as shown for u=0.07 and
u=0.001. In all cases, the critical benefit to cost ratio decreases with the number of tags K and converges to 1 for B—o. The following parameters are
used: population size N =100, intensity of selection =0.1, cost of cooperation ¢ =0.2, averages over 108 time steps.

doi:10.1371/journal.pone.0000270.g004
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payofl matrix is given by
G D;
G b—c 0 (13)
D; 0 0
If there are K many tags, then the second type of transition has the
chance to occur A-7 times as often as the first type in our cultural

model. We can add up the two payoff matrices after multiplying
the second matrix by A-/. This yields

C D
C Kb — ¢ —c (14)
> (57 %)

Cooperators are risk dominant over defectors if the sum of the
entries in the first row exceeds the sum of the entries in the second
row [35]. We obtain K(b—¢)—¢>b which leads to condition (11).

It should be noted that tag-based cooperation in well mixed
populations is different from tag-based cooperation in structured
populations. In well mixed populations, cooperation based on tags
can only dominate for a limited time [5,7,10], leading to “Tides of
tolerance” [36]. In our case, we discuss the condition under which
the average abundance of cooperators is higher than the average
abundance of defectors. In spatial systems, persistent cooperation
based on tags is possible [8-10]. But in spatial models (or on
graphs) tags are not necessary for the evolution of cooperation
[37,38].

The various mechanisms for the evolution of cooperation
include kin selection [1,39-44], group selection [45—48], direct
reciprocity [49,50], indirect reciprocity [51-54], and network
reciprocity [37,38,55-59]; for a review of these mechanisms see
[35]. Tag based models could provide another mechanism for
evolution of cooperation. In this paper, we have derived a simple
condition for the evolution of cooperation by tags. The benefit-to-
cost ratio of the altruistic act, b/¢, has to exceed the ratio 14+2u/v
where the mutation rate u changes only the strategy and the
mutation rate » changes strategy and tag simultaneously. In
a genetic model, cooperation evolves only if a gene encodes both
strategy and tag. In a cultural model where the different types are
characterized by tag and strategy, the ratio becomes (A+1)/(K—1)
where A is the number of different tags. For A'=2 tags we need
b/¢>3. For many different tags, £>>1, we only need 6/¢>1. If
there is a large number of tags, cooperation evolves for free in
a cultural model. Chromodynamics with a multitude of different
colors (=tags) can lead to altruistic freedom.

MATERIALS AND METHODS

Consider a game between two strategies, A and B, given by the
general payofl’ matrix

A B
A ( al aln ) (1 5)
B ayn  an
If there are : many A players and N~ many B players, then the
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This is identical to the corresponding result of the frequency
dependent Moran process [29]. From eq. 19, we can calculate the

transition rates given in the text.

As an example, consider the transition from defectors to
cooperators of a different tag. In this case, we have a;; = b—¢ and
a9 = ag) = age =0, which yields

booc=ytgo-o(i-5) @

Eq. (1) can be obtained by choosing the appropriate entries of the
payoff matrix for a; The transition rates of eq. (1) represent the
transition probabilities multiplied with population size and

mutation rate.
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