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Background. Cancer patients have highly variable clinical outcomes owing to many factors, among which are genes that
determine the likelihood of invasion and metastasis. This predisposition can be reflected in the gene expression pattern of the
primary tumor, which may predict outcomes and guide the choice of treatment better than other clinical predictors.
Methodology/Principal Findings. We developed an mRNA expression-based model that can predict prognosis/outcomes of
human breast cancer patients regardless of microarray platform and patient group. Our model was developed using genes
differentially expressed in mouse plasma cell tumors growing in vivo versus those growing in vitro. The prediction system was
validated using published data from three cohorts of patients for whom microarray and clinical data had been compiled. The
model stratified patients into four independent survival groups (BEST, GOOD, BAD, and WORST: log-rank test p = 1.761028).
Conclusions. Our model significantly improved the survival prediction over other expression-based models and permitted
recognition of patients with different prognoses within the estrogen receptor-positive group and within a single pathological
tumor class. Basing our predictor on a dataset that originated in a different species and a different cell type may have rendered
it less sensitive to proliferation differences and endowed it with wide applicability. Significance. Prognosis prediction for
patients with breast cancer is currently based on histopathological typing and estrogen receptor positivity. Yet both assays
define groups that are heterogeneous in survival. Gene expression profiling allows subdivision of these groups and
recognition of patients whose tumors are very unlikely to be lethal and those with much grimmer outlooks, which can
augment the predictive power of conventional tumor analysis and aid the clinician in choosing relaxed vs. aggressive therapy.
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INTRODUCTION
Cancers are complex tissues whose behavior is strongly influenced

by dynamic interactions between the cancer cells, the tumor’s

stromal cells and the extracellular matrix [1]. Stromal cells provide

growth factors, blood supply, and mechanical support, and

changes in this microenvironment can trigger tissue remodeling,

setting the stage for tumor progression, invasion and metastasis.

Since invasion and metastasis require tumor cells to survive and

grow in sites quite different from the milieu in which they arose,

we reasoned that adaptation of tumor cells to growth in vitro might

require analogous changes in cell physiology, probably mirrored

by changes in gene expression. Thus, we undertook the

comparison of gene expression profiles between mouse plasma

cell tumors (PCTs) growing in mice and PCTs that had been

adapted to growth in tissue culture, hoping to gain insights into the

genes responsible for the adaptation of this particular tumor to

tissue culture conditions. Another goal for this study, which

provides the basis for the present paper, was to determine whether

these data might be extrapolatable to other tumor types and other

species. More particularly, we hypothesized that the alterations in

gene expression required for tumor cells to survive in vitro might be

markers of human cancers that were particularly suited to growth

in distant sites, i.e., more likely to invade or metastasize, two

processes associated with poor prognosis and foreshortened

survival. Specifically, we sought to test whether expression data

from an experimental cancer model in mice, in this case plasma

cell tumors, has the potential of uncovering survival/prognosis

patterns in human cancers by transcending species-specific and

cell lineage-specific gene expression patterns.

Cancer patients have highly variable clinical outcomes based on

many factors including the genetic make-up of the patient, the

genetic and phenotypic variability of the tumors and the way the

tumors interact with their surrounding stroma. It is likely that this

spectrum of clinical courses may also reflect different tumor-

specific genetic predispositions to metastasize and gene expression

heterogeneity that are incompletely recognized by classical

diagnosis methods such as histopathological tumor typing and

staging. This genetic predisposition might be reflected in specific
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patterns of gene expression, and it has long been hoped that

microarray profiling of tumors’ global gene expression could help

identify subgroups of patients that differ in prognosis or in their

response to available therapeutic modalities [2–9]. The ultimate

goal is that gene expression profiles of a new patient’s tumor could

be analyzed in the context of a database of gene expression profiles

from patients with known outcomes. In this way, treatment could

be more precisely tailored to this patient’s expected prognosis and

predicted response to treatment.

We generated a mouse plasma cell tissue culture (PCT-TC)

gene signature by comparing and contrasting the global gene

expression of solid mouse plasma cell tumors with that of plasma

cell tumors adapted to grow in tissue culture. We then used

these signatures in meta-analysis of published reports of human

breast cancer patients that included extensive long-term follow–

up and survival data along with microarray data from these

cancers. We devised three prediction models by which our PCT-

TC signature identified subgroups of patients that could be

stratified by their different survivals. In this way we identified

and validated the existence of four distinct prognostic groups of

breast cancer patients with significant differences in clinical

outcomes. This method is superior to previously published

expression-based survival prediction and may eventually be

useful in predicting prognosis of new patients presenting with

this disease.

RESULTS

Generation of mouse tissue culture signature
For the generation of the PCT-TC signature, microarray-based

global gene expression analysis was performed on 27 individual

RNA samples composed of 17 solid mouse PCTs and 10 tissue

cultured PCT cell lines using Affymetrix U74Av2 microarray

chips. We applied Significance Analysis of Microarrays (SAM) at

the 99 percentile confidence level, and 1162 genes with a 0.001

False Discovery Rate (FDR) emerged as a signature that

characterized the differences in gene expression between these

two groups. Cluster analysis of these SAM-filtered genes

revealed that most solid tumors showed similar expression

patterns and clustered together, while the tissue cultured tumor

cells clustered together, separated from their in vivo growing solid

tumor counterparts regardless of tumor induction protocols

(Fig. 1A). Approximately 70% of these genes showed lower

expression in the cells grown in vitro (indicated in green on the

heat map in Fig. 1A) compared with the solid tumors. Most of

the genes that showed significantly lower expression in cells

growing in vitro encode genes involved in angiogenesis,

chemotaxis, component of extracellular matrix, complement

activation, or cell motility-related genes, while the genes higher

in expression in tissue cultured conditions are genes related to

cell survival (see Table S1). Since these gene families had been

cited in reports analyzing tumor invasion and metastasis [10,11],

tumor-progression processes associated with poor prognosis and

reduced survival; we decided to test this expression signature on

the analysis of human cancer survival based on global gene

expression patterns.

Cross-comparison of gene expression data between

mouse plasma cell tumors with three sets of human

cancer gene expression data
We initially applied our PCT-TC signature to three human

datasets in an attempt to stratify tumor patients into homogeneous

groups that might reflect prognosis. Using only orthologous1

genes that showed significant difference of expression in SAM

analysis of mouse PCT in vivo and in vitro, unsupervised hierarchical

cluster analysis was performed with gene expression data from

patients with mantle cell lymphoma [12], hepato-cellular carcino-

ma [13], and breast cancer [2], independently. Kaplan-Meier

plots and log-rank test for the patients clustering together based on

similarities in gene expression, revealed significantly different

survival estimates in each of these three data sets (Fig. 1B–D).

Thus, the molecular differences that reflect tissue culture

adaptation appeared to be associated with distinct differences in

the clinical outcomes of patients with diverse human cancers.

Construction and validation of prediction models for

human breast cancer patient prognosis
Having demonstrated that our mouse PCT-TC signature can

reflect different prognostic features in human patients with three

different types of cancer, we focused the application of our PCT-

TC expression model to attempt to stratify prognostic subgroups

in the well documented human breast cancer microarray data

from Netherlands Cancer Institute (NKI) [2,3]. Unsupervised

hierarchical cluster analysis of half of these samples (the training

set) using 460 orthologous genes corresponding to our mouse

PCT-TC signature revealed two main clusters (Groups A and B),

and each cluster was composed of three sub-clusters (A1, A2, A3

and B1, B2, B3, Fig. 2A).

Survival analysis of each subgroup by Kaplan-Meier plots with

log-rank test showed significant differences between the two main

clusters (Fig. 2B). The patients in the group with the better

prognosis (Group B) had an overall 85% 10-year survival rate and

a 90.7% 5-year survival rate while the group with poorer prognosis

(Group A) had a 62.3% 10-year survival rate and a 73.8% 5-year

survival rate. The difference was significant with a p value of

0.00245.

Kaplan-Meier plot and log-rank test was also performed using

the 6 different subgroups of patients, three from each of the above-

studied groups A and B. The log-rank test revealed that these six

subgroups also had significant differences in survival, with a p

value of 0.00285 (Fig. 2C). The Kaplan-Meier plot showed the

most dramatic survival differences were between B1 [hereinafter

designated as BEST prognosis subgroup with 96.7% 10-year

survival rate (the overall 5-year survival rate was the same 96.7%)]

and A2 (designated as WORST prognosis subgroup with 53.1% of

survival rate in 10 years and 65.6% in 5 years). The other 4

subgroups exhibited less significant differences and were combined

into a single intermediate subgroup (Fig. 2D). These 3 groups had

very significant differences in survival (p = 0.000233).

This part of the study suggested that our PCT-TC signature

may indeed have the potential to provide a novel prognostic model

that can predict breast cancer patients’ prognosis more precisely

than models published heretofore. To refine this model further

and to sub-stratify the prediction of outcome, we applied 6

different class prediction algorithms [Compound Covariate Pre-

dictor (CCP), Linear Discriminator Analysis (LDA), One Nearest

Neighbor (1NN), Three Nearest Neighbor (3NN), Nearest

Centroid (NC), and Support Vector Machine (SVM)], which

compares two groups at a time, to the NKI microarray data in

1Homologous murine and human genes that have diverged from

each other as a consequence of speciation. Cf., http://www.

informatics.jax.org/userdocs/homology_criteria.shtml
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Figure 1. Mouse plasma cell tumor tissue culture (PCT-TC) signature and survival analysis of human cancer patients
27 RNA samples from 17 solid mouse plasma cell tumors and 10 tissue cultured mouse PCT-TC cell lines (including Baf3, a pre-B cell line) were used
for the generation of PCT-TC signature. A. Mouse plasma cell tumor tissue culture signature. 1162 genes showing significant differences in expression
between solid PCTs and tissue-cultured PCTs were selected by SAM analysis at the 99-percentile confidence level with a 0.001 FDR. B–D. Kaplan-Meier
survival analysis of human cancer patients groups generated by unsupervised cluster analysis with mouse PCT-TC signature. B. Survival analysis of
human mantle cell lymphoma patients group [12] generated by unsupervised cluster analysis with 694 orthologs of the mouse PCT-TC signature
genes. C. Survival analysis of human liver cancer patients [13] generated by unsupervised cluster analysis with 971 orthologs of the mouse PCT-TC
signature genes. D. Survival analysis of human breast cancer patients [2,3,15] generated by unsupervised cluster analysis with 470 orthologs of the
mouse PCT-TC signature genes.
doi:10.1371/journal.pone.0000145.g001
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three independent prediction models for the prediction of

patients subtype as good prognosis vs. bad prognosis (predictor

1), BEST prognosis vs. not BEST (predictor 2), and WORST

prognosis vs. not WORST (predictor 3). All 6 algorithms yielded

very similar results, showing the reliability and robustness of our

approach. However, we felt that including all 6, followed by

vote taking would overcome any weakness in any single

prediction method. Figure 3 presents a schematic overview of this

strategy for the construction of prediction models and evaluation

of outcomes.

Figure 2. Construction of human breast cancer patients’ prognosis prediction models and evaluation of outcomes
A. Unsupervised cluster analysis of NKI training data set (147 samples). It generated two main clusters and six sub-clusters of patients. B. Kaplan-Meier
survival analysis of the two main clusters (Group A and Group B). C. Kaplan-Meier survival analysis of the six subclusters (Group A1–A3 and Group B1–
B3). D. Kaplan-Meier survival analysis of two sub-clusters (Group A2 and Group B1) showing WORST and BEST prognosis and one group that includes
all the others.
doi:10.1371/journal.pone.0000145.g002
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The large numbers of human genes in the Agilent microarray that

were most differentially expressed between the three different pairs of

prognostic subtypes (Good vs. Bad, BEST vs. not BEST, and

WORST vs. not WORST) in the training set, were selected

independently (two-sample t-test, p value ,0.001) and applied as

classifiers that estimate the probability of a particular breast cancer

patient belonging to one of these specific subtypes using the above-

mentioned six different types of prediction methods (CCP, LDA,

1NN, 3NN, NC, and SVM) (see Table S2). When applied to

a different group of 148 NKI breast cancer patients as a validation set,

all six prediction methods produced consistent patterns. All Kaplan-

Meier plots in the test set showed significant differences in survival of

patients with specific subtypes when independently analyzed by these

six prediction algorithms (Fig. 4). These results demonstrated not only

a strong association of gene expression pattern with the survival of the

patients, but also a robust reproducibility of these gene expression-

based predictors. It is interesting to note that B3 and B6 in this figure

seem to pick a set of almost perfect survivors, although these BEST

groups are much smaller than that in the other prediction algorithms,

presumably due to stricter selection criteria.

Generation and validation of the four distinct

subgroups of human breast cancer
After we applied these six prediction algorithms to each of the

three class-prediction steps, each patient was assigned to one of

two possible groups at each of the three stages, as follows. If

samples were classified into a particular class three or more times

in the six different prediction methods specified above, it was

assigned to that group; otherwise this patient was assigned to the

other group. Each member of the groups fit satisfactorily onto

similar Kaplan-Meier plots generated with the 6 independent

prediction methods (Fig. 5 A1–A3). When the 147 patients in the

training set were combined with the 148 patients in the validation

set and analyzed in this manner as a single group of 295 patients,

similar results were obtained, indicating the homogenous charac-

ter of the clinical outcomes in the same groups of patients in the

training set and the validation set (Fig. 5 B1–B3).

Based on these three sequential stages of class prediction,

samples were assigned into four independent prognostic subtypes

(BEST, GOOD, BAD, and WORST) as follows. Samples that

were assigned to the Good prognosis group in prediction step 1 but

not assigned to the BEST prognosis group in prediction step 2

[BEST vs. not BEST] were assigned to an intermediate group

designated GOOD. Similarly, samples that did not fall into Good

prognosis group in prediction step 1 (Good vs. Bad) and not

assigned to the WORST prognosis group in prediction step 3

(WORST vs. not WORST) were assigned to an intermediate

group designated BAD. Kaplan-Meier Survival analysis and log-

rank test were performed with these four independent subtypes of

patients (Fig. 5C), and differences among them were visually

Figure 3. Overview of strategy for the construction of prediction models and evaluation of outcomes. Based on the unsupervised cluster analysis
results, 3 independent prediction models are generated.
doi:10.1371/journal.pone.0000145.g003
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apparent. These differences in patient survival were significant

(p = 1.761028) by the log-rank test. These findings strongly

support the view that the four subgroups of human breast cancer

assigned by the PCT-TC signature have distinct patterns of gene

expression. These differences may reflect significant differences in

the mechanism of malignant transformation.

Statistical evaluation of PCT-TC-based prediction

model in human breast cancer

To achieve an independent evaluation of the statistical strength

and the prognostic value of our PCT-TC signature-based

prediction model in human breast cancer, we applied univariate

Figure 4. Kaplan-Meier plots of overall survival with NKI validation set predicted by six different prediction algorithms in 3 independent
prediction models.
A 1–6. Group B (with good prognosis) vs. the rest (Group A, with bad prognosis) (Predictor 1). B 1–6. Subgroup B1 (BEST prognosis) vs. the rest of all
(predictor 2). C 1–6. Subgroup A2 (WORST prognosis) vs. the rest of all (predictor 3). The differences between groups were significant in log rank test,
with p value indicated above each plot.
doi:10.1371/journal.pone.0000145.g004
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Figure 5. Defining four distinct survival subgroups of human breast cancer
A. Predicted outcomes in NKI test set (148 patients). Kaplan-Meier plot for the representative groups for 6 different prediction algorithms. If a sample
was predicted to belong to the test class (black lines) 3 or more times in the 6 different prediction methods, it was assigned to that group. Otherwise
that patient/sample remained in ‘‘rest of all’’ (red lines). There were no 3:3 ties for predictor 1. For predictors 2 and 3, ties were assigned to BEST and
WORST, respectively. B. Predicted outcomes for combined NKI data sets (295 total patients). Kaplan Meier plots of overall survival of two independent
groups identified with two independent analyses (unsupervised clustering in training data set and class prediction in validation set). C. Kaplan-Meier
plot of four independent prognostic subtypes generated with the NKI data set. Four independent prognostic subtypes (BEST, GOOD, BAD, and
WORST) are assigned as follows. Samples that fell into the Group B (good prognosis group) with predictor 1 (Good vs. Bad) but not assigned to the
BEST prognosis group with predictor 2 (BEST vs. all the rest) were assigned to an intermediate group designated GOOD. Similarly, samples that did
not fall into Group B (i.e., those that belonged to Group A, the bad prognosis group) with predictor 1 (Good vs. Bad) but not assigned to the WORST
prognosis group in predictor 3 (WORST vs. all the rest) were assigned to an intermediate group designated BAD.
doi:10.1371/journal.pone.0000145.g005
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and multivariate analysis to commonly accepted clinical and

pathologic risk factors for human breast cancer progression (see

Table S3). The BEST and WORST prognosis predicted groups

showed strong association with overall survival in univariate Cox

proportional hazards analysis. Multivariate analyses that included

all relevant pathological variables, and the predicted subtypes

revealed that BEST prognosis group prediction was significantly

different from the rest of the prognosis groups, independent of ER

status and clinico-pathological features of the tumors. This suggests

that its predictive potential has real clinical utility, and the close

examination of the genes in this signature might also provide better

mechanistic understanding of breast cancer progression.

Comparison of the results from our model of

prognosis prediction with previously defined clinical

index and gene signatures
The predicted prognostic subtypes based on our three-stage class-

prediction method showed strong association with the status of ER

expression, histo-pathological grade [14], 70-gene signature pre-

diction [2,3], core serum-response signature [15,16] and ERBB2

signature [17] but not with age, tumor size, the number of positive

lymph nodes or treatment (Table 1).

Estrogen receptor status and PCT-TC stratification
It is well accepted that ER-positivity is an indicator of good prognosis

in general [5,9], while ER-negativity usually indicates a poor

prognosis, perhaps because these tumors are unlikely to respond to

tamoxifen therapy. Our analysis showed that the ER-negative

patients (N = 69) constituted a relatively homogenous group with

a bad prognosis [47 patients (68%) in the WORST prognosis group

and 13 patients (18.8%) in the BAD prognosis group]. On the other

hand the ER-positive patients group (N = 226) proved to be much

less homogeneous by our PCT-TC analysis, consisting of mainly 3

subtypes (only 5 patients fell into the WORST group): BEST

prognosis group (69 patients, 30.5%), GOOD prognosis group (106

patients, 46.9%) and BAD prognosis group (46 patients, 20.3%).

When we performed Kaplan-Meier Survival analysis with these sub-

stratified groups of ER-positive patients, our prediction system gave

a significant improvement of prognostic prediction (log-rank test

p = 0.000739) (Fig. 6A). A combined survival analysis of the group of

ER-negative patients with the ER-positive patients that had been

stratified into 3 subtypes by our PCT-TC-based predictor, defined 4

independent subtypes with significant differences in survival

estimates (log-rank test p = 5.6461029, Fig. 6B).

Pathologic tumor grading and PCT-TC stratification
In an attempt to improve the prognostic usefulness of histological

grading of breast cancer we combined our predicting system with

classic clinico-pathological phenotypes [18] for the further

stratification of patients, analogous to the approach of Soutiriou

et al., [6]. When we stratified the 101 NKI patients with grade-II

tumors (intermediate malignancy) using our PCT-TC prediction

system, 28 patients were assigned to the BEST prognosis subtype

(Fig. 6C), showing a 96% survival rate (27 out of 28 patients

survived at least 15 years). This indicates that some patients with

very optimistic prognosis can be identified within the patients with

‘‘intermediate’’ grade-II tumors.

Histological tumor-cell type and PCT-TC

stratification
Two very early publications [14,17] used microarray-based global

gene expression analysis to sub-classify breast cancer patients and

defined five different breast cancer ‘‘intrinsic subtypes’’; Luminal

A, Luminal B, ERBB2, Basal, and Normal Breast-like. These

intrinsic subtypes were associated with significant differences in

clinical outcomes. Moreover, it was also reported that those 5

intrinsic-subtypes could also be recognized in a subset of the

patients in the NKI reports (117 tumors from young patients), and

these subclasses were associated with similar clinical outcomes

[19]. When we performed survival analysis of the complete set of

the 295-patient set of NKI samples that had been previously

assigned to one of the 5 intrinsic-subtypes by nearest centroid

classification [19], it confirmed the expected differences in clinical

outcomes (log rank test p = 3.7761027) (Fig. 6D). Applying our

PCT-TC analysis, we achieved an even further stratification of

165 breast cancer patients with the histological types that had been

associated with a bad prognosis, ERBB2-positive, Basal and

Luminal B groups [14,17]. This analysis separated out a group of

patients with a BEST prognosis signature (no deaths in 15 years

for these 11 patients) (Fig. 6E).

In addition, however, the correlation coefficients-based assign-

ment of tumors in the initial publication Sorlie et al. [17]

generated a large number of patients (109 patients from 295

patients) called ‘‘NA’’ (not assigned) even though very low

correlation coefficients cutoff values (,0.1) had been applied.

Re-assignment of the NA samples based on our PCT-TC

prediction system identified 3 subgroups of patients that had

significantly different clinical outcomes (Fig. 6F).

The 70-gene signature and PCT-TC stratification
In the analysis of the NKI data [2,3], a 70-gene signature was

identified that had a very strong predictive power for a two-way

prognosis prediction (good vs. poor). Unfortunately, our analysis

showed that this signature was not as strong in prognosis-

predicting power when applied to an independent data set, such

as that from the Duke University [4] (Fig. S1). One contributor

to this loss of prediction power was the diminished numbers of

predictor genes [only 18 genes (24 probes) of the 70-gene

signature in the Agilent microarray set used for the NKI patients’

samples were present in the Affymetrix microarray used at

Duke].

We attempted a further stratification of these two groups of

patients with our PCT-TC strategy from the NKI data set.

Analysis of the ‘‘poor’’ prognosis group from the 70-gene signature

analysis using our Predictor 2 (BEST vs. not BEST) culled out

a BEST prognosis group [13 patients (8% of the ‘‘bad’’ group)

with only one death in 15 years; Fig. 6G].

Prediction of independent human breast cancer

patients
To further validate our prediction system, we tested our PCT-TC-

derived predictors on two other groups of breast cancer patients

whose survival and microarray expression data have been

published but which utilized different microarray platforms [a

Duke University report, using Affymetrix arrays [4], and

a University of North Carolina (UNC) report, using cDNA

spotted arrays [5]].

Our independent analyses of these two data sets yielded

subgroups with significant differences in survival, similar to our

findings with the NKI patients. The summarized results of 6

different prediction algorithms for the Duke University testing

samples showed patterns similar to the plots for NKI test set of

portraits and showed significance in the log-rank tests for each of

the three predictor stages: (p = 0.0124 for Good prognosis vs. Bad

prognosis, p = 0.0289 for BEST prognosis vs. not BEST, and

Breast Cancer Prediction
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Table 1. Association study of prognosis prediction model with clinical index using the NKI data set.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Predictor 1 (Good vs. Bad) Predictor 2 (BEST vs. rest of all) Predictor 3 (WORST vs. rest of all)

Good N = 184 Bad N = 111 p value BEST N = 70 Rest N = 225 p value WORST N = 52 Rest N = 243 p value

Age 0.003606 0.369205 0.268392

,40 yr 28 35 10 53 15 48

40–44 yr 62 23 24 61 10 75

45–49 yr 65 33 24 74 19 79

. = 50 yr 29 20 12 37 8 41

Number of positive nodes 0.622589 0.70623 0.103722

0 91 60 34 117 32 119

1–3 70 36 28 78 12 94

. = 4 23 15 8 30 8 30

Tumor diameter 0.059758 0.195767 0.000928

, = 20 105 50 42 113 16 139

.20 79 61 28 112 36 104

Histologic grade 2.82e-17 2.26e-13 6.73e-12

I 9 66 38 37 3 72

II 79 22 28 73 5 96

III 80 39 4 115 44 75

Mastectomy 0.824198 0.308701 0.338286

No 99 62 34 127 32 129

Yes 85 49 36 98 20 114

Chemotherapy 0.333673 0.692295 0.778588

No 111 74 42 143 34 151

Yes 73 37 28 82 18 92

Hormonal therapy 0.212579 0.109067 0.254934

No 155 100 56 199 48 207

Yes 29 11 14 26 4 36

Estrogen Receptor status 1.70E-21 1.52E-06 2.81E-35

Negative 9 60 1 68 47 22

Positive 175 51 69 157 5 221

NIH Risk assessment 0.00068 0.00237 0.000603

High Risk 141 103 49 195 52 192

Low Risk 43 8 21 30 0 51

70 gene signature 1.20E-18 2.46E-16 5.86E-10

Bad 76 104 13 167 52 128

Good 108 7 57 58 0 115

Core Serum Response signature 5.90E-10 1.72E-17 9.60E-06

1 quartile 65 9 43 31 3 71

2 quartile 51 23 21 53 8 66

3 quartile 42 31 5 68 16 57

4 quartile 26 48 1 73 25 49

ERBB2 correlation 9.32E-20 3.50E-09 2.28E-17

1 quartile 66 8 34 40 0 74

2 quartile 59 15 23 51 2 72

3 quartile 45 28 10 63 13 60

4 quartile 14 60 3 71 37 37

Core Serum Response signature correlation values and ERBB2 signature correlation values are grouped based on quartile (From lowest value to highest values). The
statistical analysis was performed by chi-square test. All the clinical information is based on a previous publication [15] and downloaded from website: http://microarray-
pubs.stanford.edu/wound_NKI.
doi:10.1371/journal.pone.0000145.t001
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Figure 6. Prediction of breast cancer patients’ outcomes based on a combination of gene expression and other criteria
The outcome groups previously assigned in the literature based on various criteria (ER status [5,9], pathological tumor grade [6], intrinsic-sub type
[14,17] and 70-gene signature [2,3]) were reassessed and further stratified using our prediction system. A. Kaplan-Meier plot of ER-positive patients
stratified by 3 independent prediction steps. Estrogen receptor-positive patients in the NKI data set were further stratified into the BEST prognosis
group (69 patients, 4 deaths), GOOD prognosis group (106 patients, 23 deaths), BAD prognosis group (46 patients, 17 deaths) and WORST prognosis
groups (5 patients, 1 death). B. Kaplan-Meier plots of survival analysis of ER-negative groups and 3 ER-positive groups that were further stratified by
our 3-step prediction analysis. C. Kaplan-Meier plot for patients with grade II tumors after further stratification with 3 independent prediction steps.
28 patients were assigned to the BEST prognosis subtype, showing a 96% 15-year survival rate (27 out of 28 patients). The 5 patients assigned to the
WORST prognosis subtype had only a 20% (1 of 5 patients) 15-year survival. D. Kaplan-Meier plot for intrinsic-sub type. Survival analysis of the
complete set of NKI samples (295 patients) previously assigned 5 different breast cancer intrinsic-subtypes (Luminal A, Luminal B, ERBB2, Basal, and
Normal Breast-like) by nearest centroid class prediction. E. Kaplan-Meier plot for patients with intrinsic-subtypes associated with bad prognosis (Basal,
ERBB2+, and Luminal B) after further stratification with our 3-step prediction analysis. This predictor revealed 11 patients that fell into the BEST
prognosis group (no deaths within 15 years). F. Kaplan-Meier plot for the cell types that could not be assigned (NA) based on correlation coefficients
cutting threshold of 0.1. Samples previously not assigned (NA) to any of histological cell types were stratified using our prediction system, revealing
subgroups with significantly different clinical outcomes. G. Kaplan-Meier plot for the poor prognosis group in the 70-gene-based prediction after
further stratification with our 3-step prediction analysis.
doi:10.1371/journal.pone.0000145.g006
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p = 0.00245 for WORST prognosis group vs. not WORST) (Fig. 7

A1–A3). Analysis of the UNC data with our prediction system also

stratified the patients showing patterns similar to the NKI data

(p = 0.0109 for Good prognosis vs. Bad prognosis, p = 0.0321 for

BEST prognosis vs. not BEST, and p = 0.0205 for WORST

prognosis group vs. not WORST) (Fig. 7 B1–B3). Combined

analysis of Duke data with UNC data showed outcomes similar to

those revealed in the NKI data set (p = 0.000335 for Good

prognosis vs. Bad prognosis, p = 0.00219 for BEST prognosis vs.

not BEST, and p = 6.2561025 for WORST prognosis group vs.

not WORST) (Fig. 7 C1–C3).

Thus, our method of outcome prediction for two independent

groups of patients provided an accurate and precise estimate of

clinical outcomes that worked on microarray data sets generated

using different microarray platforms and different cohorts of

patients treated at different clinical institutions.

Biological insights into the subtypes of human

breast cancer

A class comparison of the patients in the four different survival

subtypes of the 295 NKI breast cancer patients generated by PCT-

TC stratification by one-way ANOVA analysis provided a list of

the genes that characterized the different prognostic groups. A

total of 3307 genes showed significant differences (p,161028) in

this analysis (Fig. 8A). This list is too long to be included here, but

it included many genes that had been noted in previously reported

analyses of gene expression in human breast cancer. General

agreement between prognosis subtype and clinical predictors, ER

status and histopathological grade can be visually appreciated,

although some important exceptions can be seen. Regardless of

ER status and histological grade, most of the patients’ tumors

within a single subtype showed similar gene expression patterns.

Figure 7. Prediction of independent cohorts of human breast cancer patients
The results are shown as the summarized predicted outcomes determined from the results of 6 different prediction algorithms. A. Kaplan-Meier plots
for the summarized predicted outcomes of Duke University patients [4]. B. Kaplan-Meier plots for the summarized predicted outcomes of UNC
patients [5]. C. Kaplan-Meier plots for the combined predicted outcomes of UNC data and Duke University patients.
doi:10.1371/journal.pone.0000145.g007
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Figure 8. Genes showing significant differences in expression among independent groups (BEST, GOOD, BAD and WORST)
A. Gene clustering of 295 NKI samples using genes selected by one-way ANOVA class comparisons. A total of 3307 genes that showed significant
expression differences (p,161028) in a one-way ANOVA analysis were selected. ER expression status and the histo-pathological grade of each tumor
sample are shown in grey-scale bars beneath the colored BEST – WORST classification bar. The key to the grey-scale designations is found beneath
the heat map. B. PathwayAssistTM–generated figure showing networks of transcription factors activated by EGF and showing significantly higher
expression in tumors from patients in the WORST prognosis group (indicated by red color) compared to the BEST prognosis group. C.
PathwayAssistTM–generated figure showing networks of genes activated by PTGS2 (COX2) and showing significantly lower expression in tumors from
patients in the WORST prognosis group (indicated by green color) compared to the BEST prognosis group.
doi:10.1371/journal.pone.0000145.g008
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Figures 8B and 8C present genetic networks generated by

PathwayAssistTM (Ariadne Genomics) analysis of these expression

data. Figure 8B shows transcription factors most highly expressed

in the WORST subgroup, all of which are activated by EGF. This

finding suggests that continuous, spontaneous stimulation of

EGFR and Her2 signaling may play central roles in particularly

dangerous and metastatic breast cancer tumor types. Figures S2–

S5 depict the large number of genes activated by EGF, IFNG, IL4

and CCNA2 that also show increased expression in the WORST

group of the NKI patients’ tumors, consistent with the previous

notion. Of course, these pathways have considerable cross talk or

overlap in involved genes. Figure S8 is a Venn diagram that

depicts the overlapping genes that are highly expressed in patients

with the WORST prognosis and are involved in the EGF, IL4 and

IFNG pathways. Figures S6 and S7 depict the large number of

genes activated in the WORST group that contribute to the

activation of TNF and AKT. This might explain how the anti-

apoptotic action of AKT signaling is increased in tumors that fall

in the WORST prognosis group and how TNF contributes to the

metastasis of the WORST prognosis group.

Figure 8C depicts genes activated by PTGS2 (COX2) that

shows significantly lower expression in the WORST prognosis

subgroup and higher expression in the BEST subgroup. The

higher expression of IGF1, BCL2, and CCND1 in the BEST

prognosis group (Fig. 8C) was unanticipated, as these genes are

commonly considered to be tumor- promoting genes. The

activation of IGF1, BCL2 and CCND1 by PTGS2 might be the

prolonged legacy of chronic inflammation in early stages of tumor

generation. Following the chronic inflammation stage, genetic or

epigenetic changes leading to altered expression of other cytokines,

growth factors and oncogenes might take over and be responsible

for progression of the tumor.

DISCUSSION
Even though cancers occur in different organs and involve

transformation of many cell types, most cancers share certain basic

differences that separate them from normal cellular counterparts

[20]. Tumors can evade cell death and bypass mechanisms that

normally regulate the cell cycle. Constitutively activated growth

factor receptors provide active proliferation signals in many

tumors [20,21]. Such proliferation-promoting genes commonly

appear in expression signatures of cancer, and sometimes they can

be used to predict clinical outcomes in tumor patients [12,15,16].

However, the common accumulation of proliferation signals has

made it difficult to use these features to generate highly stratified

patient groups with different clinical outcomes and sensitivity to

treatment protocols. Hidden beneath the strong proliferation-

associated genes may be better clues to variable prognosis, e.g.,

proteins associated with the ability of cells to live in foreign sites,

such as those represented in the PCT-TC signature.

A closer examination of the nature of those genes that provided

better stratification of patients may also improve our understand-

ing of the tumorigenic process. In a Gene Ontology (GO) analysis

of this signature (see Table S1), many genes involved in

angiogenesis (GO:0001525), chemotaxis (GO:0006935), as well

as extracellular matrix structural constituents (GO:0005201) and

transmembrane receptor tyrosine kinases (GO:0004714) showed

significant lower expression in tissue culture versions of PCTs.

Most of the genes were previously shown its roles in tumor

metastasis and have provided a basis for different prognostic

outcomes of human cancer patients.

Molecular phenotypying of breast cancer by Perou et al. [14]

delineated four intrinsic-subtypes of breast cancer (Luminal, Basal,

ERBB2+, and Normal Epithelial Group) based on 476 genes that

showed variable expression in 40 breast cancer samples compared

to 20 matched samples that had received doxorubicin treatment.

These molecular phenotypes of breast cancer were shown to be

conserved in independent analysis of different groups of patients,

and they were also associated with significant differences in clinical

outcomes that correlated with the tumor cell types.

Another significant advance in the identification of prognostic

factors using breast cancer microarray expression analysis was the

70-gene signature generated in axillary lymph node-negative

patients by van’t Veer et al. [3]. An extended analysis using the 70-

gene signature applied to an additional 234 patients [2]

documented that this signature-based classification identified

classes of patients with significant differences in clinical outcomes

more consistently and accurately than any clinical index.

However, it is a challenge for even the best prognostic models

when they are tested on different independent patient populations

[22], as most of the model parameters for the signature are

generally optimized for the original data [23–25]. The source of

these difficulties may lie in different sizes of patient cohorts or

different compositions of patient populations, differences in

microarray platforms employed (one dye system vs. two dye

system, etc.), and differences in the way the microarray data were

processed (normalization, scaling, etc.). Nonetheless, if the pre-

dictor used truly reflects basic genetic characteristics relevant to

the mechanisms responsible for the different phenotypes (out-

comes, prognosis and survival), one would expect these combina-

tions of gene expression to be conserved among all groups of

patients with given tumor types. We have shown in detail that our

PCT-TC signature-based outcome-predicting model can out-

perform previous approaches to prognosis prediction for breast

cancer patients, and probably for certain other cancers as well. Just

how widely this approach can be applied will require further

analysis.

Even though genetic signatures may provide the most precise

prognostic prediction for individual tumor patients, it is still not

widely accepted as an essential component in the choice of

therapy. This might be because array-based outcome prediction

has been available for only a short period of time, only small

numbers of patients and samples have been used for its validation,

and because no single approach has emerged with a clear

consensus from the clinical/scientific community.

We think that a possible solution to this acceptance problem is

to apply multi-faceted models for the prediction of prognosis,

which include well-characterized and well-accepted clinical in-

dexes along side newly applied genetic signatures. This approach

should minimize the number of false positives and false negatives

from tumor staging, ER testing and the potentially subjective

interpretation of histo-pathological sections. Adding a microarray

analysis step offers the potential of classifying ‘‘unclassifiable’’

tumors or those designated ‘‘intermediate’’ in character. We have

shown that there is a considerable heterogeneity in ER-positive

populations as well as in patients with grade-II tumors. We feel

that application of PCT-TC predictors could supplement existing

prediction methods and yield more finely tuned, sub-stratified

groups of patients based on molecular genetic similarities. These,

then, could be the basis for the understanding of basic mechanisms

that might be responsible for different clinical outcomes and

provide a means of scientifically predicting prognosis and, if

further developed, susceptibility to treatment protocols.

In summary, we generated a novel prognosis prediction model

for human breast cancer patients based on a mouse plasma cell

tumor tissue culture expression signature. As it is generated based

from a data set that originated in a different animal species and

a different cell type, it may have side-stepped ‘‘over-fitting’’
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problems that often plague models of human cancer patient

prognostic prediction. Testing of our prediction model on 3

independent data sets of human breast cancer patients showed

similar sub-stratification regardless of microarray type and on

patient groups in different clinical institutions.

MATERIALS AND METHODS

Sample Selection and RNA Preparation
A total of 27 samples of RNA were prepared from transplanted

mouse PCT tissues and cell lines derived from them. All solid PCT

samples used for microarray hybridization had been induced in

BALB/c mice by intraperitoneal injections of pristane [26] and

transplanted at least once. Some had been accelerated by injection

of Abelson murine leukemia virus concomitant with the pristane

injection [27]. PCTs were adapted to growth in tissue culture with

difficulty, often requiring cycling through pristane-primed mice

before sustained growth in vitro could be obtained [28]. All tissue

cultured cell lines were maintained in RPMI 1620 medium with

10% fetal bovine serum and 10 ng/ml IL-6. All mice were

maintained in our conventional colony on the NIH campus under

Animal Study Protocol LG-028. Total RNA was prepared from

tissue culture pellets or from frozen tissues pulverized by mortar

and pestle in liquid nitrogen using extraction in TRIzol

(Invitrogen) followed by further purification on RNAeasy columns

(Qiagen).

Microarray Hybridization
Affymetrix U74Av2 microarrays were used for the hybridization of

biotin-labeled cDNA probes synthesized from 5 mg of total RNA

or 1 mg poly(A)+ RNA using Superscript double–strand cDNA

synthesis kit (Invitrogen), Bioarray High Efficiency RNA transcript

labeling kits and Mg-catalyzed fragmentation kit (Enzo) according

to the manufacturers’ instruction. Microarrays were stained with

phycoerythrin-streptavidin (Molecular Probes), scanned with

Affymetrix GeneChip scanner and analyzed with Affymetrix

Microarray Analysis Suite (MAS) version 5.0.

Statistical Analysis of Microarray Data
BRB ArrayTools Version 3.0 (http://linus.nci.nih.gov./BRB-

ArrayTools.html) was used for the analysis of the MAS 5.0 data

set. A log base 2 transformation was applied to the data set before

arrays were normalized. Each array was normalized using median

values of gene expression over the entire array (global normali-

zation). A median array was selected as the reference array for

normalization. Class comparison analysis was performed with

SAM including an estimation of FDR. Cluster analysis was

performed with Cluster and Treeview (http://rana.lbl.gov/

EigenSoftware.htm). For the cluster analysis, the log base 2

transformed data were centered to the mean values of each gene’s

expression.

For the generation of prediction models, samples were divided

into two groups as ‘‘training set’’ and ‘‘validation set’’ in such as

way that each group had a similar composition of follow-up times

since the first diagnosis. Six different prediction methods were

applied for the validation of subclasses: LDA, SVM, NC, 1NN,

3NN and CCP. The numbers of genes in the classifiers were

optimized to minimize misclassification errors by the leave–one-

out cross-validation of the data set. All statistical analyses

were performed in R (version 2.0.1). The probabilities of overall

survival were estimated according to the Kaplan-Meier method.

Significance of difference among subclass was determined by

log-rank test.

Meta-Analysis of Published Data
We worked with several previously published data sets that

combined microarray analysis of gene expression in human cancer

samples with clinical and laboratory data from the patients at time

of tumor discovery and follow-ups and survival analyses of these

patients. Five independent groups published valuable sets of data

that were publicly available and could be used in our analysis.

Mantle cell lymphoma [12] and hepatocellular carcinoma [7]

patients were the first groups studied to compare clinical outcomes

with global gene expression analyses of mouse PCT-TC orthologs.

However, we based most of our studies on the NKI patients in

which Agilent two-color oligo microarrays were used for analysis

of gene expression [2,3], because their total patient number, 295,

and length of follow-up were the greatest. We also performed

meta-analyses on the results generated from 170 breast cancer

patients studied at Duke University using Affymetrix single-color

microarrays for expression analysis [4], and from 96 patients from

the University of North Carolina (UNC) [5] which employed two-

color cDNA microarrays. Both data sets provided valuable

independent test sets against which we could test our approach

for prediction of prognosis. Orthologous genes that were present in

the Affymetrix U74Av.2 mouse microarrays and in the human

microarrays employed in the previously published studies were

selected by using curated mammalian orthology from The Jackson

Laboratory. For the analysis of more than one independent data

set of breast cancer patients (e.g., NKI data sets and the Duke

University data set) each data set was normalized separately and

then combined together. Each set was divided into a training set

and a test set. Before integrating testing data set with training data

set, the expression of each gene was standardized to mean6s.d. of

061 independently in both data sets.

Pathway analysis
Once genes were identified as useful in the stratification of

patients’ outcomes, we attempted to gain insight into molecular

mechanisms that might be involved in generating this hierarchy of

patient outcomes. We employed PathwayAssistTM (version 3.0,

Ariadne Genomics), as an independent pathway analysis tool to

identify connections between differentially expressed genes.

URL. The Jackson Laboratory: http://www.informatics.jax.

org.

BRB ArrayTools: http://linus.nci.nih.gov/BRB-ArrayTools.

html.

NKI data: http://microarray-pubs.stanford.edu/wound_NKI

Duke Univ. data: http://data.cgt.duke.edu/oncogene.php

Univ. of North Carolina (UNC) data: https://genome.unc.edu/

SUPPORTING INFORMATION

Figure S1 70-gene signature-based prognosis prediction of Duke

University patients. A. Cluster analysis of patients from Duke

University [4] using the 70-gene signature from the NKI data set

analysis [2]. Note that only 24 probes in the Duke University

Affymetrix microarray platform match the 70 genes from the NKI

Agilent microarray used to define the prognostic predictor in the

NKI data set. B. Kaplan-Meier survival plot of the two main

clusters generated in A.

Found at: doi:10.1371/journal.pone.0000145.s001 (5.38 MB TIF)

Figure S2 PathwayAssistTM-generated figure showing genes that

are activated by EGF and show significantly increased expression

in the tumors from patients in the WORST prognosis group

compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s002 (3.18 MB TIF)
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Figure S3 PathwayAssistTM-generated figure showing genes that

are activated by interferon c and show significantly increased

expression in the tumors from patients in the WORST prognosis

group compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s003 (5.04 MB TIF)

Figure S4 PathwayAssistTM-generated figure showing genes that

are activated by IL-4 and show significantly increased expression

in the tumors from patients in the WORST prognosis group

compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s004 (4.07 MB TIF)

Figure S5 PathwayAssistTM-generated figure showing genes that

are activated by cyclin A2 and show significantly increased

expression in the tumors from patients in the WORST prognosis

group compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s005 (3.58 MB TIF)

Figure S6 PathwayAssistTM-generated figure showing genes that

are activated by tumor necrosis factor and show significantly

increased expression in the tumors from patients in the WORST

prognosis group compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s006 (4.75 MB TIF)

Figure S7 PathwayAssistTM-generated figure showing genes that

are activated by AKT1 and show significantly increased

expression in the tumors from patients in the WORST prognosis

group compared to those in the BEST prognosis group.

Found at: doi:10.1371/journal.pone.0000145.s007 (5.10 MB TIF)

Figure S8 Venn diagram that shows genes activated in common

by EGF, IFN-c or IL-4. EGF expressed a total of 115 genes

significantly more highly in tumors from the patients with the

WORST prognosis group than in patients in the BEST prognosis

group. Of these 115 genes, 26 are also activated by IL-4 and

highly expressed in BEST tumors, and 16 of these are highly

expressed in BEST patients’ tumors and activated by EGF, IL-4

and TNF. The genes activated by more that one of these three

factors are listed in the overlapping sectors.

Found at: doi:10.1371/journal.pone.0000145.s008 (3.27 MB TIF)

Table S1 Functional enrichment analysis of PCT-TC signature

genes. The enrichment of each gene set was estimated by

calculating the cumulated hypergeometric p values of each

biological process provided by Gene Ontology Consortium

(www.gene-ontology.org). Gene annotation according to Gene

Ontology (GO) terms was downloaded from the NCBI (ftp://ftp.

ncbi.nih.gov/gene). In order to obtain representative and

significantly enriched terms, the terms that belonged to a GO

level higher than 2 and that included at least three genes were

considered in our calculation. Statistical significance was de-

termined with a cut-off of p,0.001.

Found at: doi:10.1371/journal.pone.0000145.s009 (0.42 MB

DOC)

Table S2 Summary of the class prediction results for NKI

training set. Genes significantly different between the classes at

0.001 significance level were used for class prediction. 4160 genes

were selected as a classifier for Good vs. Bad group and 1651 genes

were selected as a classifier for BEST prognosis group. For the

prediction of WORST prognosis group 4700 genes were selected

as a classifier. Leave-one-out cross-validation method was used to

compute misclassification rate based on 100 random permuta-

tions.

Found at: doi:10.1371/journal.pone.0000145.s010 (0.05 MB

DOC)

Table S3 Cox univariate and multivariate analysis of risk factors

for death. Parameters showing significance in the Cox pro-

portional hazard model are shown in bold. Age is categorized into

two groups based on .45 years old or not. Lymph node status is

categorized into two groups, one with one or more tumor cells

infiltrated into the lymph node and another group with no tumor

cells infiltrated into the lymph node. P value for statistical

significance was calculated by log-rank test. T1T2 is categorized

based on the diameter of tumor size are .2 cm or not.

Found at: doi:10.1371/journal.pone.0000145.s011 (0.05 MB

DOC)
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