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Abstract

Interactions between transcription factor and target gene form the main part of gene regula-

tion network in human, which are still complicating factors in biological research. Specifi-

cally, for nearly half of those interactions recorded in established database, their interaction

types are yet to be confirmed. Although several computational methods exist to predict

gene interactions and their type, there is still no method available to predict them solely

based on topology information. To this end, we proposed here a graph-based prediction

model called KGE-TGI and trained in a multi-task learning manner on a knowledge graph

that we specially constructed for this problem. The KGE-TGI model relies on topology infor-

mation rather than being driven by gene expression data. In this paper, we formulate the

task of predicting interaction types of transcript factor and target genes as a multi-label clas-

sification problem for link types on a heterogeneous graph, coupled with solving another link

prediction problem that is inherently related. We constructed a ground truth dataset as

benchmark and evaluated the proposed method on it. As a result of the 5-fold cross experi-

ments, the proposed method achieved average AUC values of 0.9654 and 0.9339 in the

tasks of link prediction and link type classification, respectively. In addition, the results of a

series of comparison experiments also prove that the introduction of knowledge information

significantly benefits to the prediction and that our methodology achieve state-of-the-art per-

formance in this problem.

Author summary

The interaction between transcription factors (TFs) and their target genes is a fundamen-

tal aspect of transcriptional regulation research, but the number of these interactions that

can be studied is currently limited by biological techniques. And the computational meth-

ods relevant to the prediction of transcriptional regulation relationships are still not accu-

rate enough and are unable to predict the type of transcriptional regulation interactions.
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This study presents a multi-task approach namely KGE-TGI for predicting the existence

of the interactions between transcription factors and their target genes and the type of

them on a knowledge graph. To evaluate our method, we constructed a ground truth data-

set and conducted 5-fold cross experiments. The results showed that our method achieved

average AUC values of 0.9654 and 0.9339 for link prediction and link type classification,

respectively. Comparison experiments also demonstrated that incorporating knowledge

information significantly improved performance and our method achieved state-of-the-

art results for this problem.

1 Introduction

Transcription factors (TFs) are key proteins in mechanisms of gene regulation that function

by binding to transcriptional regulatory regions (e.g., promoters, enhancers, and silencers) in

genes to control their expression. Usually localized in the 5’-upstream region of target genes, a

TF could promote or block the recruitment of RNA polymerase to boost or decrease the tran-

scription rate of genetic information from DNA to mRNA, serving as either an activator or a

repressor [1]. An increasing number of TFs have been identified and categorized into different

families, of which some are common to several cell types (e.g., AP-1 and NF-κ B), whereas oth-

ers are cell-specific potentially determining the phenotypic characteristics of a cell. A TF can

target multiple types of genes while a gene can be also regulated by other functionally similar

TFs, forming a complicated and dynamic regulation network. The interactions between TF

and their targets lay the important knowledge foundation for deciphering the complex process

of gene regulation, and therefore much effort has been made to detect them in research of

medical biology and molecular biology.

Existing laboratory techniques developed to identify TF-target gene interactions typically

include EMSA [2], ChIP-seq [3], and DAP-seq [4], each with varying utility and distinct

strengths and weaknesses. EMSA is used to study the binding pattern of proteins to known

DNA oligonucleotide probes, based on the observation that protein-DNA complexes migrate

more slowly than free DNA molecules when subjected to non-denaturing polyacrylamide or

agarose gel electrophoresis. The chromatin immunoprecipitation (ChIP) method allows analy-

sis of TF–target gene interactions in living cells but requires sequence information of TF and

gene as an antibody against the TF and PCR primers for the target DNA sequence must be

provided in quantitative PCR. In the process of DAP-seq, TFs are constructed in vitro and

bound to target DNA fragments, which are subsequently enriched for analysis. As DAP does

not need the specific antibody of the target protein, it has a wider range of applications than

ChIP-seq. Despite the great success of laboratory techniques to identify TF-target gene interac-

tions, the results yielded by them are still the tip of the iceberg compared with the complete

gene regulation network. In addition, the type of their interaction (activation or inhibition) is

largely unknown in the established database. Therefore, there is an urgent need to develop

computational approaches to aid the identification of TF-target gene interactions by selecting

the most potential pairs for biological assays to verify.

Most of the existing computational methods for identifying interactions between TF and

target genes mainly focus on their binding sites, coupled with classical deep learning frame-

works like convolutional neural network (CNN) and recurrent neural network (RNN). CNN-

based methods use DNA sequence as input data, which is generally treated as image-like

matrix and encoded into motif embedding vectors by different types of convolutional kernels

[5–8]. In this category of methods, the prediction task of transcription factor binding sites
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(TFBS) is analogous to image classification, aiming to yield the probability of a binding site at

a location of DNA that is scanned. RNN can provide an alternative strategy to achieve the

same goal since the DNA sequence is naturally sequential data. Existing methods of this type

adopt different RNN variant architectures (e.g., BiGRU and LSTM) to enhance the before-

and-after dependency of the features of DNA sequence, solving the long-range dependency

problem that CNN meets [9–11]. Though the problem of TFBS prediction has been widely

studied with a variety of computational methods proposed, these works can only consider the

local structure of DNA sequences and predict the binding probability for each single DNA

motif. Their prediction results are of high false-positive rates, partially because they do not

consider the general DNA structure and partially because TFBS are often located in the long

non-coding sequence. In addition, TFBS prediction cannot infer the interaction type given a

pair of TF and gene with their sequences.

To predict TF-target gene interactions directly, some efforts have been made to develop

prediction models using different gene expression data sources. The most commonly used bio-

logical data is gene expression data, and many classic transcriptional regulatory relationship

prediction algorithms have been developed based on this type of data, including GENIE3 [12],

NARROMI [13], TIGRESS [14], etc [15, 16]. These methods achieve good results in predicting

transcriptional regulatory relationships by performing feature selection and other operations

on gene expression data. In addition, there are models such as NetAct [17] that are also based

on gene expression data, which can identify the core transcriptional regulatory network and

predict network relationships at the same time. On the other hand, Yang et al. leveraged the

image data of gene expression generated by the ISH (in situ hybridizations) technique and pro-

posed a residual CNN-based model called GripDL to predict new TF-target gene interactions

based on the known ones [18]. With regards to the single-cell RNA-seq (scRNA-seq) data,

some tentative ideas have also been put forward recently to solve the same problem at the sin-

gle-cell resolution. For example, Fan et al. transformed a scRNA-seq expression matrix into a

3D co-expression matrix reflecting gene-gene joint distribution, which was subsequently used

for inferring the gene regulation network via 3D CNN [19]. However, neither gene expression

image nor scRNA-seq data is expensive and still limited in number, which makes them hard to

be widely adopted in real research. With the known TF-target gene interactions increasingly

collected from experiments, modeling the known part of GRN and learning its patterns may

shed light on the prediction problem for TF-target gene interaction.

Recently, the TRRUST database has been established to include the known human TF-tar-

get gene interactions verified by biological experiments [20]. Specifically, it retrieves 9395

human TF-target interactions covering 795 types of human TF, some of which the interaction

type is recorded. In mathematics, these interaction data naturally form a graph in which nodes

and links indicate TF/target genes and their interactions, respectively, such that existing mod-

els based on graph neural networks (GNN) can be applied to. To fill this methodological gap,

we previously develop the model of GraphTGI, which simply formulates the GRN as a bipar-

tite graph representing TF and target gene with chemical attribute and DNA sequence as node

feature [21]. In this work, we improve it regarding prediction performance and application

with a constructed knowledge graph (KG) as base data for information mining. Specifically,

multiple types of relational data (including known TF-target gene interactions, GO term anno-

tation, gene-disease association, and chemical-gene interaction), which are intrinsically rele-

vant to GRN, were collected to form the knowledge graph, pushing the quantity limits of GRN

mechanisms that are discovered. For each type of subgraph in constructed KG, a single graph

neural network was separately established to learn the node representation, which was subse-

quently integrated to calculate the probability scores for prediction. Considering there are a

considerable number of known TF-target gene interactions (46% in the TRRUST database)
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whose interaction type is yet to be confirmed, the proposed model is designed with a link clas-

sification component to predict their type based on the assumption that the unknown link

types can be inferred by learning the pattern to the known ones.

This paper is organized into three main sections. In the first section, we provide a detailed

description of the KGE-TGI model, including the preprocessing of the data, the link prediction

module, the edge type prediction module, and the GradNorm [22] module for adjusting the

weights of multiple tasks. In the second section, we present the results and analysis of a series

of experiments on the model. These experiments focus particularly on the impact of different

graph construction strategies on the performance of the model. Additionally, we conduct a

series of ablation experiments to further evaluate the contribution of individual components of

the model. The third section discusses the contributions and implications of our work, and

provides suggestions for future research. Our model’s contributions can be divided into three

parts: (1) To our knowledge, KGE-TGI is the first attempt to construct a transcriptional regu-

latory knowledge graph by integrating transcriptional regulatory relationship networks and

other biological networks to jointly infer potential transcriptional regulatory relationships and

predict their types. (2) We used a multi-subgraph convolutional network to learn unique infor-

mation from different subgraphs and common information from the entire knowledge graph.

(3) According to experimental results, our model has demonstrated effectiveness and effi-

ciency in large-scale prediction tasks.

2 Methods

2.1 Dataset

To perform algorithm evaluation and comparison, we used three databases to construct a mul-

tiple relation heterogenous graph as ground truth, which consists of TF nodes, target gene

nodes, disease nodes and GO term nodes. We first obtained TF-target gene regulatory rela-

tionships from TRRUST database (https://www.grnpedia.org/trrust/), which was manually

collected from 11237 PubMed articles [20]. The information of regulation type for each TF-

target gene pair is also provided, including activation (33.5%), repression (20.5%) and

unknown (46%). The regulatory state of some TF-target gene pairs is dynamic and keeps

changing in different biological reactions so that a number of TF-target gene pairs recorded in

TRRUST were annotated as both “activation” and “repression”. We secondly obtained the

gene-disease associations from DisGeNET database (https://www.disgenet.org/), which inte-

grates data from expert repositories, scientific literature and other publicly available resources

[23]. There are 1134942 gene-disease associations covering 21671 genes and 30170 diseases in

DisGeNET database. Finally, we retrieved 25826 GO term-TF pairs from GENEONTOLOGY

database (http://geneontology.org/) [24].

We consider that the dynamical process of transcriptional regulation not only depends

solely on the internal factors such as TFs, but also be influenced by the external factors, espe-

cially environmental chemicals. Therefore, we collected chemical-gene associations from

Comparative Toxicogenomic Database (CTD, https://ctdbase.org/), which manually curated

chemical-gene information from published literatures. CTD database [25] records 124344

chemical-gene associations between 9516 chemicals and 11125 genes, each gene can be associ-

ated with 11 different types of chemicals on average. To facilitate the construction of the multi-

ple relation heterogenous graph, we only retained the relationships corresponding to genes

whose IDs were matched in all databases of TRRUST, DisGeNET and CTD. As a result, 25,826

experimental verified interactions were used to form the dataset for training and testing our

prediction model, relating to 657 TFs, 2146 target genes, 5923 diseases and 4337 GO terms.
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More details of the dataset are shown in Table 1 and the knowledge graph constructed from

the dataset is shown in Fig 1.

2.2 KGE-TGI model

The prediction problem is formulated as a multi-task learning problem, in which the goal is to

predict the existence of interactions between all types of nodes and the regulation type of TF-

target gene interactions simultaneously. As illustrated in Fig 2, KGE-TGI is an end-to-end

model that consists of four key components: (a) multiple relation heterogenous graph con-

struction and node feature calculation, (b) Heterogeneous Graph Convolutional Network

based module (MGCN) for link prediction (c) MGCN-based module for regulation type pre-

diction and (d) Gradient Normalization (GradNorm) module for adaptive loss balancing in

multi-task network.

2.2.1 Multiple relation heterogeneous graph construction. The KGE-TGI model

assumes that different biological information networks contain information that can comple-

ment each other. For instance, since many diseases arise due to abnormal regulation between

genes, we believe that the gene-disease relationship network also holds useful information that

can explain the gene-gene relationship network. Additionally, GO terms are a resource used to

Table 1. Details of datasets that are used in this work.

Types Num. Resources

Node TF (TF) 666 TRRUST v.2

Target gene (tg) 2194 TRRUST v.2

Disease (D) 5923 CTD

GO terms (GO) 4337 GENEONTOLOGY

Edge TF-activate-tg 2897 TRRUST v.2

TF-repress-tg 1734 TRRUST v.2

TF-unknow-tg 3907 TRRUST v.2

TF-associate-D 7775 CTD

D-associate-tg 31170 CTD

GO-associate-TF 25826 GENEONTOLOGY

https://doi.org/10.1371/journal.pcbi.1011207.t001

Fig 1. Schematic diagram of the KG of transcriptional regulation.

https://doi.org/10.1371/journal.pcbi.1011207.g001
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describe genes and contain valuable information. We constructed a GO term-TF relationship

network to introduce this type of information. There are other biological information net-

works that we did not use, but we believe they also contain valuable information. However,

due to resource availability and other reasons, this work only uses disease-related information

and GO term-related information for now.

We construct a multiple relation heterogenous graph from the dataset obtained by integrat-

ing TRRUST, DisGeNET and GENEONTOLOGY databases. The graph is defined as a

directed graph G = (V, E, T, R), where V, E, T, R represent the node set, edge set, node type set

and edge type set, respectively. Each node v 2 V is associated with a node type t 2 T, and each

edge e 2 E is associated with an edge type r 2 R. In our model, the node type set T is composed

of TFs (TTF), target genes (Ttg), diseases (TD) and GO terms (TGO), and the edge type set E is

composed of interactions of TF-target gene (ETF−tg), target gene-disease (ED−tg), TF-disease

(ETF−D) and GO term-TF (EGO−TF). Each node vi(i = 1, 2, . . ., Nn) is represented as a feature

vector xi, where Nn = |V| denote the number of nodes in the graph.

Considering the influence of environmental chemicals on transcriptional regulation, we

introduce the information of chemical-gene associations as node features of TF nodes and tar-

get gene nodes. Specifically, for each TF type and target gene type node, we use

C ¼ fc1; . . . ; cj; . . . ; cNc
g to denote the relationship between the TF node and all chemicals,

where Nc denotes the number of chemicals, and cj is a binary value indicating whether the spe-

cific gene node and the jth chemical node are associated. We calculated the cosine similarity

Fig 2. Flowchart of the KGE-TGI model. The model is divided into four parts, including: (a) construction of the knowledge graph of transcriptional regulation from

TRRUST, DisGeNET and GENEONTOLOGY databases; (b) a link prediction module, which adopts a MGCNs based model to extract node feature from the knowledge

graph and a dot product operation to reconstruct the knowledge graph, and then uses a cross-entropy loss function to calculate the loss of this part; (c) a multilabel

classification module, which applies another MGCNs based model to generate node embedding and a MLP layer to predict the transcriptional type of the links, and then

uses a multilabel cross-entropy loss function to measure the loss; (d) an adaptive loss balancing module, which uses an independent optimizer to dynamically adjust the

balance of two tasks at each training step. And N refers to the number of layers in the proposed model.

https://doi.org/10.1371/journal.pcbi.1011207.g002
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between all these chemical relation vectors and store it in a chemical similarity matrix

Csim 2 R
NðTFþtgÞ�Nc , where Csim(i, j) denotes the cosine similarity between the ith gene node and

the jth gene node that calculated as follow:

Csimði; jÞ ¼ cos ðCi;CjÞ ¼
Ci;Cj

kCik � kCjk
ð1Þ

The Csim matrix is used to as feature of TF and target gene nodes. Besides, we also calculated

one-hot encoding of GO term as feature of GO term nodes. And features of other node types

are randomly initialized from a normal distribution. It should be noted that our focus in this

work is to investigate the impact of biological network topology information on predicting

transcriptional regulatory relationships. Unless otherwise stated, KGE-TGI model only

employs chemical features as node attributes, and does not utilize gene expression data.

2.2.2 Multi-subgraph convolutional network. The KGE-TGI model assumes that the

patterns of information propagation on different types of edges are not totally equivalent, but

still have some commonality. Therefore, we use a multi-subgraph convolution network

(MGCN) to simultaneously extract node features unique to different types of edges and node

features common to all types of edges.

As shown in Fig 3, the module treats the graph as |R| subgraphs based on the edge type,

each subgraph only contains edges of one type. Then a dependent graph convolution kernel is

used to extract node features on each subgraph, which reads the features from source nodes

and writes the updated ones to destination nodes. If these subgraphs have the same destination

node, the results of convolution are aggregated by summing up. The process of node feature

Fig 3. Schematic diagram of the multi-subgraph convolution network. Taking the knowledge graph of transcriptional regulation as input, the multi-subgraph

convolution network divides the graph into multiple subgraphs according to different relationships, and uses multiple independent GCNs to extract features separately,

and then concatenates all the features together.

https://doi.org/10.1371/journal.pcbi.1011207.g003
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update on the r type subgraph is as follows:

h r0
i ¼

X

j2N r
i

Wrh
r
j þ br

ð2Þ

where hr0
i is the output feature of the ith node generated on the subgraph of r edge type, Nr

i is

the set of nodes adjacent to the ith node on the r type subgraph, hr
j is the origin feature of the

jth node, Wr 2 R
dj�d0i is the transformation weight matrix of the r edge type subgraph, and br is

the bias. dj is the dimension of input feature of jth node and d0i is the dimension of the embed-

ding set by the model. We sum up the results to aggregate the features extracted from different

subgraphs as follows:

h 0i ¼ sð
X

r2R

hr0
i Þ ð3Þ

where h0i is the final feature of the ith node and σ is the activation function to provide nonline-

arity. The MGCN module is a general framework that can aggregate features with different

dimensions automatically.

2.2.3 Link prediction module. We first describe the module used in the link prediction

task. As shown in Fig 2(b), the link prediction module takes the whole heterogeneous graph

and all origin node features as input, uses MGCN module to extract features and generates the

embedding of each node. Taking the embedding of all nodes as input, the module performs a

dot product operation to calculate the probability between each pair of nodes as follows:

Pi;j ¼ sigmoidðhT
i � hjÞ ¼

1

1þ expð� hT
i � hjÞ

ð4Þ

where Pi,j is the probability between the vi and vj node, and sigmoid function is used to map

the value to the range of [0, 1]. If Pi,j > 0.5, the ith and jth node are considered to be linked,

otherwise they are considered to be unlinked. Using the probability Pi,j and the edge label,

KGE-TGI model applies a cross-entropy function to calculate the loss of the link prediction

module as follows:

L1 ¼
� 1

Nn

X

i;j2V
ðP̂i;jlogðPi;jÞ þ ð1 � P̂i;jÞlogð1 � Pi;jÞ ð5Þ

where V is the set of all nodes, and P̂i;j is the label of the edge between ith node and jth node.

2.2.4 Regulation type prediction module. The link prediction module reconstructs the

heterogeneous graph by calculating the probability of existence of edges between all nodes. By

additionally introducing regulatory type information, the TF-target gene edges in the graph

are divided into 2 categories: activation and repression. Instead of taking the whole recon-

structed graph directly, the regulation type prediction module only takes the subgraph consist-

ing of edges of activation and repression as input. The module applies another MGCN to

extract features from the subgraph, and then uses a multi-layer perceptron to predict the regu-

lation type of each edge as follows:

y1
ij; y

2
ij ¼ softmaxðW2 � ðhikhjÞÞ ð6Þ

where y1
ij and y2

ij are the scores of the ith and jth node being activated and repressed respec-

tively, W2 2 R
2dembedding�2 is a trainable weight matrix, || is the concatenation operation, and

dembedding is the embedding feature size of nodes. The multi-label cross entropy loss function is

utilized to evaluate the differences between the predicted type ŷ and the ground truth type y of
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size (NTF+tg, 2) as follows:

L2 ¼
� 1

2

X

k
y½k�logðð1þ expð� ŷ½k�ÞÞ� 1

Þ þ ð1 � y½k�Þlog
expð� ŷ½k�Þ

1þ expð� ŷ½k�Þ

� �

ð7Þ

where k 2 f0; . . . ;NðTFþtgÞ � 1g is the subscript of y and ŷ, and y[k] 2 {0, 1}.

2.2.5 Gradient normalization module. We use a multi-task model to predict whether the

transcriptional regulatory relationship exists and the type of the regulatory relationship, using

the complementary information of the two tasks to improve the performance, generalization

ability and robustness of the model. However, in the training process, the different tasks of the

multi-task network need to be appropriately balanced, so as to ensure that the overall parame-

ters of the network can converge in the direction that all tasks can achieve better performance.

Different tasks of the loss function will produce different gradients, which will cause the update

of the network parameters of different tasks to be unbalanced in the back propagation process.

If the gradient produced by the loss function of one task dominates, then the network parame-

ters of this task will be more likely to converge to a better state, while the network parameters

of the other task will be more likely to be ignored.

To solve this problem, we introduce a multi-task loss balance algorithm GradNorm [22], an

effective method to adaptively adjust the balance between the two tasks. For the loss function

of the KGE-TGI model LðtÞ ¼
P
oiðtÞLiðtÞ, GradNorm aims to learn the function oiðtÞ to

dynamically adjust gradient norms, so that all tasks could be trained at similar rates. We first

describe the relevant parameters as follows:

GðiÞW ¼ kDWoiðtÞLiðtÞk2
ð8Þ

where W denotes the weight layers shared by all modules, and the formula denotes the L2

norm of the gradient using single-task loss oiðtÞLiðtÞ for W layer at training time t.

�GWðtÞ ¼ AvgðGðiÞWðtÞÞ ð9Þ

where �GWðtÞ is the average gradient norm for all tasks. For each task, GradNorm calculate var-

ious training rate as follows:

~LiðtÞ ¼
LiðtÞ

Lið0Þ
ð10Þ

riðtÞ ¼
~LiðtÞ

Avgð~LiðtÞÞ
ð11Þ

where ~LiðtÞ is the loss ratio for task i at time t, Avgð~LiðtÞÞ is the average loss ratio across all

tasks, and riðtÞ is the relative inverse training rate for task i, which is used to balance the gradi-

ents. Specifically, the higher the value of the riðtÞ, the higher the weight of task i loss should be.

Finally, GradNorm calculates Lgrad as a loss dedicated to updating oiðtÞ, which is defined as

follows:

Lgrad ¼
X

i

jGðtÞW �
�GWðtÞ � ½riðtÞ�

a
j
1 ð12Þ

where α is an hyperparameter to set the strength of adjustment. Concretely, we perform Grad-

Norm in our model follow these steps: (1) initialize all ωi(0) to 1 and initialize weights of net-

work, (2) set α to 1.5 and pick the weight layer W which are shared between tasks, (3) take

input data to perform a standard forward pass and calculate the total loss LðtÞ ¼
P
oiðtÞLiðtÞ
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at each train step, (4) compute GðiÞWðtÞ, riðtÞ 8 i and �GWðtÞ, (5) compute Lgrad and use it to com-

pute GradNorm gradient Doi
Lgrad, meanwhile keeping �GWðtÞ � ½∇iðtÞ�

a
constant, (6) update

oiðtÞ to oiðt þ 1Þ by using Doi
Lgrad, (7) update weights of whole model using DweightsLðtÞ, which

is a standard backward pass, and (8) renormalize oiðt þ 1Þ to make sure
P

ioiðt þ 1Þ ¼ Ntask

where Ntask is the number of tasks.

3 Results

3.1 Evaluation criteria

The proposed KGE-TGI model is evaluated on a multi-subgraph constructed from three data-

bases, namely, TRRUST, DisGeNET and GENEONTOLOGY. To evaluate the quantitative

performance of the KGE-TGI model, we have used two sets of evaluation criteria for the task

of regulation interaction prediction and regulation type prediction respectively. The first set of

evaluation criteria includes accuracy, precision, recall, F1-score and AUC. And the second one

includes average per-class precision (CP), recall (CR), F1-score (CF1), Hamming loss and

AUC. We defined the evaluation criteria in the following.

Acc ¼
TP þ TN

TP þ TN þ FPþ FN
ð13Þ

Pre ¼
TP

TP þ FP
ð14Þ

Recall ¼
TP

TP þ FN
ð15Þ

F1 � score ¼
2� P � R

P þ R
ð16Þ

HL ¼
1

Nclasses

XNclasses� 1

j¼0

1 ðŷj 6¼ yjÞ ð17Þ

CP ¼
1

jEallj

X

e2Eall

jyej \ jŷej

ŷe
ð18Þ

CR ¼
1

jEallj

X

e2Eall

jyej \ jŷej

ye
ð19Þ

CF1 ¼
1

jEallj

X

e2Eall

2�
ye \ ŷe

jŷej
�

ye \ ŷe

jyej

ye \ ŷe

jŷej
þ

ye \ ŷe

jyej

ð20Þ

where TP/TN and FP/FN denotes the number of positive/negative results that correctly indi-

cated and wrongly indicated, respectively. P/R represents the precision score and the recall

score, Eall represents the set of samples, ye and ŷe represents the subset of y and ŷ with sample

e. HL denotes Hamming loss, which is the fraction of the wrong labels to the total number of

labels.
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In each fold, we also computed the Receiver Operating Characteristic (ROC) curve and the

Area Under the Curve (AUC) for each task module. We first computed the corresponding

true positive rates (TPRs) and false positive rates (FPRs) for each threshold value, and then

plotted the ROC curve by plotting the TPRs versus FPRs. The AUC value was used to measure

the comprehensive performance of the KGE-TGI model. AUC = 0.5 indicates that the

KGE-TGI model is no better than random guessing and AUC = 1 indicates perfect prediction.

In this paper, We use AUC1 and AUC2 to represent the AUC values of link prediction task

and link type classification task, respectively.

In fact, it is difficult to fully verify that there is no relationship between a pair of genes in

biological experiments, so there is a lack of negative sample data to describe the gene regula-

tory network. To be able to validate the model performance, we constructed a negative sample

set of the gene regulatory network by randomly sampling from unlabeled data, the size of

which is the same as the positive sample dataset. We assume that the probability of sampling a

positive sample in the unlabeled data is very small, and we also re-sample the negative sample

data in each forward pass to further avoid sampling positive samples.

We trained our model for 300 epochs with a learning rate of 0.001 and a weight decay of

0.0001. We chose LeakyReLU function to save computational resources and avoid the gradient

vanishing problem, and the slope value for LeakyReLU was set to 0.2. The KGE-TGI model

also adopts a dropout strategy to avoid overfitting problem and sets the drop-out rate to 0.2.

The parameters of the KGE-TGI model were initialized by the Xavier initialization method

and optimized by the Adam optimizer.

We tested the performance of the proposed model using k-fold (k = 2, 5, 10) cross-valida-

tion. Specifically, all the samples are divided into k equal-sized groups, in which each group is

used as the test set in turn and the others are used as the training set. The average performance

of the model is reported in Table 2.

3.2 Effect of using different graph construction strategies

We believe that the complexity of the transcription regulatory network is not only determined

by the relationship between genes, but also affected by external factors. Therefore, we intro-

duce chemical information, disease information, GO term information as supplements to con-

struct a multi-relational attributed gene regulatory graph. We believe that the abnormal gene

transcription regulation process can lead to complex diseases. Therefore, the gene-disease rela-

tionship network contains information that can supplement the prediction of transcription

regulation relationships. In addition, GO terms, as a resource for describing genes, carry a lot

of information about genes themselves. Therefore, we constructed a transcription regulation

knowledge graph containing gene-disease relationships and GO term-TF relationships to

improve the prediction performance of the model. To explore the impact of different

Table 2. Prediction performance of KGE-TGI in K-fold cross-validation.

K AUC1 Acc Pre Recall F1

2 0.9251 0.8537 0.8727 0.8282 0.8499

5 0.9654 0.9231 0.8956 0.9579 0.9257

10 0.9724 0.9350 0.9070 0.9694 0.9371

K AUC2 HL CP CR CF1

2 0.9009 0.1439 0.8825 0.8363 0.8517

5 0.9339 0.0897 0.9413 0.8996 0.9135

10 0.9348 0.0809 0.9539 0.9114 0.9526

https://doi.org/10.1371/journal.pcbi.1011207.t002
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relationships on the model, we compared the performance of KGE-TGI model with five differ-

ent graph construction strategies, including the following: (i) only using TF-target gene pairs

data as a baseline for graph construction; (ii) adding TF co-regulate data to the baseline; (iii)

adding GO term-TF data to the baseline; (iv) adding disease-related data to the baseline; (v)

adding both GO term—TF data and disease-related data to the baseline. The experiments were

tested under 2 MGCN layers upon 5-fold cross-validation. The results were reported in Fig 4.

From Fig 4, we can see that the performance of KGE-TGI model using the base graph is the

worst, and the performance of the model using the base graph with TF co-regulate edges is

similar to it. Strategies (iii) and (iv) have proved to be helpful for improving the performance

on both link prediction task and link multilabel-classification task, which indicates that the

information of GO terms and related diseases are the useful complementary information for

revealing the mechanism of relationships among genes. The results also show that the perfor-

mance of the KGE-TGI model using strategy (v) is outstanding, which attests to the assump-

tion that the external factors do have a significant impact on the regulatory network. Base on

the results, we anticipate that the performance of the KGE-TGI model will be further improved

when more comprehensive external information is introduced in the future.

3.3 Comparison of model parameters

The parameters of the KGE-TGI model include depth of model, width of model and the con-

volution kernel used in the model. The depth of the model refers to the number of layers, and

the width of the model refers to the dimension of the embedding vector.

Fig 4. Performance comparison of KGE-TGI model using different graph construction strategies, including: (i) only using the data of TF-target gene pairs as a

baseline for graph construction; (ii) adding TF co-regulate data to the baseline; (iii) adding additional GO terms-related data to the baseline; (iv) adding additional disease-

related data to the baseline; (v) adding both disease-related data and GO terms-related data to the baseline.

https://doi.org/10.1371/journal.pcbi.1011207.g004
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3.3.1 Depth of model layer numbers. Setting embedding dimension of link prediction

module and link classification module to 256 and 32, we tested the KGE-TGI model with 1, 2

and 3 MGCN layers for 5-fold cross-validation and the results are shown in Table 3. From

Table 3, we can see that the performance of the KGE-TGI model with 2 MGCN layers is the

best with regard to both tasks on all metrics. With the increase of the number of layers, the per-

formance of the model is shown to degrade, which may be due to the gradient vanishing

problem.

3.3.2 Embedding size of KGE-TGI model. To explore the impact of the embedding

dimension on the performance of the KGE-TGI model, we set the embedding dimension of

the link prediction module to 32, 64, 128, 256 and 512 for testing. The link classification mod-

ule takes the output of the link prediction module as input, so that the embedding dimension

of the former corresponds to the embedding dimension of the latter, and was set to 4, 8, 16, 32

and 64 in the experiments. As shown in Table 4, the performance of the KGE-TGI model

improves as the embedding dimension increases from 32 to 256, and then decreases slightly as

the embedding dimension continues to increase.

3.3.3 Performance comparison of different neural network-based methodologies. We

also tested the performance of the link prediction module with different graph neural net-

works, including Graph Convolutional Networks (GCN), GraphSAGE [26], Graph Attention

Networks (GAT) [27], EdgeConv [28] and Graph Isomorphism Network (GIN) [29]. As

shown in Table 5, using GCN kernel achieves the best performance on AUC, accuracy, recall

and F1 scores, while using GraphSAGE achieves the best performance on precision. KGETGI

model improves 9% in AUC performance compared to GraphTGI model, indicating the effec-

tiveness of multi-relation knowledge graph and multi-subgraph convolution network architec-

ture. For the link multilabel classification module, we compared different type of neural

Table 3. Prediction performance of KGE-TGI model with different numbers of MGCN layers.

Layer AUC1 Acc Pre Recall F1

1 0.9274 0.8504 0.8419 0.8630 0.8521

2 0.9654 0.9231 0.8956 0.9579 0.9257

3 0.9273 0.8403 0.8932 0.7732 0.8287

Layer AUC2 HL CP CR CF1

1 0.9158 0.1261 0.8986 0.8548 0.8694

2 0.9339 0.0897 0.9413 0.8996 0.9135

3 0.9260 0.0982 0.9337 0.8873 0.9028

https://doi.org/10.1371/journal.pcbi.1011207.t003

Table 4. Prediction performance of KGE-TGI with different embedding size.

Layer AUC1 Acc Pre Recall F1

64 0.9427 0.8852 0.8432 0.9466 0.8919

128 0.9542 0.9036 0.8697 0.9496 0.9078

256 0.9654 0.9231 0.8956 0.9579 0.9257

512 0.9635 0.9163 0.9107 0.9233 0.9168

Layer AUC2 HL CP CR CF1

8 0.9181 0.1110 0.9104 0.8689 0.8827

16 0.9159 0.1092 0.9148 0.8728 0.8868

32 0.9339 0.0897 0.9413 0.8996 0.9135

64 0.9335 0.0895 0.9414 0.9001 0.9139

https://doi.org/10.1371/journal.pcbi.1011207.t004

PLOS COMPUTATIONAL BIOLOGY Graph Embedding for profiling interaction between transcription factors and target genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011207 June 20, 2023 13 / 20

https://doi.org/10.1371/journal.pcbi.1011207.t003
https://doi.org/10.1371/journal.pcbi.1011207.t004
https://doi.org/10.1371/journal.pcbi.1011207


networks, including GCN, Convolutional Neural Network (CNN) and Multilayer perceptron

(MLP). As shown in Table 6, the performance of the link classification module using GCN is

the best, which indicates that the graph structure information of regulatory network is also

useful to the link type classification task.

3.4 Prediction performance of KGE-TGI model using different datasets

To validate the effectiveness of the model on other datasets, we compared its performance on

hTFtarget [30], TFLink [31], and regNetwork [32]. As shown in the Table 7, the performance

varied across different datasets, with the worst performance on hTFtarget, possibly due to the

limited number of recorded transcription factors and relationships in the hTFtarget dataset.

3.5 Performance comparison of KGE-TGI model with other methods

To better explore the performance of our model, We compared the AUC values of the

KGE-TGI model with those of other models. We use the Non-specific ChIP-seq data corre-

sponding to TRRUST as the input of these models, and experiment with 1000+ TFs. Specifi-

cally, in order to compare KGE-TGI model with other models more fairly, we used non-

specific ChIP-seq gene expression data as the input node features for KGE-TGI model, instead

of using chemical features as node features. We directly compared the result of KGE-TGI

model with the results of other methods recorded in the paper by Guangyi Chen et al. [33], as

shown in the Fig 5.

As shown in the figure, the results demonstrate that the KGE-TGI model outperforms

other models on all datasets. We believe that the reason for the better performance of our

Table 5. Prediction performance of link prediction module with different GNN layer.

GNN AUC1 Acc Pre Recall F1

GAT 0.8289 0.7991 0.8216 0.7647 0.7921

EdgeConv 0.6244 0.5761 0.5593 0.5524 0.4937

GINConv 0.5446 0.5447 0.5430 0.6644 0.5608

GraphTGI 0.8864 0.7989 0.7996 0.7986 0.7986

GraphSAGE 0.9285 0.7764 0.9148 0.6097 0.7312

KGE-TGI 0.9654 0.9231 0.8956 0.9579 0.9257

https://doi.org/10.1371/journal.pcbi.1011207.t005

Table 6. Prediction performance of multilabel classification module with different neural layer.

Network AUC2 HL CP CR CF1

CNN 0.6270 0.3801 0.5141 0.4803 0.4916

MLP 0.6638 0.3262 0.6738 0.6323 0.6461

KGE-TGI 0.9339 0.0897 0.9413 0.8996 0.9135

https://doi.org/10.1371/journal.pcbi.1011207.t006

Table 7. Prediction performance of KGE-TGI model using different datasets in 5-fold cross validation.

dataset AUC Acc Pre Recall F1

hTFtarget 0.7626 0.6932 0.6655 0.7769 0.7169

TFLink 0.8723 0.7856 0.7940 0.7713 0.7825

regNetwork 0.9069 0.8223 0.8303 0.8103 0.8200

TRRUST 0.9654 0.9231 0.8956 0.9579 0.9257

https://doi.org/10.1371/journal.pcbi.1011207.t007
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model is that the transcriptional regulatory knowledge graph we constructed contains richer

information, which also indicates that our model’s basic assumptions are correct. By using

multi-subgraph graph convolutional operations, more useful complementary features can be

learned from different biological network information, thereby improving the predictive abil-

ity of the model.

3.6 Performance comparison of KGE-TGI model with or without

GradNorm algorithm

To verify the performance improvement of GradNorm, we compared the performance of the

model with GradNorm and the model with fixed loss weights, which is set to 1. Fig 6 shows the

ROC curves of the two modules, and the results show that the model with GradNorm achieves

better performance than the model with fixed loss weights on both tasks.

To intuitively verify the effectiveness of GradNorm, we also plot the adjusted loss curves

and the origin loss curves of the two tasks in Fig 7. As shown in the figure, the loss of the link

prediction task is reduced by GradNorm, while the loss of the link multilabel classification task

is increased, which is because the link prediction task uses more input data and has more

parameters, and thus has a dominant influence on the whole model.

3.7 Case study

In this section, we aim to assess the proposed method’s ability to predict potential target genes

for a specific type of TF in real-world scenarios. Specifically, we focus on the prediction lists

Fig 5. Summary of the GRN prediction performance in terms of AUC value. The dark squares denote performance worse than random predictors.

https://doi.org/10.1371/journal.pcbi.1011207.g005
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Fig 6. The ROC curves yielded by KGE-TGI model with or without GradNorm algorithm under 5-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1011207.g006

Fig 7. The adjusted loss curve and the origin loss curve of the two tasks.

https://doi.org/10.1371/journal.pcbi.1011207.g007
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for one particular TF to evaluate the recommendation performance. Specifically, we trained

the KGE-TGI model on the entire set of known TF-target genes from the TRRUST database as

the training dataset and restricted our analysis to the highest-ranked prediction for the specific

TF of interest.

The aryl hydrocarbon receptor (AHR) is a transcription factor that plays a critical role in

regulating the body’s response to environmental toxins and pollutants, such as dioxins, polycy-

clic aromatic hydrocarbons (PAHs), and other xenobiotic compounds. AhR is a cytosolic tran-

scription factor that is normally inactive, bound to several co-chaperones. The top 10 target

genes of the AHR are reported in Table 8. As shown in Table 8, 60% (6/10) of the predicted

interactions were confirmed in the TRRUST dataset. We further searched relevant literature

and found evidence that although the genes CRY2 and VEGFA were not recorded in TRRUST,

they have been shown to have regulatory relationships with AHR in other studies, as indicated

by the corresponding PMID numbers in the table. This further demonstrates the effectiveness

of our proposed model.

4 Discussion

Predicting transcriptional regulation interaction is still a fundamental challenge, where the

higher-order topological relationships of the entire gene regulatory network have not been

well explored. In this work, we proposed KGE-TGI, a multi-task model using multi-subgraph

convolution network for both predicting the existence and its type of transcriptional regulation

interactions. A series of experiments were carried out on a real dataset constructed from three

verified databases, including: TRRUST, DisGeNET and GENEONTOLOGY. We also used

CTD database to provide chemical information as the node feature, and made a comprehen-

sive analysis on the predicted results. The experimental results show that the KGE-TGI model

has good performance and effectiveness on both tasks.

To the best of our knowledge, KGETGI is the first model capable of predicting both new

potential transcriptional regulatory interactions and the regulatory types of those interactions

simultaneously, and achieves the best performance on the TF-target gene interaction predic-

tion task which consider the topology of the known transcription regulation network. Another

main contribution is constructing a knowledge graph of transcription regulation, which com-

prehensively depicts the pattern of the known GRN. Moreover, KGE-TGI model is the first

attempt to use a multi-subgraph convolution network architecture to extract and fuse the

global information in the knowledge graph with the unique information on each subgraph. It

has been proven that using knowledge graphs and multi-subgraph convolutional networks as

Table 8. The top ten target genes of transcription factor AHR predicted by KGE-TGI model.

Gene Score Validation PMID

VEGFA 5.7125 Unconfirmed 36347318

MYC 4.9240 Confirmed by TRRUST /

CCND1 4.6253 Confirmed by TRRUST /

RFC3 4.6149 Confirmed by TRRUST /

MT2A 4.6149 Confirmed by TRRUST /

GNAS 4.5727 Unconfirmed /

CYP1A1 3.6712 Confirmed by TRRUST /

C3 3.5834 Unconfirmed /

CYP1B1 3.1916 Confirmed by TRRUST /

CRY2 3.1217 Unconfirmed 277559298

https://doi.org/10.1371/journal.pcbi.1011207.t008
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improvements is effective, with a 9% increase in AUC on the transcriptional regulatory rela-

tionship prediction task compared to the GraphTGI model. Our future work will focus on

how to construct transcriptional regulatory network knowledge graphs more effectively and

accurately by integrating multi-omics information of genes, in order to infer transcriptional

regulatory relationships with higher precision.
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