Browse Subject Areas

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data

Fig 1

Attentional experiments.

Direction selective responses of MT cells were measured using different direction combinations of stimuli and different attentional conditions. The stimuli in the receptive field (RF) of the recorded cell were either two random dot patterns (RDP) moving in directions 120° apart and placed in spatially separated (panels A–B) or overlapping (panels C–D) apertures or just one single (unidirectional) RDP (panel E). A cue instructed the monkey to attend to either: a luminance change of the fixation point (FP), in the attend-fix condition (afix, panels A and C) and single stimulus (uni, panel E) conditions; or to changes of the direction or velocity of the cued RDP (orange) in the RF, in the attend-in conditions (ain, panels B and D). The transparent uni condition was taken to be the cue-period of the ain condition (panel D). F: Example of a “well-behaved” tuning curve from the spatially separated paradigm in the afix condition. Gray circles denote trial-averaged firing rates and error bars their standard deviation. A sum-of-two-gaussians fit is also shown (brown). The stimulus directions are aligned for each cell, so that the attended direction corresponds to the preferred direction in the uni condition at 240° (see Materials and Methods for details).

Fig 1