Browse Subject Areas

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Transfer Entropy Reconstruction and Labeling of Neuronal Connections from Simulated Calcium Imaging

Figure 1

Neuronal network dynamics.

A Top: Bright field and fluorescence images of a small region of a neuronal culture at day in vitro 12. Bright spots correspond to firing neurons. Bottom: Representative time traces of recorded fluorescence signals of 3 individual neurons. The numbers beside each trace identify the neurons on the images. Data shows, for the same neurons, the signal in recordings with only excitation active (“E”) and the signal with both excitation and inhibition active (“E+I”). B Population-averaged fluorescence signals in experiments (left) and simulations (right), illustrating the semi-quantitative matching between in vitro and in silico data. Top: excitatory-only traces (“E–only” data). For the experiments, inhibition was silenced through application of saturating concentrations of bicuculline. For the simulations, inhibitory synapses were silenced by setting their efficacy to zero. Bottom: traces for both excitation and inhibition active (“E+I” data). Network bursts appear as a fast increase of the fluorescence signal followed by a slow decay. Bursts are more frequent and display lower and more heterogeneous amplitudes in the presence of inhibitory connections. C Histogram of population-averaged fluorescence intensity for a 1 h recordings in experiments (left) and simulations (right). Data is shown in semilogarithmic scale for clarity. Red curves correspond to the “E–only” condition, and the blue curves to the “E+I” one.

Figure 1