Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro

Figure 3

RF-EMR induces ROS generation in human spermatozoa, in an SAR-dependent manner unrelated to thermal effects.

Percoll-purified spermatozoa (5×106 cells) were suspended in 1 ml BWW in a 35 mm Petri dish and placed within the waveguide while control cells placed outside the waveguide (closed circles). Cells in the waveguide were exposed to 1.8 GHz RF-EMR at SAR levels between 0.4 and 27.5 W/kg (open circles) for 16 h at 21°C. Also, purified sperm cells were subjected to incubation temperatures ranging from 21°C–50°C for 2 h. As the power levels were increased, the cellular generation of ROS increased in a dose-dependent manner. ROS levels were also observed to increase as a result of incubation temperature, but such results were not significant until the temperature exceeded 40°C. A, ROS generation (DHE response) was significantly increased from control levels after exposure to 1.0 W/kg (*p<0.05) and above (***p<0.001). B, RF-EMR induces ROS generation by the sperm mitochondria as monitored by MSR; significant increases were observed at SAR values of 2.8 W/kg (***p<0.001) and above. All results are based on 4 independent samples. C, In order to control for thermal effects, the impact of temperature of cellular ROS generation was monitored; a significant increase in ROS generation was observed as temperatures rose above 40°C (p<0.001). D, Across the entire data set, the total level of ROS generation by human spermatozoa (DHE positive cells) was highly correlated with the level of ROS generation by the mitochondria (MSR positive cells: R2 = 0.823).

Figure 3

doi: https://doi.org/10.1371/journal.pone.0006446.g003