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Abstract

An understanding of species-environmental relationships is invaluable for effective conser-

vation and management under anthropogenic climate change, especially for biodiversity

hotspots such as riparian habitats. Species distribution models (SDMs) assess present spe-

cies-environmental relationships which can project potential suitable environments through

space and time. An understanding of environmental factors associated with distributions

can guide conservation management strategies under a changing climate. We generated

260 ensemble SDMs for five species of Thamnophis gartersnakes (n = 347)—an important

riparian predator guild—in a semiarid and biogeographically diverse region under impact

from climate change (Arizona, United States). We modeled present species-environmental

relationships and projected changes to suitable environment under 12 future climate scenar-

ios per species, including the most and least optimistic greenhouse gas emission pathways,

through 2100. We found that Thamnophis likely advanced northward since the turn of the

20th century and overwinter temperature and seasonal precipitation best explained present

distributions. Future ranges of suitable environment for Thamnophis are projected to

decrease by ca. -37.1% on average. We found that species already threatened with extinc-

tion or those with warm trailing-edge populations likely face the greatest loss of suitable

environment, including near or complete loss of suitable environment. Future climate sce-

narios suggest an upward advance of suitable environment around montane areas for some

low to mid-elevation species, which may create pressures to ascend. The most suitable

environmental areas projected here can be used to identify potential safe zones to prioritize

conservation refuges, including applicable critical habitat designations. By bounding the cli-

mate pathway extremes to, we reduce SDM uncertainties and provide valuable information

to help conservation practitioners mitigate climate-induced threats to species. Implementing

informed conservation actions is paramount for sustaining biodiversity in important aridland

riparian systems as the climate warms and dries.
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Introduction

An understanding of species-environmental relationships can help to predict potential out-

comes under shifting future scenarios [1–3], which is invaluable for conserving biodiversity

during anthropogenic climate change [4,5]. Globally, climatic increases in aridity and temper-

ature will likely place added pressure on water availability and demand [6]. Aridland ecosys-

tems, such as the southwestern United States, are predicted to become warmer and drier [7–

10]. Such changes can affect ecosystems through increased frequencies of major disturbances

and extreme climatic events [11], especially in biodiverse riparian zones [12–14]. Slower, grad-

ual changes to habitats are also occurring [15–17]. Environmental changes can adversely affect

biota [18–25], and species must either adapt to changes in place, disperse to areas with favor-

able environment, or go extinct [4,26,27]. How and where species respond to challenges are of

key importance for the maintenance of biodiversity [28–33].

Analyzing and predicting species distributions based on environmental gradients is

required to decipher patterns in ecological niches [34–36]. Species distribution models (SDMs;

syn. climate envelope models, ecological/environmental niche models, habitat suitability mod-

els; [37]) assess the concurrent relationships between species occurrence and environmental

conditions (i.e., realized niche), which can then be modeled to infer and project (i.e., forecast)

potential suitable environments through space and time [3,38,39]. Numerous tools, steps, and

pathways exist to facilitate SDMs for a given set of parameters and objectives [40–42], and

novel technological advances enable conservation practitioners to develop customized applica-

tions that can be evaluated across multiple scenarios [43–47]. Such resources are essential to

guide effective conservation planning in light of climate change and extinction risks faced by

vulnerable species [41,48,49].

Gartersnakes (Thamnophis spp.) are distributed throughout the Americas, usually have life

histories connected to surface water, and are often considered riparian-dependent [50]. Tham-
nophis comprise an intermediate predatory guild of generalists and specialists and are impor-

tant in energy transfer between aquatic and terrestrial habitats that help uphold ecosystem

integrity [51,52]. Some Thamnophis are also sensitive to disturbances and changes to habitat

and environment [53–57]. Given their trophic position, environmental sensitivity, and occu-

pancy of important areas of biodiversity (e.g., riparian zones), Thamnophis make ideal model

species to assess bioclimatic influences on contemporary distributions and project how climate

change patterns may impact future distributions. Less is known about the environmental influ-

ences on Thamnophis in aridland regions.

Herein, we were interested in how contemporary and future climatic trends may impact

environmentally sensitive aridland riparian species in a warming and drying climate (Arizona,

United States). We used Thamnophis as a model system to address the following objectives: 1)

examine spatial distributions and patterns in recent historical and contemporary occurrences;

2) assess explanatory relationships of bioclimatic variables on present distributions via ensem-

ble species distribution models; and 3) use forecasting SDMs to project spatiotemporal

changes of suitable environmental range under multiple future climate scenarios. Given the

contemporary trends and likelihood of increased heat and drought in the southwestern U.S.

region, we hypothesized reductions in range of suitable environmental for Thamnophis across

time. We also expected to see reflections of upward advancement—in both elevation and lati-

tude—as observed with numerous species impacted by climate change [58–61]. Coupled with

ongoing challenges faced by Thamnophis in aridland climates [53,54,56,62], contraction of

suitable environment will likely exacerbate risks to population demographics [63]. Our SDM

assessments can help guide multi-species conservation management decisions, especially for

taxa already under threat of extinction. More broadly, Thamnophis are important indicator
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species and their relationships and responses to environmental change can serve as an early

warning system for how other aridland riparian-linked species with similar life histories may

respond to climate change.

Materials and methods

Study area and system

In the southwestern United States, the semiarid state of Arizona is biogeographically diverse

and experiences a wide range of seasonally variable climatic gradients, including seasonally

bimodal precipitation patterns with periods of drought fluctuated between rainy winters and

summers [64–66]. Increases in aridity and temperature are predicted for the region, with less

frequent but more intense precipitation trends likely to further strain natural resources

[7,10,67–69]. These characteristics make Arizona an ideal study area to model present and

future impacts of environmental change on representative taxa. Assessment at the state extent

may also facilitate collaboration and extrapolation of conservation management applications

among both localized and broader regional levels.

Five species of Thamnophis occur in Arizona; three are considered common (T. cyrtopsis =

black-necked gartersnake; T. elegans = terrestrial gartersnake; and T. marcianus = checkered

gartersnake) and two rare species that have threatened status at state and federal levels (T.

eques = Mexican gartersnake; T. rufipunctatus = narrow-headed gartersnake; [56,62,63]).

Their primarily allopatric distributions range from low desert drainage networks to subalpine

conifer forest biomes, though some interspecific syntopy occurs [50,56,70]. Comprehensive

life and natural history summaries of Thamnophis in Arizona is covered elsewhere [56].

Occurrence data and historical spatial trends

We obtained georeferenced occurrence data for Thamnophis in Arizona from museum records

(e.g., Vertnet), the global biodiversity information facility (GBIF, [71]), iNaturalist, field proj-

ects, and technical reports; records spanned from the 1800s through 2021. We manually

inspected records with geocoordinate uncertainty�0.5 km—a conservative proxy of home

range size for the focal taxa (ca.�10 ha [50,56,70])—and retained records where metadata

descriptions were sufficiently detailed to confirm localities. Otherwise, we omitted imprecise

records (>0.5 km) with vague descriptions, those with obscured/private locality masks, and

source cross-duplicates. We also omitted highly suspect localities (see [56]).

To estimate Thamnophis range shifts in recent history, we first partitioned the occurrences

dataset into three time periods. Records prior to 1940 reflect the pioneering days of herpetologi-

cal exploration [72], 1940–1979 characterize increased efforts to supply herpetological collec-

tions [73], and 1980–2021 represent contemporary (“present”) records (Table 1). We mapped

occurrences and used the Directional Distribution tool in ArcMap v.10.8 (ESRI, Redlands, CA)

to estimate the central tendency, dispersion, and rotational trends per historical period, then

calculated distance and directional change among mean centers per period. We also estimated

the relative percent change in standard deviational ellipse area, i.e., expansion or contraction in

occurrence sampling patterns, by dividing the standard distance ellipse area (X × Y) among

time periods. We combined all Thamnophis species for historical tests to increase sample size

and infer broad spatial change patterns reflected by congenerics in the same region.

Environmental data and global climate models

To assess present-time environmental influences on Thamnophis distributions, we obtained

elevation and (19) bioclimatic predictor variables at 0.50 (~1 km2) spatial resolution from the
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WorldClim Version 2 dataset [74]. We focused on bioclimatic variables and elevation—which

is climatically linked [64]—for their explanatory power in SDM predictions and likelihood to

drive changes to species distributions [38,75]. We used ArcMap to crop predictors to the spa-

tial extent of the Arizona state boundary.

For future projections, we obtained the same bioclimatic variables from WorldClim v.2 that

have been projected and downscaled from the Coupled Model Intercomparison Project 6th

assessment (CMIP6) data [6]. We selected bioclimatic data from the following three global cli-

mate models (GCMs): HadGEM3-GC31-LL (“HAD”), MPI-ESM1-2-LR (“MPI”), and

MRI-ESM2-0 (“MRI”); these GCMs have performed well for SDMs in North America, includ-

ing representation of the North American Monsoon that drives summer climate in our study

region [75–79]. For each GCM, we assessed two shared socio-economic pathways (SSPs): low

reflected various emission projections (SSP126, i.e., progressive action towards sustainable

development to limit ca. +1.8˚C by 2100) and high emission projections (SSP585, ca. +4.4˚C

by 2100, i.e., status quo trajectory of continued societal and energy practices; [6]). These SSPs

reflected the most optimistic and pessimistic pathways, respectively [80], and have been used

in SDMs of southwestern herpetofauna [75,79]. For each SSP per GCM, we assessed two future

time periods: near-future 2041–2060 (hereafter “2050”, i.e., median year) and distant future

2081–2100 (hereafter “2090”). By assessing twelve various combinations of GCMs × SSPs ×
time periods (hereafter “scenarios”), including best-case/worst-case pathways, we better repre-

sent uncertainties in projections that should outweigh loss of precision generated from a single

model scenario [79,81].

Species distribution modeling and evaluation

We used the R package biomod2 version 4.2–2 [43,82] to generate SDMs separately per spe-

cies. We built “present” scenario SDMs with only 1980–2021 records to avoid erroneously

assessing since-altered habitat or local extirpations (see [56]). We used the spThin package

[83] to delimit occurrences to 1/km2 separately for each species (Table 1; [84]); this scale corre-

sponded to the environmental layers. We created 1,000 randomly distributed pseudo-

absences, i.e., background points representing available environment [85,86], per modeling

run. Thickening the number of background points greater than presence points has performed

well in SDMs [87], especially when taxa have limited sample size [88].

We ran preliminary modeling procedures (see below) for each species separately with all

bioclimatic predictors except those comprising precipitation-temperature interactions which

are problematic with discontinuities [89], especially in regions with bimodal precipitation pat-

terns like Arizona. We further reduced the number of predictors in three ways based on

Table 1. Georeferenced occurrences for the five Thamnophis gartersnake species recorded in Arizona through 31

December 2021. Data sources include museum and biodiversity repositories, iNaturalist, agency reports, and field

projects. Data was manually inspected for duplicates, erroneous records, and location accuracy (�0.5 km).

Gartersnake Species in Arizona Pre-1940 1940–1979 1980–2019‡

Thamnophis cyrtopsis–black-necked gartersnakes 17 54 180 (127)

Thamnophis elegans–terrestrial gartersnake 13 37 170 (114)

Thamnophis eques–Mexican gartersnakeT 5 11 26 (20)

Thamnophis marcianus–checkered gartersnake 3 37 83 (58)

Thamnophis rufipunctatus–narrow-headed gartersnakeT 2 21 476 (28)

‡Numbers in parentheses indicate occurrence thinning to 1 per km2; T = “threatened” status at Arizona and Federal

levels.

https://doi.org/10.1371/journal.pone.0302981.t001
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collinearity (omittance |r|> 0.7; [90]), ranked variable importance scores from biomod2 to

break ties among correlated pairs [91], and a priori knowledge from the literature and exper-

tise of the focal system [92]. This process yielded elevation and three predictors each for tem-

perature and precipitation factors for downstream analyses.

We used an ensemble SDM approach [44] that included generalized additive models

(GAM), generalized boosted models (GBM, i.e., boosted regression trees), and random forest

(RF) algorithms [43,82]. We chose these algorithms based upon repeated high performance in

modeling trials among available algorithms in biomod2. For GAMs, we used restricted maxi-

mum likelihood penalty without interaction via package mgcv [93] to minimize overfitting

[79]; 1,000 trees for RF; and default settings for GBM. Throughout, we ran three repetitions

each for pseudo-absence permutations, single and ensemble model calibration/validations,

and variable importance estimations. We split datasets for training (80%) and testing (20%)

per run and evaluated models via relative operating characteristic (ROC) and true skill statistic

(TSS) metrics [82,94]. We built ensembles from single algorithm models performing >70%

percentile TSS threshold via committee averaging (ca) and proportionally-weighted means

(wmean) ensemble algorithms [82]; we again used ROC and TSS to evaluate resulting

ensembles.

For future projections, we used the BIOMOD_EnsembleForecasting function in biomod2

to project ensemble models onto new environments per each GCM × SSP × future time sce-

nario. The calculated output was used to visualize distributions of suitable environment in

ArcMap as well as predict changes in range size between present and each future scenario. We

used Kruskal-Wallis tests to assess model evaluation scores between ensemble algorithms,

GCMs, and metrics, respectively. Throughout, we performed all analyses in ArcMap or pro-

gram R v.4.1.1 [95].

Results

Historical shifts

After data refinement, we retained n = 955 Thamnophis occurrences for historical analyses

(Table 1). Discernable temporal trends across historical records exist for Thamnophis. Patterns

in central tendency reveal a northwestern progression that has become more directional rela-

tive the central highlands—a diverse ecotone between desert ecoregions—and the Mogollon

Rim, i.e., the southern extent of the Colorado Plateau (S1 Fig; [64,96]). Mean centers have

shifted northwesterly (285.9˚) by approximately 5.4 km between pre-1940 to the 1940–1979

periods, and 68.1 km (333.5˚ NW) to the 1980–present distribution. The area of concentration

has contracted across time. Standard ellipse areas reduced by 42.2% between pre-1940 and

1940–1979 periods and another 18.9% from the 1940–1979 period to present. That is, occur-

rence sampling has become more spatially concentrated.

Environmental drivers of Thamnophis distribution. After spatially thinning contempo-

rary occurrences to 1/km2, n = 347 Thamnophis records remained available for present-time

SDM analyses (Fig 1, Table 1). From those data, we created 20 ensemble models to derive envi-

ronmental suitability. We detected no differences among ensemble algorithm scores (ca vs

wmean) for model sensitivity (H = 3.2, df = 1, p = 0.075), specificity (H = 1.1, df = 1,

p = 0.289), and calibration (H = 0.5, df = 1, p = 0.471; S1 Table). Likewise, evaluation metrics

(ROC vs TSS) were equivalent in sensitivity (H = 0.0, df = 1, p = 1.000) and specificity

(H = 0.1, df = 1, p = 0.910); ROC trended to have higher calibration scores although both met-

rics scored>0.95 on average (H = 3.7, df = 1, p = 0.053; S1 Table). In summary, all ensemble

models yielded satisfactory performance scores.
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Fig 1. Distribution of Thamnophis gartersnake occurrences in Arizona, 1980–2021.

https://doi.org/10.1371/journal.pone.0302981.g001
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Predictor variable importance was equivalent by species (H = 4.6, df = 4, p = 0.334; Fig 2).

The most influential predictors overall, however, were mean temperature of coldest quarter

(i.e., overwinter dormancy period; Bio11), precipitation during wettest quarter (i.e., summer

monsoonal period; Bio16), and precipitation seasonality (Bio15; Table 2). Elevation and maxi-

mum temperature of warmest month (Bio5) were the least influential overall, albeit the latter

was important to T. elegans. However, importance among all predictors were equivalent

(H = 5.1, df = 6, p = 0.528).

Precipitation variables were most important for T. eques, T. marcianus, and T. rufipunctatus
whereas temperature-linked predictors best explained T. cyrtopsis and T. elegans distributions.

Individually, T. cyrtopsis were most influenced by temperature seasonality, precipitation of

wettest quarter, and precipitation seasonality (Bio4,16,15; mean ± standard deviation (SD) var-

iable importance = 0.162 ±0.082); these related to environmental seasonality and summer pre-

cipitation. Thamnophis elegans distribution were best predicted by temperature seasonality,

max temperature of warmest month, and mean temperature of coldest quarter (Bio4–5,11;

mean ±SD variable importance = 0.243 ±0.136). Thamnophis eques were best predicted by pre-

cipitation of driest quarter, precipitation seasonality, and mean temperature of coldest quarter

(Bio17,15,11; mean ±SD variable importance = 0.326 ±0.157); these relate to mean overwinter

Fig 2. Predictor importance in species distribution models of environmental suitability for Thamnophis gartersnakes in Arizona, 1980–2021. Variable

importance scores range between 0 and 1 per species; column height reflects cumulative influence across species. Bioclimatic predictors are described in

Table 2.

https://doi.org/10.1371/journal.pone.0302981.g002
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temperature and precipitation during the active season. Thamnophis marcianus were influ-

enced by precipitation seasonality, precipitation of wettest quarter, and mean temperature of

coldest quarter (Bio15–16,11; mean ±SD variable importance = 0.234 ±0.170); these relate to

seasonal precipitation, especially during the summer monsoon as well as mean overwinter

temperature. Thamnophis rufipunctatus were most influenced by precipitation of wettest quar-

ter, mean temperature of coldest quarter, and precipitation of driest quarter (Bio16.11.17;

mean ±SD variable importance = 0.318 ±0.219); these relate to mean overwinter temperature

and precipitation throughout the active season.

Future projections of environmental range. We generated another 240 ensemble models

encompassing all future projection scenarios (S2 Fig). Both ensemble algorithms (ca and

wmean) were congruent in projected range sizes (e.g., gains, losses, unchanged stable, and

unsuitable area) except for present range size (H = 11.7, df = 1, p< 0.001); this likely reflects

differing per pixel area of unsuitable environment (H = 4.3, df = 1, p = 0.038). That is, the

majority of the area in the present sampling extent (Arizona) are absent of occurrences and

thus considered unsuitable. More importantly, algorithms were not different in predicted

gains and losses (all p> 0.05). Global climate models were consistent in range projections (all

p> 0.05) except percent gain (H = 9.0, df = 2, p = 0.011), though we note a related trend in

per-pixel gain (H = 5.0, df = 2, p = 0.082). For SSPs by period scenarios, there were many simi-

larities in range changes (0.182� p� 1.0) except for percent loss (H = 11.0, df = 3, p = 0.012)

and percent species range change (H = 7.8, df = 3, p = 0.049; S1 Dataset). Overall, GCMs were

comparable; HAD exhibited the greatest variation in percent range change per period scenario

whereas MRI appeared to be most consistent (S2 Fig). We used MRI output in map projection

graphics.

Because wmean and ca algorithms yielded equivalent results but weighted mean ensembles

are most often used due to their performance [44], we use wmean hereafter to summarize our

findings related to changes in projected environmental suitability (S3 Fig), percent range

change (Fig 3), and types of range change by area (Fig 4). All species are predicted to have net

reductions in suitable environmental range (mean ± standard error (SE) = -37.1 ±15.5%),

though T. marcianus is predicted to gain suitable environment (mean = +28.1 ±SE 25.0%;

Fig 3). The two species occurring at higher elevations are predicted to lose considerable suit-

able environment among all SSP scenarios (T. elegans mean = -84.5 ±SE 2.8%; T. rufipunctatus
mean = -84.5 ±SE 7.0%; Fig 3). Thamnophis eques is also likely to experience net losses of suit-

able environment under all SSP scenarios (mean = -34.9 ±SE 16.2%), except into 2090 under

SSP126 (mean = +15.0 ±SE 11.5%; Fig 3). Although there was a net negative range change for

T. cyrtopsis (mean = -10.3 ±SE 26.6%; Fig 3), GCMs for this species exhibited the most

Table 2. Environmental variables used in ensemble species distribution modeling for Thamnophis gartersnakes in

Arizona, 1980–2021. Mean rank is the mean variable importance score rank (out of 7) among five species, Thamno-
phis cyrtopsis, T. elegans, T. eques, T. marcianus, T. rufipunctatus; lower mean rank scores equal greater importance.

Variablea Description Mean rank

Bio4 temperature seasonality (SD × 100) 5

Bio5 max temperature of warmest month 5.2

Bio11 mean temperature of coldest quarter 2.6

Bio15 precipitation seasonality (coefficient of variation) 3.6

Bio16 precipitation of wettest quarter 3

Bio17 precipitation of driest quarter 4

Elev elevation (meters above sea level) 4.6

aSource: WorldClim v. 2 database, bioclimatic variables [74].

https://doi.org/10.1371/journal.pone.0302981.t002
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variation, including estimated positive (HAD) and negative (HAD, MPI, MRI) range changes.

Taken together, these projections mostly support our prediction of future declines in suitable

environment. Variation exhibited by species and scenario are tabulated in S1 Dataset.

Spatially, favorable and unfavorable area projections were evident under future scenarios,

i.e., suitable environment predicted to be lost, retained, or gained (S1 Dataset, Fig 4). The rela-

tively warmer and drier southern part of Arizona appears likely become environmentally unfa-

vorable across time, although this phenomena may be topographically dampened by disjunct,

insular mountains—the Madrean Sky Islands [97]. Predicted environmental stability or gains

appear linked by elevation, in which lower, montane foothill areas around the Sky Island

region reflect losses and areas ascending into higher elevations are more likely to remain stable

(Figs 4 and S3). Gains also appear to increase latitudinally, such as around the transition zones

of the central highlands and Mogollon Rim region (Figs 4 and S3).

Predicted declines in suitable range were mostly congruent among GCMs for both threat-

ened species. Projections that follow the most optimistic emissions pathway (SSP126) appear

less unfavorable to T. eques (-14.7 ±SE 10.7%) than under the SSP585 status quo pathway

(-54.0 ±SE 21.7%; Fig 3, S1 Dataset). More southerly populations may be most affected, with

large swaths anticipated to become environmentally unsuitable (Fig 4I–4L). Northern popula-

tions of T. eques, however, may retain or even gain suitable environment under progressive cli-

mate actions (SSP126; Figs 4I–4L and S3K–S3O). Thamnophis rufipunctatus likely faces even

greater climatic challenges across time. Areas of suitable environment are predicted to become

Fig 3. Estimated future changes in suitable environmental range for Thamnophis gartersnakes in Arizona. Data are derived from the means of weighted-

mean ensemble models of three global climate models (GCM), two shared socio-economic pathways (SSP), and two future time period scenarios per species.

Bar plots depict mean change plus standard error among GCMs from baseline (0, i.e., present distributional range, 1980–2021). Positive values reflect net

increases whereas negative values estimate net reductions.

https://doi.org/10.1371/journal.pone.0302981.g003
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Fig 4. a–t. Projected change in range sizes for Thamnophis gartersnakes in Arizona. Data are modeled from weighted-means ensemble

models generated from the MRI-ESM2-0 global climate model. Data columns represent near future 2050 (i.e., 2041–2060 median) and

distant future 2090 (i.e., 2081–2100 median) projections under shared socio-economic pathways (SSPs) that represent most optimistic

(SSP126) and pessimistic (SSP585, i.e., status quo) emissions-limiting models. Individual map panels for species (a–t) are shown in S4 Fig.

https://doi.org/10.1371/journal.pone.0302981.g004
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highly reduced and localized (Figs 4Q–4T and S3U–S3Y); only an average of 47.3 pixels (i.e.,

approx. 47 km2 area) of suitable environment is projected to be gained (S1 Dataset). By the late

21st century, all GCMs predicted a complete loss (-100%) of suitable environment for T. rufi-
punctatus under the nonaction SSP585 pathway, whereas prompt, sustainable emissions

reductions may still yield substantial reductions (mean = -74.3 ±SE 11.5%).

Discussion

Through ensemble species distribution modeling, we provide likelihoods of influential envi-

ronmental predictors on Thamnophis gartersnakes—a model system guild important for

energy transfer between aquatic and terrestrial ecosystems. We also projected changes to suit-

able environmental ranges under various climate change scenarios. Our results show that

Thamnophis in semiarid regions such as Arizona have shifted northerly across time, various

combinations of precipitation and/or temperature factors drive present distributions, and the

range of suitable environment are predicted to change—mostly reductions—in the future.

Here, we convey a breadth of potential environmental niches available to aridland riparian

Thamnophis and similar taxa across space and time through the 21st century.

Modeling considerations and estimating distributional trends

Species distribution models can provide valuable information to researchers, natural resource

managers, and decision makers. Careful methodological approaches are important during

SDM development stages [98]. For example, we addressed important criteria related to spatial

extent considerations [39], ecologically relevant occurrence thinning [83] and pseudo absence

parametrization [86,88], predictor selection [39,90,98,99], training and testing data partition-

ing and calibration [94], and ensemble modeling and evaluation [44,81]. Part of our predictor

selection process included using a priori information from expertise and relevant literature

[92]. Several predictors identified herein, e.g., maximum summer and minimum winter tem-

perature, have worked well for SDMs of snakes in similar latitudes or regions, including conge-

nerics and conspecifics [53,100–104]. Overall, our high performance evaluation scores suggest

that our selected variables and ensemble modeling process adequately reflect aridland Tham-
nophis-environmental relationships.

All projected SDMs contain a certain degree of uncertainty and variation in predictions

[80,99]. Predicting suitable niche space under future projections may be best achieved by eval-

uating varying climate-model scenarios, i.e., GCM × SSP × time frames [81,99]. By evaluating

multiple scenarios that bound climate change pathway extremes, such as the least and most

optimistic SSPs, we reduced the likelihood of uncertainties missed by single scenario models

[75,79]. Providing central tendencies and dispersion among a range of outcomes should help

guide decision making of conservation practitioners.

Extrapolating SDMs (i.e., transferability) to novel spatial and temporal environments offers

additional opportunities to modelers [105,106], albeit caution and deliberation should be exer-

cised when transferring models to new areas [42]. Modeling methods are often focused to orig-

inal sampling parameters, different species and their traits may require different approaches,

and new areas may not spatially or temporally exhibit the same attributes and conditions of

the originally assessed space [105,107–109]. We summarize the relative spatial extrapolation

potential of our Thamnophis SDMs as follows: our models and results are likely to be most

transferable where focal taxa have contiguous or proximal neighboring populations (e.g., Cali-

fornia, Utah, New Mexico, and Sonora Mexico in this study). The limited distribution of T.

rufipunctatus, for example, extends into west-central New Mexico, where occupied habitat

resembles those in Arizona [110]. We expect that the design and explanatory power of our
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Arizona-based models would perform comparably among the New Mexican range of T. rufi-
punctatus. Conversely, T. elegans is a widely distributed species that ranges into southwestern

Canadian latitudes, where habitats and bioclimatic patterns undoubtedly vary from those in

Arizona [50,103,111]. Our T. elegans models thus may have better transferability to neighbor-

ing Utah populations than to those in Alberta. We recommend model flexibility and calibra-

tion as geographic × environmental distances increase and thus the potential influence of

predictors can also change. Additionally, “stacking” SDMs—overlaying SDMs of multiple taxa

to determine concurrent suitable areas [112]—should be considered carefully when differences

in distribution and niche occur, such as with Thamnophis in Arizona [56]. Rather, best prac-

tices to maximize conservation potential may be to focus on syntopic areas of mutually stable

suitable environment under current and future projections [113], especially areas with favor-

able microclimates better buffered against environmental stochasticity [114].

Projected changes among future scenarios

Much of the semiarid southwestern United States are trending towards hotter and drier condi-

tions [7]. Precipitation events are likely to become more sporadic yet extreme [67,68]. Even

under optimistic emission pathways, the southwestern region is likely to face unprecedented

drought towards the 22nd century [10]. Primary productivity of functional plant groups will likely

be affected [9,69,107], with subsequent cascading effects across trophic dynamics [8,33]. In arid-

land systems, much biodiversity is concentrated around perennially or seasonally available surface

water, such as riparian zones [115,116]. Anthropogenic expansion and water resource demands

are predicted to rise across time [5], which will further exacerbate water availability [117,118].

Alteration or depletion of aquatic networks can drastically and negatively change riparian habitat

and stress biota that rely upon it [16,106,119], including Thamnophis [101].

Our findings that Thamnophis in Arizona appeared to shift northerly in latitude in recent

history lends support to our first hypothesis. We found that contemporary distributions of

Thamnophis are best explained by overwinter temperature, summer precipitation, and precipi-

tation seasonality. Because the species in our study area have varying distributions, niches, and

status [56], we break down prospective summaries for each taxon under future climate scenar-

ios. We find it interesting that T. maricianus is predicted to gain suitable environment,

whereas all other congenerics face reduced suitability. In our study area, T. marcianus is the

only species that is common, a dietary generalist, and predominantly occupies various riparian

wetland and riverine systems at lower elevations (e.g., desertscrub and arid grasslands) [120].

The other four species are either rare or usually associated with habitats above desert valley

floors. Our T. maricianus models identified a lesser degree of sensitivity to both dry season

precipitation (e.g., late spring to early summer prior to monsoonal rains) and overwinter tem-

perature. Overwinter temperature was strongly associated with taxa facing the greatest pre-

dicted losses of suitable environment, especially at higher elevations. Precipitation seasonality

was strongly influential for T. marcianus, suggesting plasticity for temporal variability in rain-

fall. Although we did not assess intrinsic traits, our findings corroborate the adaptive variation

in this species [121,122]. Given their adaptive potential, current population trends [56], and

future projections (here), T. marcianus may be more flexible to changing conditions than its

aridland congenerics.

Precipitation during the driest season was among the most important factors for both

threatened species (T. eques and T. rufipunctatus) but not for other congenerics. Overwinter

temperature was also notably important. Seasonal relationships are not surprising given that

T. eques is known to shift behaviors between active and inactive seasons [123], and often occu-

pies aquatic drainages with flow regimes regulated by precipitation pulses [124]; and some T.
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rufipunctatus life history phenology (e.g., parturition timing) are linked to monsoonal precipi-

tation and subsequent changes to aquatic habitat [50,125]. Other SDM studies for T. eques pro-

jected greater sensitivity to environmental extremes and, in support of our findings, that

overwinter temperature is an important predictor [53,101]. Giermakowski and others [101]

also found summer precipitation to be important for both threatened gartersnakes and, in

addition, maximum summer temperature for T. eques. Our ensemble modeling differs from

that study in that we found temperature to be more important in winter than summer for both

rare gartersnakes. All studies, however, estimated substantial declines in suitable areas, 7–62%

for T. eques and 32–62% reductions for T. rufipunctatus by the end of the century. Further

fluctuation in the timing, intensity, and duration of seasonal environmental patterns are likely

to adversely affect populations of these snakes.

Climatic shifts towards warmer summers and winters may negatively affect T. elegans the

most. The top explanatory variables for this high-elevation generalist were all temperature related.

Substantial projected reductions in suitable environment from our SDMs are comparable to con-

generic T. scalaris, another common, high-elevation species in Mexico [53]. More broadly, the

predictions for T. elegans align with findings occurring at a global scale in which range contrac-

tions and local extinctions often arise at the “warm edge” of a species range [58]; Arizona largely

represents the warmer, southern extent of the widely distributed T. elegans [50,110,111].

Thamnophis cyrtopsis—a dietary generalist often occupying sloped, rocky riparian habitats

[50,57,126,127]—presented the most variability in projected range change, resulting in either

estimated expansion or contraction pending the future scenario. Seasonality of predictors most

influenced distribution for this species (Fig 2, Table 2). These results somewhat contrast to pop-

ulations along central Mexico’s Trans-Mexican Volcanic Belt, where T. cyrtopsis was found to

be more sensitive to the extremes, including minimum winter temperature and warmest sum-

mer temperature [53]. All, however, predict a decline in suitability with increasing temperature.

Here, projected trends for T. cyrtopsis appear topographically linked with suitability favoring an

upward ascent (see S3 Fig). This suggests that habitats in ascending altitudes (e.g., Madrean

evergreen woodlands) may offer the most optimal refugia in the future, especially areas more

buffered against extreme climatic shifts, and that lower foothill populations likely face greater

risks. Given a sensitivity to seasonal environmental relationships [this study] and extreme dis-

turbances [57], selective forces may pressure this taxon to ascend upward in elevation similar to

other montane taxa [59,60,128–130]. There is only so far a taxon can advance, however, espe-

cially when reliant on riparian networks and available surface water [57].

Future directions

In semiarid regions such as the southwestern United States, significant shifts in upward move-

ment and phenology of flora have already occurred [129,130]. For representative species that

link terrestrial and aquatic habitats like Thamnophis, climatic stressors and challenges are

likely to add pressure for adaptation. Common generalists like T. cyrtopsis and T. marcianus
may be better able to adjust to shifting and reestablished aquatic regimes (e.g., effluent-

recharged Santa Cruz River; [131]) or disperse to more favorable environments in the long

run. In the short term, however, extreme disturbances and rapid environmental changes can

still yield swift, adverse consequences even for generalist taxa [57,127]. As climates and envi-

ronments change, surveillance of demographic trends and responses to stimuli by common

species are worth monitoring by natural resource managers tasked with anticipating and miti-

gating threats to biodiversity [5,54,132,133].

Modeling for rare taxa is understandably challenging. Species with narrow ranges may face

greater risks if changes result in fragmentation or elimination of favorable environment
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[79,84,106,134]. High-elevation, cold-tolerant Thamnophis are more vulnerable to rising tem-

perature [53]. Increased temperature is likely to adversely affect T. rufipunctatus—a specialist

endemic to cold, clear-water riparian zones in the Gila River Watershed in Arizona and New

Mexico [110]. Both threatened T. eques and T. rufipunctatus have had considerable population

reductions since the late 20th century, with declines attributed to habitat loss or degradation,

effects from invasive species, wildfire and other disturbances [62,110,124,135]. Our projections

of substantial reduction in suitable environment across all future scenarios are concerning and

may compound stressors already faced by populations. Further detriment to small populations

heightens the risks related to demographic stochasticity—including but not limited to effects

from genetic drift, inbreeding, and reduced heterozygosity [53,54,63].

A conservation-driven application of SDMs is to identify areas predicted to remain or

become “climate refugia” [136], i.e., suitable safe places across time. Locating high-likelihood

areas of environmental suitability under future change is vital for sensitive taxa with limited

distribution. Existing management areas with umbrella-species coverage [137] or Critical Hab-

itat designations, for example, can be compared for overlap with SDM output. Our findings

suggest that for T. eques, refugia may persist around their northerly, central-Arizona popula-

tions [124,138] whereas populations near the U.S. border with Mexico may face more disad-

vantageous climatic challenges. This could further restrict connectivity potential with

populations in Mexico [53,63]. For T. rufipunctatus, areas projected to sustain suitable envi-

ronment are likely to become highly confined, and the most optimal areas may be in central

Arizona (e.g., Verde River Watershed) and extreme eastern Arizona (e.g., Upper Gila River

Watershed; [110,139]). Managing connectivity of the latter with populations in western New

Mexico (see [63]) may be imperative to mitigate heightened extinction risks for a taxon that

has little to nowhere to go. Applying other conservation actions, such as genetic rescue via

translocations of ex situ or in situ stock [140] could help stave off existing burdens of already

threatened species [125,134,141], including threatened T. eques and T. rufipunctatus [63].

Proactive and best practice conservation initiatives might be to rigorously assess population

demography, identify and manage priority habitat areas—especially where favorable under

future projections, and implement practical, longitudinal conservation actions. Our modeling

outcomes highlight potential reductions in suitability under future climate scenarios but also

the importance of conserving connectivity that mitigates further detriment to biodiversity.

Additional data and SDM refinement presents opportunities to further examine spatiotempo-

ral uncertainties in distribution and projections [142], especially as habitats and land-uses

change, which is likely to benefit our understanding of species-environmental relationships

under anthropogenic climate change.

Conclusion

Thamnophis are an important intermediate predator guild linking terrestrial and freshwater

networks. Gartersnakes serve as environmentally sensitive bioindicators and may reflect the

effects of climatic stressors induced on other riparian biota with similar life histories. Our rig-

orous varying-scenario SDMs identified important environmental predictors that drive pres-

ent distributions of gartersnakes among Arizona’s diverse ecosystems and their favorable or

unfavorable outlook under future climate change. Our hypothesis of predicted declines in suit-

able environment are supported for three species, of mixed outcomes for one species, and

seemingly rejected for T. marcianus that has a more favorable outlook. The information herein

can help guide proactive conservation strategies now and into the future. Consideration of evi-

dence-based conservation approaches are paramount to stave off extinction risks as the climate

warms and dries.
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Supporting information

S1 Fig. Directional distribution trends of Thamnophis gartersnake occurrences in Arizona.

Ellipses represent the central tendencies (mean center ±1 standard deviation in each XY coor-

dinate) of the data. Three time periods are categorized to reflect historical change.

(PDF)

S2 Fig. Estimated range changes across time for five Thamnophis gartersnake species in

Arizona under three global climate models, two 20-year periods (median years 2050,

2090), and two shared socio-economic pathways (SSP). Data are derived from weighted-

mean algorithms of ensemble species distribution models. Bars represent means ± standard

error. Pathways include the most optimistic (SSP126) and pessimistic (SSP585) emissions-lim-

iting models.

(PDF)

S3 Fig. a–y. Environmental suitability maps for Thamnophis gartersnakes in Arizona. Pro-

jections based on weighted-means ensemble models generated from the MRI-ESM2-0 global

climate model. Data columns represent present (1980–2021), near future (“2050”, i.e., 2041–

2060 median), and distant future (“2090”, i.e., 2081–2100 median) projections of two future

shared socio-economic pathways (SSP) that represent optimistic (SSP126) and pessimistic

(SSP585, i.e., status quo) emissions-limiting models.

(PDF)

S4 Fig. . Individual panels (a–t) from ‘Fig 4 Projected change in range sizes for Thamno-

phis gartersnakes in Arizona’. Data are modeled from weighted-means ensemble models

generated from the MRI-ESM2-0 global climate model. Changes based on present time model-

ing (1980–2021). Color values: yellow = suitable, stable; blue = suitable gained; red = lost,

unsuitable; gray = unsuitable.

(PDF)

S1 Table. Ensemble species distribution models for Thamnophis gartersnakes in Arizona,

1980–2021. Ensemble models are comprised of multiple single-algorithm models (GAM,

GBM, and RF) with true skill statistics (TSS) scores>70%. Ensemble algorithms (EM.algo)

include committee averaging (Ca) and weighted mean (wmean; [82]), evaluation metrics

(Eval.met) include relative operating characteristic (ROC) and TSS, and reported values

include ensemble model sensitivity (sens, i.e., true positive rate), specificity (spec, i.e., true neg-

ative rate), and calibration (cal).
(PDF)

S1 Dataset. Datasets used in species distribution modeling of Thamnophis gartersnakes in

Arizona. Sheets included represent 1) metadata descriptions; 2) refined occurrence records,

excluding rare species; 3) ensemble SDM evaluation scores and environmental variable impor-

tance scores per species; and 4) suitable environment range change output from ensemble spe-

cies distribution modeling per species.

(XLSX)
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