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Abstract

Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is

fourth significant reason of tumour death in men and women. The common cure for GI can-

cer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor

while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accu-

rately segmenting the GI tract organs. The study presents a UMobileNetV2 model for

semantic segmentation of small and large intestine and stomach in MRI images of the GI

tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers

as a decoder in the expansion path. The UW-Madison database, which contains MRI scans

from 85 patients and 38,496 images, is used for evaluation. This automated technology has

the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the

process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to

three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used

as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e.,

Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer

outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU

of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach

and intestines in MRI images of gastrointestinal cancer patients.

1. Introduction

The term "gastrointestinal tract" refers to humans and animals’ entire digestive system (from

mouth to anus). The gastrointestinal (GI) tract, also known as the digestive tract, is a lengthy

tubular organ that spans from the oral cavity to the rectum. Its primary function is to facilitate

the breakdown and assimilation of nutrients from ingested food [1]. The gastrointestinal sys-

tem is essential for the process of food digestion, where it breaks down food into smaller mole-

cules that may be readily absorbed by the body, extracting nutrients for energy and growth,
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and eliminating waste products from the body [2]. It is also closely connected with the

immune system and essential for maintaining overall health and well-being.

In the past 20 years, substantial advancements have been made to automatically diagnose

the disorder in the digestive system and other human organs [1–5]. Gastrointestinal illness is a

prevalent manifestation of these conditions [6]. Gastrointestinal cancer is the most prevalent

kind of cancer in both males and females [5]. In 2019, the global incidence of gastrointestinal

cancer exceeded 5 million cases. GLOBOCAN 2020 projections indicate that Gastrointestinal

(GI) cancer claimed the lives of 800,000 individuals, accounting for 7.7% of all cancer-related

deaths. It ranks as the fourth leading cause of cancer mortality in both men and women [7]. In

the year 2020, a total of 1.1 million new instances of gastrointestinal (GI) cancer were identi-

fied, representing 5.6% of all cancer cases [8].

Treatment for gastrointestinal cancer is affected by the age of patients, their health, and the

stage or type of cancer they suffer from [7]. The most common therapies for GI cancer are sur-

gery, radiation treatment, and chemotherapy. Radiation treatment is usually given for 15 min-

utes daily for few weeks. Radiation oncologists employ this technique to treat cancers with

solid doses of radiation while neglecting stomach and intestines [6]. With more recent technol-

ogy like MRI and linear accelerator devices, commonly known as MR-Linacs, oncologists may

see the tumor’s and intestines’ potential daily changes [8–10]. In order to provide large

amounts of X-ray radiation, it is necessary for a system to precisely divide the organs in the

gastrointestinal tract into distinct segments. This automated technology has the capability to

enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting

the organs of the gastrointestinal tract.

Recent advancements show that deep learning algorithms are capable of segmenting GI tract

organs [6–10]. Organ segmentation is essential for diagnostic and monitoring systems [11].

Deep learning algorithms, especially convolutional neural network-based architecture, are highly

suitable to solve this issue of GI Tract segmentation [12]. Recent decades have seen encouraging

results in Convolutional Neural Network, with the disorders diagnosing in various human

organs. The CNN model is advantageous because it hierarchically extracts features, beginning

with the most basic and working to the most abstract. The deep learning algorithms most effi-

ciently used for model optimization are Dwarf Mongoose and Aquila Optimizer [13,14]. Clinical

procedures such as diagnosis, therapy planning, and administration can benefit from organ seg-

mentation. In this scenario, the digestive tract segmentation could benefit from a DL method,

speeding up treatments and allowing patients to get more effective caution [12]. The proposed

work has built a deep learning approach for automatic segmentation of the stomach and intes-

tines in the Gastrointestinal tract in MRI scans. These MRI scans were taken during radiation

treatment of actual cancer patients who experienced 1–6 scans per week, depending upon the

stage of cancer. The main offerings of the anticipated research are as follows:

• Here, a UMobilenetV2 network is simulated by integrating MobileNet into the contraction

path of UNet architecture. In contrast, layers of UNet are incorporated in the expansion

path as the decoder to enhance the local feature extraction in the segmenting the GI tract

using MRI images.

• The model has been implemented on the UW-Madison GI tract dataset to segment the

stomach, small intestine, and large intestine in the GI tract. The model is examined using

Adam, RMS prop, and SGD optimizers.

• The model is also compared with three transfer learning models named Xception, ResNet

101, and NASNet, which are used as encoders in UNet architecture. The approach is assessed

based on performance parameters like model loss, dice coefficient, and IoU.
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The leftover sections of this article are ordered as section 2 presents the related work for

classification and segmentation in the GI tract. Section 3 describes the methodology for this

research work. Section 4 shows results and discussion, section 5 shows state-of-the-art com-

parison, and section 6 concludes the overall job done in this research.

2. Related work

In recent years, several researchers have worked the categorization and segmentation of the

gastrointestinal system. Table 1 summarises current, significant learning-based advancements

in this domain. Cogan T. et al. [15] created the MAPGI framework in 2019 for modular and

automated pre-processing of gastrointestinal images. For the Kvasir dataset, some pre-process-

ing procedures include edge elimination, filtering, and color mapping. Deep learning architec-

tures, Inception-v4, Inception-v2, and NASNet, achieved accuracy scores of 0.9845, 0.9848,

and 0.9735 for GI Tract segmentation. Sharif M. et al. [16] proposed an approach to merging

deep convolutional and geometric characteristics in 2019. The suggested technique was

Table 1. Literature review on gastrointestinal tract.

S.

no.

Ref./

Year

Dataset Name Number of

images

Technique Segmentation Classification Performance Parameters

1 [23]/

2018

CT scan images 680 Registration-free deep learning-

based segmentation

✓ ✗ Dice score:

0.78

2 [15]/

2019

Kvasir dataset 8000 NASNet, Inceptionv2, and

Inception-v4

✗ ✓ Accuracy, NASNet: 0.9845

Inception-v2: 0.9848, Inception-

v4: 0.9735

3 [16]/

2019

privately collected database of

Wireless Capsule Endoscopy

(WCE) images

5500 Fusion of CNN + geometric

features + KNN

✗ ✓ Accuracy: 99.42%

4 [17]/

2019

KVASIR Dataset 8000 Ensemble learning ✗ ✓ Accuracy: 97%

5 [18]/

2019

KID dataset 955 GAN +CNN ✗ ✓ Accuracy: 90.9%

6 [19]/

2020

Kvasir dataset 8000 CNN + LSTM ✗ ✓ Accuracy: 97.90%

7 [20]/

2020

Kvasir dataset 8000 CNN ✗ ✓ Accuracy: 96.89%

8 [26]/

2020

EndoVis-Ab and CVC-ClinicDB

datasets

1310 MFuRe-CNN ✓ ✗ mIoU, EndoVis-Ab: 74%

CVC-ClinicDB: 85%

9 [27]/

2020

Private dataset of WCE video/

images

682 Mask RCNN+ Resnet 101+SVM ✓ ✓ MOC -0.8807 and accuracy

99.13%

10 [21]/

2021

Kvasir dataset 5000 GoogleNet, ResNet-50, and

AlexNet

✗ ✓ Accuracy-97%, Sensitivity-

96.8%, Specificity- 99.20%, and

AUC-99.98%.

11 [22]/

2021

WCE images 6702 VGG16, GoogLeNet and ResNet-

18, and convolutional neural

network (CNN)

✗ ✓ Accuracy VGG 16–96.33%

12 [23]/

2021

Kvasir dataset 8000 CNN ✗ ✓ Accuracy: 98.05%

13 [28]/

2021

Endoscopy images 720 encoder-decoder networks for

semantic segmentation

✓ ✗ Accuracy: 98%

14 [29]/

2021

“Kvasir-Instrument” dataset. 590 U-Net architecture ✓ ✗ Dice: 0.9158 and Jaccard index:

0.8578

15 [24]/

2022

Kvasir dataset 8000 Fusion of CNN layer ✗ ✓ Accuracy: 97.25%

https://doi.org/10.1371/journal.pone.0302880.t001
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evaluated on a database of 5500 images and demonstrated classification accuracy and precision

of 99.42% and 99.51%, respectively. Gamage C. et al. 2019 predicted eight-class GI disease

anomalies using a mixture of DenseNet-201, VGG-16, ResNet-18, and CNN followed by a

global average pooling layer [17]. D. E. Diamantis et al. proposed a strategy for coping with the

inadequate data in 2019 by employing synthetically created pictures. A CNN was trained utilis-

ing WCE photographs [18]. Ozturk S. suggested an incredibly well-organized LSTM model,

which will be merged into CNN output in 2020 [19]. Lafraxo S. et al. proposed a DL model

which employs a deep convolutional network and achieves 96.89% accuracy on the Kvasir

dataset [20]. Hmoud Al-Adhaileh, M. et al. used the Kvasir dataset to train GoogleNet,

ResNet-50, and AlexNet deep learning-based networks in 2021. AlexNet provided the best

results, with 97% accuracy [21]. Yogapriya J. et al. used classic image processing methods, a

data augmentation strategy, and a deep network to categorize GI disorders in wireless endo-

scopic pictures [22]. In [23], S. Ozturk introduced a model that combines a CNN with a resid-

ual LSTM. Montalbo et al. [24] recommended the Multi-Fused Residual CNN (MFuRe-CNN)

for analyzing endoscopic images of GI illnesses using the Kvasir dataset in 2022. Gibson et al.

reported a neural network design for segmentation of eight organs [25]. The pancreas, diges-

tive system, "esophagus, stomach, and duodenum," are all necessary for endoscopic referral to

the biliary and pancreatic processes. Wang S. et al. published a multi-scale deep network in

2020 to eventually segment gastrointestinal (GI) lesions from endoscopic images [26]. Khan

M. A. et al. proposed an approach for categorizing and diagnosing GI ulcers, polyps, and hem-

orrhages in 2020. It was recommended in [27] to employ a Recurrent CNN tailored for ulcer

segmentation. Garden et al. [28] 2021 established a technique for segmentation of canonical

method appropriate to identifying GI polyps via a direct extension [29]. According to the liter-

ature, the gastrointestinal system has been the substantially researched in last years, including

classification and segmentation. The study made use of a variety of datasets, including endo-

scopic and CT scan pictures. The proposed study uses MRI images to provide a unique method

for segmenting the stomach and intestines in the GI system.

3. Proposed methodology

This part discusses the methodology for segmentation and classification of the stomach, small

bowel, and large bowel in MRI scans. Section A represents the input dataset. Section B represents

the ground truth mask generation using Run Length Encoding (RLE). Section C will discuss the

data augmentation applied to the dataset. Section D will discuss the model for segmenting the gas-

trointestinal tract. Section E shows the details of the three encoders used for UNet model. Section

F shows the performance matrices used to analyze the model and three encoders. Fig 1 represents

the flow chart of methodology for segmenting the stomach and intestines in the GI tract.

The Fig 1 displays the flow chart of the suggested technique. Fig 1 outlines a comprehensive

process for semantic segmentation of MRI scans, utilizing UW Madison dataset comprising of

38,496 MRI images. The primary goal is to accurately segment GI tract organs such as small

bowel, large bowel, and stomach from the input dataset. Beginning with the dataset input,

ground truth masks are generated through Run-Length Encoding (RLE), paving the way for

subsequent steps. Employing data augmentation techniques enhances model robustness. Here

a semantic segmentation UMobileNet V2 model is simulated in which MobileNet V2 is used

as an encoder in UNet Model for segmenting GI organs. The crux of the workflow lies in com-

paring the UMobileNet V2 model with three distinct encoders (Xception, ResNet 101, and

NasNet Mobile). These models undergo optimization with three optimizers—Adam,

RMSprop, and SGD. Rigorous performance evaluation, utilizing metrics like loss, Dice coeffi-

cient, and Intersection over Union, facilitates comparison of model effectiveness. The
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proposed technique is further simulated with higher number of epochs to check its perfor-

mance. The workflow concludes with the visualization of results from the best-performing

model, offering a clear representation of the model’s prowess in accurately segmenting gastro-

intestinal structures within MRI scans. Overall, this systematic approach thoroughly explores

segmentation methodologies, leading to informed model selection and meaningful insights

into MRI image analysis.

A. Input dataset

The University of Wisconsin-Madison, a public research university in Madison, Wisconsin,

has published a dataset of MRI scans [30]. The dataset comprises 85 individuals who under-

went scans during a period ranging from 1 to 6 days. Each daily scan consists of either 144 or

80 slices, which are used for various patients. Therefore, the dataset has a total of 38496 MRI

images. The images in the database vary, with sizes of 266x266, 310x360, and 276x276. All

images were resized to 224x224 to make them uniform for training purposes. Fig 2A and 2B

show sample MRI scans of database.

B. Ground truth mask generation

The dataset contains 38496 MRI slices, and each MRI slice has three annotations for Small

bowel, large bowel, and stomach in RLE encoded forms provided in the CSV file. Hence, there

Fig 1. Flow chart for automatic segmentation of small bowel, large bowel, and stomach in GI tract.

https://doi.org/10.1371/journal.pone.0302880.g001
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are 115488 annotations given in the CSV file. Out of 115488 annotations, 14085 cases are for

large bowel, 11201 are for small bowel, whereas 8627 cases are for stomach. The remaining

81575 annotation cases do not have any large, small, or stomachs. The ground truth mask is

derived from these annotations using the RLE encoder. For example, Fig 3A shows the original

82-number slice of the 20th day’s scan of patient ID 123. Fig 3B shows the RLE encoding of the

large intestine, Fig 3C represents the RLE encoding of the small intestine, and Fig 3D repre-

sents the RLE encoding of stomach of the same slice.

The Table 2 provides a breakdown of annotations for different anatomical regions, namely

Large Bowel, Small Bowel, Stomach, and a category labeled as Blanks. The dataset is parti-

tioned into training (80%), testing (10%), and validation (10%) subsets. In the training set,

there are 11,989 annotations for the Large intestine, 8,961 for the Small intestine, 6,903 for the

Stomach, and 65,261 for the Blanks category. The testing and validation sets each contain

1,408 annotations for the Large intestine, 1,120 for the Small intestine, 862 for the Stomach,

and 8,157 for the Blanks category. These annotations likely represent a dataset used for train-

ing and evaluating proposed technique, for segmentation of GI tract organs.

Fig 2. Images of the UW-Madison database.

https://doi.org/10.1371/journal.pone.0302880.g002

Fig 3. Ground Truth Mask Generation (a) Original Image, (b) RLE Encoding for Large Bowel, (c) RLE Encoding for Small Bowel, and (d) RLE Encoding for

Stomach.

https://doi.org/10.1371/journal.pone.0302880.g003
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C. Data augmentation

The dataset is unbalanced here, with 14085 large bowel cases, 11,201 small cases, and 8,627

stomach cases. The dataset balancing is done on stomach cases using data replication by

increasing its number from 8627 to 10783. Data augmentation is also applied to enhance the

data to make it more compatible with the model. It enhances the diversity of images and acts

as a dataset regularizer. It enhances the images by making alterations while preserving the class

label. The augmentations employed in this dataset include horizontal flipping, vertical flipping,

and rotation by 80˚ degrees. Fig 4 displays the unaltered and enhanced images derived from

the dataset. Fig 4A and 4E display the original photos, (b) and (f) show the images after a hori-

zontal flip, (c) and (g) show the images after a vertical flip, and (d) and (h) show the images

after a rotation.

Table 2. Dataset splitting in training, testing and validation.

Large Bowel Small Bowel Stomach Blanks

Annotations 14085 11201 8627 81575

Training annotations 11989 8961 6903 65261

Testing annotations 1408 1120 862 8157

Validation annotations 1408 1120 862 8157

https://doi.org/10.1371/journal.pone.0302880.t002

Fig 4. Sample Images After Applying the Augmentation Techniques; (a) & (e) Original Images, (b) &(f) Horizontal Flip, (c) & (g) Vertical Flip, and (d) & (h)

Rotation.

https://doi.org/10.1371/journal.pone.0302880.g004
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D. UMobileNetV2 model

The simulated model is a fusion of UNet and mobilenet V2 model [31] for semantic segmenta-

tion of the large intestine, small intestine, and stomach in the GI tract on MRI data for cancer

treatment. U-Net is a CNN model developed by Olaf Ronneberger et al. [32,33] for segmenta-

tion. U-Nets allow us to go beyond traditional image categorization and object recognition

methods by assigning shapes to each pixel inside an image. It extends the conventional CNN

architecture by adding a suitable expansion path (decoder) to provide a high-definition

semantic prediction. Fig 5 shows a block schematic of the model. The first path is the encoder’s

contraction path, which records the image’s features. The contraction is a structure comprised

convolution and max pooling layers. Similarly, the expansion path (decoder) facilitates accu-

rate localization by employing transposed convolutional layers; it does not include a dense

layer and can process images of any shape. U-Net developed its name because its two branches

resemble the letter U from the English alphabet.

Instead of a CNN, the proposed model used the transfer learning model MobileNet V2,

which had already been pre-trained. MobileNet V2 [34] is a CNN design intending to improve

performance on mobile devices. It is predicated on a backward residual structure, with the bot-

tleneck levels connecting via residual nodes. Lightweight depthwise convolutions filter features

Fig 5. Block diagram of UMobileNetV2 for segmentation.

https://doi.org/10.1371/journal.pone.0302880.g005
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are used as a non-linear source in the intermediate expansion layer. The convolutions in Mobi-

leNet V2 are separated depthwise. It reduces the number of parameters compared to a network

constructed using ordinary convolutions.

Consequently, compact deep neural networks are generated. In place of a one 3x3 convolu-

tion layer followed by batch normalization and ReLU, MobileNet design uses a 2x2 convolu-

tion layer followed by batch normalization. Specifically, MobileNet V2 performed a 3x3

depthwise convolution and a 1x1 pointwise convolution. 13 downsampling blocks are used,

each with its unique configuration of convolution, batch normalization, and ReLU layer.

When an image is divided into blocks, it loses resolution but gains depth by increasing the fea-

ture maps. It is chosen for downsampling purposes in the proposed U-Net architecture

because of its many benefits, such as its small size and low processing time. Table 3 shows a

detailed description of the recommended model’s different layers.

Table 3. Detailed description of layers of the UMobileNet model.

S. No. Layers Input Image Filter Size Activation Function Output Image Size Number of Parameters

1 Input Image 224x224x3 - - 224x224x3 0

2 Conv 1 224x224x3 3x3 ReLU 112x112x64 496

3 expanded_conv_depthwise 112x112x64 3x3 ReLU 112x112x8 368

4 Down_sampling_block 1 112x112x8 3x3 ReLU 56x56x8 1616

5 Down_sampling_block 2 56x56x8 3x3 ReLU 56x56x8 1616

6 Down_sampling_block 3 56x56x8 3x3 ReLU 28x28x16 2032

7 Down_sampling_block 4 28x28x16 3x3 ReLU 28x28x16 4768

8 Down_sampling_block 5 28x28x16 3x3 ReLU 28x28x16 4768

9 Down_sampling_block 6 28x28x16 3x3 ReLU 14x14x24 5568

10 Down_sampling_block 7 14x14x24 3x3 ReLU 14x14x24 9456

11 Down_sampling_block 8 14x14x24 3x3 ReLU 14x14x24 9456

12 Down_sampling_block 9 14x14x24 3x3 ReLU 14x14x24 9456

13 Down_sampling_block 10 14x14x24 3x3 ReLU 14x14x32 10640

14 Down_sampling_block 11 14x14x32 3x3 ReLU 14x14x32 15680

15 Down_sampling_block 12 14x14x32 3x3 ReLU 14x14x32 15680

16 Down_sampling_block 13 14x14x32 3x3 ReLU 14x14x92 6912

17 Up_sampling_layer 1 14x14x92 2x2 - 28x28x192 0

18 Concatenate1 28x28x192 - - 28x28x288 0

19 Up_sampling_block 1 28x28x288 3x3 ReLU 28x28x64 203392

20 Up_sampling_layer 2 28x28x64 2x2 - 56x56x64 0

21 Concatenate 2 6x56x64 - - 56x56x112 0

22 Up_sampling_block 2 56x56x112 3x3 ReLU 56x56x48 69600

23 Up_sampling_layer 3 56x56x48 2x2 - 112x112x48 0

24 Concatenate 3 112x112x48 - - 112x112x96 0

25 Up_sampling_block 3 112x112x96 3x3 ReLU 112x112x32 37184

26 Up_sampling_layer 4 112x112x32 2x2 - 224x224x32 0

27 Concatenate 4 224x224x32 - - 224x224x35 0

28 Up_sampling_block 4 224x224x35 3x3 ReLU 224x224x16 7504

29 Conv 224x224x16 1x1 ReLU 224x224x3 51

Total Parameters: 416,243.

Trainable Parameters: 409,059.

Non-trainable Parameters: 7,184.

https://doi.org/10.1371/journal.pone.0302880.t003
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The computation cost of the UMobileNet V2 model is also measured in form of FLOPs that

involves multiplying the number of operations per parameter by the total trainable parameters,

the batch size, and the number of training iterations. The formula for FLOPs can be expressed

as:

FLOPs = 2×Number of Operations per Parameter×Trainable Parameters×Batch Size×-
Number of Iterations

Here number of operations per parameter is assumed to be 2, Trainable Parameters are

equal to 409,059 and Batch Size is taken as 16. So number of FLOPs used in the UMobileNet

V2 model is 2×2×409,059×16×1 = 13,097,152.

So, for one iteration with a batch size of 16, the computation cost is approximately

13,097,152 FLOPs. The computational cost of the proposed model is comparatively less than

other encoders because here MobileNet V2 is used as encoder. MobileNetV2 employs depth-

wise separable convolutions, a technique that divides a conventional convolution into two dis-

tinct operations: a depthwise convolution and a pointwise convolution. This minimises the

quantity of parameters and calculations compared to traditional convolutions, leading to

lower computational cost.

E. Simulations parameters

In addition to the model’s structure, it is also essential to recognize the network’s execution

and presentation. During the deep neural model’s training, many parameter choices were

made. The MobileNet V2 model was used to build the proposed network, which was compared

with three different transfer learning methods namely Xception, ResNet 101, and NASNet

mobile. The model’s weights were set through Golort initialization [35]. The loss function

used for the simulation is Tversky loss. It is commonly used as a loss function in image seg-

mentation tasks, especially in medical image analysis. The formula for calculating Tversky loss

is:

Tversky Loss ¼ 1 �
TP

TPþ aFPþ βFN

Where TP is true positive, FP is a false positive, FN is false negative, α and β are weight

parameters that allow adjusting the balance between false positive and false negative.

The model’s performance has been evaluated using several parameters: Adam, RMS, and

SGD. Batch sizes of 16 and 10 epochs were used to run the model. These parameters were

assessed using UW Madison dataset. The model’s learning rate is 0.0001. Python and Keras-

Tensorflow [36] Package were used to build model. Keras is a free and simple tool for develop-

ing neural networks. NVIDIA Tesla P100 GPU is used for the simulation. It is open-source

and compatible with Tensorflow and Theano. All the simulations were carried out using goo-

gle colab notebook.

F. Different encoders used for UNet model

Transfer learning is a method that reuses a network proficient for a job as an initial step of a

model for a second relevant job. The idea is to transfer knowledge gained from solving one

problem to another related issue so that less data can be used to train a more accurate or effi-

cient model. This is especially useful when labelled data for new tasks is scarce.

a. Xception model. Xception [37] is a deep network aimed to overcome the limitations

of starting models for image classification tasks. Xception uses depth-separable convolutions,

which can significantly reduce computational complexity and improve model performance.

This architecture allows models to learn more efficiently by reducing the parameters while
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preserving solid, expressive power. Xception models are used for various computer vision

tasks like recognition, segmentation, and fine-grained picture categorization.

b. ResNet 101 model. ResNet-101 is a deep CNN competent in accomplishing image

categorization tasks. Featured in his 2016 article "Deep Residual Learning for Image Recogni-

tion" by Microsoft researchers He, Zhang, Ren, and Sun [38]. This model is an extension of the

ResNet 50 model, a variation of the traditional CNN architecture. The core concept behind the

ResNet network is the introduction of residual connections that allow the network to learn its

ID function in addition to the traditional convolution and pooling layers. The number "101" in

the model name denotes the layers in the model, which are much more profound than other

CNN architectures, such as VGG-16 and AlexNet. As a result, ResNet-101 can learn more

powerful and complex feature representations from the input data, improving the perfor-

mance of image classification tasks.

c. NASNet model. NASNet (Neural Architecture Search Network) Mobile is a deep

CNN developed for picture identification tasks and designed to be implemented on mobile

and implanted strategies with limited computational resources. The model was introduced in

the paper "Learning Transferable Architectures for Scalable Image Recognition" by Google

researchers Zoph and Le in 2017 [39]. NASNet is based on the Automatic Neural Architecture

(NAS) search method, which automatically uses reinforcement learning to find the optimal

network architecture. This method learns to identify the best building blocks for your model

and its placement.

G. Performance metrics

Intersection over union (IoU) and Dice Coefficient are often employed metrics for evaluating

the efficacy of segmentation methods.

a. IoU: The Jaccard index is another name for it. This is one of the most commonly used met-

rics for segmentation.

IoU ¼
area of overlap
area of union

The Intersection over Union (IoU) is calculated by dividing the region of overlap between

the expected and real segmentation by the area of union between the anticipated and actual

segmentation. The measurements span a scale of 0 to 1, where a value of 0 indicates no overlap

and a value of 1 indicates perfect overlap.

b. Dice: The term "F1 score" is also used to refer to it. The dice coefficient is calculated by mul-

tiplying the area of overlap between two images by two, and then dividing it by the total

number of pixels in both images.

Dice Coefficent ¼
2∗area of overlap

total number of pixels in both images

There is a positive correlation between the Dice coefficient and the IoU coefficient. Both

ranges span from 0 to 1, where a value of 1 indicates the highest degree of similarity between

the predicted and actual outcomes, while a value of 0 indicates the lowest level of

resemblance.
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4. Results & discussions

The following sections show the results of the UMobileNet V2 model and UNet model simu-

lated with three encoders with three different optimizers for segmentation of GI tract. The

results were obtained using four encoders namely; MobileNet V2, Xception, ResNet 101, NAS-

Net Mobile with three optimizers: Adam [40], RMS [41], and SGD [42].

A. Results for adam optimizer

This section shows the results of different encoders obtained using Adam optimizer.

a. Loss analysis. The UNet model ensembles with different encoders were assessed using

loss, dice, and IoU. Fig 6A displays the loss plot of the xception network, Fig 6B represents the

loss plot for ResNet 101 model, Fig 6C displays the loss curve of the NASNet network, and

Fig 6D represents the results of UMobileNet V2 model using Adam optimizer. From Fig 6,

concludes that the UMobileNet V2 model obtains the least loss in comparison with other

encoder networks.

Fig 6. Loss analysis for different encoders using adam optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g006
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b. Dice coefficient analysis. The UNet with transfer learning designs were assessed uti-

lizing the dice. Fig 7A represents the dice curve of xception model, Fig 7B represents the dice

coefficient plot for ResNet 101 model, Fig 7C represents the dice coefficient curve of the NAS-

Net model, and Fig 7D represents the results of UMobileNet V2 model using Adam optimizer.

Fig 7 demonstrates that, compared to other models, the UMobileNet V2 model yields the most

excellent dice coefficient value.

c. IoU analysis. The IoU coefficient was utilized to compare the UMobileNet V2 model

to all other encoder models. Fig 8A displays the IoU curve for the xception model, Fig 8B

shows the IoU curve for the ResNet 101 model, Fig 8C depicts the IoU curve for the NASNet

model, and Fig 8D displays the plot of the model using the Adam optimizer. Regarding the

IoU coefficient, Fig 8 concludes that the model performs better than every other transfer learn-

ing model.

Fig 9 compares the outcomes for the Adam optimizer for each model in terms of loss, dice

coefficient, and IoU. The image shows that the UMobileNet V2 model performed better than

Fig 7. Dice coefficient analysis for different encoders using adam optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet

V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g007
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previous transfer learning models. Using the Adam optimizer, the presented model produced

the most significant dice coefficient with a value of 0.8904, the lowest loss value of 0.1310, and

the best IoU value of 0.8697.

B. Results for RMS optimizer

The models’ loss, dice, and IoU are also evaluated using RMS optimizers. The following section

shows the loss, dice, and IoU plots for different models using the RMS optimizer.

a. Loss analysis. To compare the ensemble UMobileNet V2 model with other transfer

learning models, loss, dice coefficient, and IoU coefficient were considered. Fig 10A depicts

the xception model’s loss curve, Fig 10B the ResNet 101 model’s loss curve, Fig 10C the NAS-

Net model’s loss curve, and Fig 10D the UMobileNet V2 model’s RMS optimizer findings.

Fig 10 demonstrates that the UMobileNet V2 model has the lowest loss value and a smoother

slope than other models.

b. Dice analysis. Fig 11A depicts the dice coefficient curve for the xception model,

Fig 11B the dice coefficient curve for the ResNet 101 model, Fig 11C the NASNet model,

Fig 8. IoU Analysis for Different Encoders using Adam Optimizer (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2

Model.

https://doi.org/10.1371/journal.pone.0302880.g008
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and Fig 11D the outcomes of the UMobileNet V2 model employing RMS optimizer. Fig 11

demonstrates that the approach provides the maximum value for the dice coefficient. The

presented model, which uses an RMS optimizer, may be said to beat any transfer learning

model.

c. IoU analysis. The IoU coefficient was utilised to compare the UMobileNet V2 model

to all other encoder models. Fig 12A depicts the IoU curve for the xception model, Fig 12B the

IoU curve for the ResNet 101 model, Fig 12C the IoU curve for the NASNet, and Fig 12D the

plot of UMobileNet V2 model employing the RMS optimizer. Fig 12 demonstrates that the

UMobileNet V2 model, which uses RMS optimization, has the greatest IoU value compared to

other transfer learning models.

Fig 13 compares the RMS optimizer results for all models regarding loss, dice, and IoU. The

UMobileNet V2 model achieves lowest loss, as can be deduced from Fig 13. The presented

model uses an RMS optimizer to attain the most incredible value of the dice coefficient and

IoU.

C. Results for SGD optimizer

The loss, dice, and IoU are evaluated using SGD optimizer for all models. The following sec-

tions show the loss, dice, and IoU plots for different models using SGD optimizer.

a. Loss analysis. To compare the ensemble UMobileNet V2 model with other transfer

learning models, model loss, dice coefficient, and IoU coefficient were considered. Fig 14A

depicts the xception model’s loss curve, Fig 14B the ResNet 101 model’s loss curve, Fig 14C the

NASNet model’s loss curve, and Fig 14D the results of the UMobileNet V2 model’s use of the

SGD optimizer. Fig 14 shows that the graphs for Xception and ResNet 101 are comparable.

The UMobileNet V2 model’s curves are identical to the other two models, NASNet Mobile.

The model that is presented has the smallest loss value.

b. Dice coefficient analysis. The UMobileNet V2 model and transfer learning models

were assessed using the dice coefficient. Fig 15A depicts the dice coefficient curve for the

Fig 9. Results comparison of UMobileNet V2 model with different TL models with adam optimizer using test

dataset.

https://doi.org/10.1371/journal.pone.0302880.g009
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xception model, Fig 15B the dice coefficient curve for the ResNet 101 model, Fig 15C the NAS-

Net model, and Fig 15D the outcomes of the UMobileNet V2 model utilizing SGD optimizer.

Fig 15 demonstrates that the UMobileNet V2 model provides the maximum value for the dice

coefficient.

c. IoU analysis. The IoU coefficient was used to compare the UMobileNet V2 model to

all other transfer learning models. Fig 16A depicts the IoU curve for the xception model;

Fig 16B shows the IoU curve for the ResNet 101 model; Fig 16C illustrates the IoU curve for

the NASNet model; and Fig 16D depicts the plot of the UMobileNet V2 model utilizing SGD

optimizer. Fig 16 demonstrates how the UMobileNet V2 model might produce the highest

value of IoU.

The results of the Adam optimizer for each model are contrasted in Fig 17 in terms of loss,

dice coefficient, and IoU. As can be seen in the graphic, the recommended model

Fig 10. Loss Analysis for Different Encoders using RMS Optimizer (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2

Model.

https://doi.org/10.1371/journal.pone.0302880.g010
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outperformed earlier transfer learning models. The recommended model generated the high-

est dice coefficient, lowest loss value, and best IoU value when using the Adam optimizer.

D. Comparison of adam, RMS, and SGD optimizers

A fair comparison of the optimizers’ performance can be represented in graphs. This section

shows the loss, dice, and IoU comparison graphs for all the models using Adam, RMS, and

SGD optimizers.

a). Loss comparison. The graph of loss comparison for all encoders and the UMobileNet

V2 model employing Adam, RMS, and SGD optimizers is shown in Fig 18. Fig 18 demon-

strates that, when compared to the other two optimizers, Adam’s performance is the best. In

terms of models, the ensemble UMobileNet V2 outperforms the other three transfer learning

models with the lowest loss values.

Fig 11. Dice coefficient analysis for different encoders using RMS optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d)

UMobileNet V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g011
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b). Dice coefficient comparison. Fig 19 compared the Dice Coefficients utilizing Adam,

RMS, and SGD optimizers for all encoders and the UMobileNet V2 model. Fig 19 demon-

strates that compared to the other two optimizers, Adam performs the best. In terms of mod-

els, the ensemble UMobileNet V2 outperforms the other three transfer learning models with

the most significant dice coefficient values.

c). IoU comparison. The graph of IoU comparison for all transfer learning and UMobi-

leNet V2 models utilizing Adam, RMS, and SGD optimizers is shown in Fig 20. Fig 20 demon-

strates that Adam outperforms the other two optimizers regarding performance. In terms of

models, the ensemble UMobileNet V2 outperforms the other three transfer learning models

with the most significant IoU values.

From all of the comparisons and results, it is clear that the ensemble UMobileNet V2 out-

performs existing transfer learning models like Xception, ResNet 101, and NASNet Mobile

regarding all performance metrics, including loss, dice coefficient, and IoU. The Adam opti-

mizer was used to get the final results. Compared to RMS and SGD optimizers, the

Fig 12. IoU analysis for different encoders using RMS optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g012
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performance of the Adam optimizer is the best. The final results are dice coefficient 0.8984,

IoU value 0.8697, and model loss 0.1310.

E. Analysis of UMobileNet V2 model

This section shows the analysis of the UMobileNet V2 with Adam optimizer. Fig 21 shows the

graph obtained by running the model with more epochs to check the performance of UMobi-

leNet V2 model at higher number of epochs. The graphs show that the results are not much

improved for higher epochs. The graphs show rising dice and IoU and decreasing values for

loss for the initial epochs, getting plateau for higher epochs showing its saturation.

The visual analysis of the UMobileNet V2 model is shown in Fig 22. The output images

from the UMobileNet V2 and other transfer learning models are displayed in Fig 22. The

image comprised the input image, their mask, and each model’s predicted images. Here, yel-

low indicates the large intestine, green represents the small intestine, and red represents the

stomach. Fig 22 demonstrates how closely the UMobileNet V2 model’s output images

resemble the input images. Regarding visual analysis, UMobileNet V2 model outperforms

other encoders.

Table 4 presents a comparative analysis of three different optimizations—Adam, RMSprop,

and SGD—applied to the UMobileNet V2 model for segmentation. The evaluation metrics

include the Dice Coefficient, measuring the overlap between predicted and true segmentation

masks; the IoU Coefficient, quantifying the intersection over the union of the same masks; and

the Loss, reflecting the model’s performance in minimizing the discrepancy between predic-

tions and ground truth. Adam demonstrates superior performance with a Dice Coefficient of

0.8984 and an IoU Coefficient of 0.8697, indicating robust segmentation accuracy. In contrast,

RMSprop and SGD exhibit lower scores across these metrics. The Loss metric, representing

the overall model performance, is lowest for Adam and highest for RMSprop, further empha-

sizing Adam’s efficacy in this context. Additionally, the table includes the Time Spent column,

illustrating the computational time required for each optimization algorithm—Adam,

Fig 13. Results comparison of UMobileNet V2 model with different TL models with RMS optimizer using test

dataset.

https://doi.org/10.1371/journal.pone.0302880.g013
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RMSprop, and SGD—to train the model. The presented information provides valuable

insights into the trade-offs between optimization algorithms in terms of both segmentation

accuracy and computational efficiency.

F. Comparison of UMobileNet V2 model with other segmentation models

The Table 5 presents performance metrics for various segmentation models including FPN,

UNet, PSPNet, and UMobileNet V2. Each model is evaluated based on three parameters Dice

Coefficient, IoU Coefficient, and Loss. The Dice Coefficient measures the overlap between the

predicted and ground truth segmentation masks, with UMobileNet V2 achieving the highest

score of 0.8984, indicating superior segmentation accuracy. Similarly, UMobileNet V2 also

achieves the highest IoU Coefficient of 0.8697, again suggesting better overall performance in

capturing the intersection between predicted and true segmentation areas. In terms of Loss,

UMobileNet V2 has the lowest value of 0.1310, indicating the model’s ability to minimize

errors during training. Overall, UMobileNet V2 demonstrates strong performance across all

metrics compared to the other segmentation models listed in the Table 5.

Fig 14. Loss analysis for different encoders using SGD optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g014
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5. State-of-the-art comparison

Table 6 provides a complete overview of recent studies focusing on semantic segmentation of

gastrointestinal structures in the UW Madison dataset, highlighting the Dice coefficient as an

evaluation metric. Various techniques have been employed, including UNet with an attention

mechanism [43], Levit-UNet++ [44], a combination of UNet and Mask RCNN [45], Multiview

UNet [46], and an Ensemble Model [47], each achieving different levels of segmentation accu-

racy with Dice values ranging from 0.36 to 0.88. More recent approaches in 2023 include FPN

+Efficient Net B0 [47] with a Dice coefficient of 0.8975, UNet model [48] with a Dice coeffi-

cient of 0.8854, and PSPNet+ResNet 34 [49] with a Dice coefficient of 0.8842. The UMobileNet

V2 Model, featuring a MobileNetV2 encoder embedded within a UNet architecture, outper-

forms previous methods with a Dice coefficient of 0.8984, demonstrating promising results in

segmenting gastrointestinal structures in the specified dataset.

Fig 15. Dice coefficient analysis for different encoders using SGD optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet

V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g015

PLOS ONE Semantic segmentation of gastrointestinal tract in MRI scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0302880 May 8, 2024 21 / 30

https://doi.org/10.1371/journal.pone.0302880.g015
https://doi.org/10.1371/journal.pone.0302880


6. Conclusion and future scope

The gastrointestinal system is significant part of the human body since it controls digestion

and absorption of food. GI cancer numbers have been steadily rising in recent years. The most

frequent treatment for GI cancer is radiation treatment, which includes directing X-rays

toward the tumor while avoiding healthy organs. So, there is a need for a system that can auto-

matically partition the GI organs to protect healthy organs from X-ray beams and speed up

cancer therapy. This paper uses the UW Madison dataset to present a UMobileNetV2 model

for segmenting GI organs like the small intestine, large intestine, and stomach. The UMobile-

Net V2 model uses UNet architecture with MobileNetV2 transfer learning model as an

encoder to downsample the feature for semantic segmentation. The results of UMobileNet V2

model were compared with three transfer learning models: Xception, ResNet 101, and NASNet

mobile with loss, dice, and IoU. The UMobileNet model, combined with the Adam optimizer,

surpasses all encoders, achieving values of 0.8984 for the dice coefficient, 0.8697 for the IOU,

and 0.1310 for the validation loss.

Fig 16. IoU analysis for different encoders using SGD optimizer. (a) Xception, (b) ResNet 101, (c) NASNet Mobile, and (d) UMobileNet V2 Model.

https://doi.org/10.1371/journal.pone.0302880.g016
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Fig 17. Results comparison of UMobileNet V2 model with different TL models at SGD optimizer using test

dataset.

https://doi.org/10.1371/journal.pone.0302880.g017

Fig 18. Loss comparison of UMobileNet V2 model with different encoders with different optimizers using test

dataset.

https://doi.org/10.1371/journal.pone.0302880.g018
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Fig 19. Dice coefficient comparison of UMobileNet V2 model with different encoders with different optimizers

using test dataset.

https://doi.org/10.1371/journal.pone.0302880.g019

Fig 20. IoU comparison of UMobileNet V2 model with different encoders with different optimizers using test

dataset.

https://doi.org/10.1371/journal.pone.0302880.g020
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While UNet is renowned for its efficiency, U-Net is designed with a narrowing path

(encoder) and wide path (decoder). However, the context information available to each

pixel in the decoding path is limited to the corresponding region in the encoding path. This

limitation can affect the capability of model to capture long-range dependencies and global

context information. In the future, the combination of different decoder models with the

combination of MobileNet V2 as encoder can be analyzed for the GI tract semantic

segmentation.

Fig 21. Graphs of the Optimized Model (a) Dice Coefficient, (b) IoU Coefficient, and (c) Loss.

https://doi.org/10.1371/journal.pone.0302880.g021
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Fig 22. Visual examination of the outcomes in the form of pictures. Here, yellow is used to show the big intestine, green is used to represent the small

intestine, and red is used to represent the stomach.

https://doi.org/10.1371/journal.pone.0302880.g022

Table 4. Analysis of optimized model based on different epochs.

Dice Coefficeint IoU Coefficient Loss Processing Time

Adam 0.8984 0.8697 0.1310 2 hrs 34 min

RMS 0.3724 0.5403 0.6571 2 hrs 57 min

SGD 0.4978 0.4978 0.5526 3 hrs 15 min

https://doi.org/10.1371/journal.pone.0302880.t004
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