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Abstract

The rapid growth of traffic trajectory data and the development of positioning technology

have driven the demand for its analysis. However, in the current application scenarios, there

are some problems such as the deviation between positioning data and real roads and low

accuracy of existing trajectory data traffic prediction models. Therefore, a map matching

algorithm based on hidden Markov models is proposed in this study. The algorithm starts

from the global route, selects K nearest candidate paths, and identifies candidate points

through the candidate paths. It uses changes in speed, angle, and other information to gen-

erate a state transition matrix that match trajectory points to the actual route. When process-

ing trajectory data in the experiment, K = 5 is selected as the optimal value, the algorithm

takes 51 ms and the accuracy is 95.3%. The algorithm performed well in a variety of road

conditions, especially in parallel and mixed road sections, with an accuracy rate of more

than 96%. Although the time loss of this algorithm is slightly increased compared with the

traditional algorithm, its accuracy is stable. Under different road conditions, the accuracy of

the algorithm is 98.3%, 97.5%, 94.8% and 96%, respectively. The accuracy of the algorithm

based on traditional hidden Markov models is 95.9%, 95.7%, 95.4% and 94.6%, respec-

tively. It can be seen that the accuracy of the algorithm designed has higher precision. The

experiment proves that the map matching algorithms based on hidden Markov models is

superior to other algorithms in terms of matching accuracy. This study makes the processing

of traffic trajectory data more accurate.

1. Introduction

Traditional map matching (TMM) algorithms, primarily relying on geometric proximity,

excel in simplicity and computational efficiency [1]. They perform well in scenarios with high-

quality data and simple road network structures, where geometric factors are sufficient to

determine the correct path [2,3]. However, these methods fall short in complex urban environ-

ments where dense road networks and frequent intersections introduce ambiguity [4,5]. The

conventional approach also fails to consider the temporal sequence of the trajectory data. In
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contrast, the Hidden Markov model (HMM)-based map matching algorithm offers a robust

alternative by incorporating not only the geometric data but also the temporal sequence and

spatial topology of the road network. This probabilistic model is particularly adept at handling

the noise and imprecision inherent in GPS data, providing a more accurate reflection of the

actual vehicle path [6,7]. To address the deviation between positioning data and real roads, a

map matching algorithm based on HMM has been proposed. This algorithm takes a global

perspective and utilizes changes in speed, angle, and other information to achieve matching

between location data and real roads. The research structure mainly includes four parts.

Firstly, it summarizes the research achievements and shortcomings of trajectory data and

HMM algorithm at home and abroad. Secondly, it researches and designs HMM models and

implements map matching algorithms. Then, trajectory data are compared and analyzed

through experiments. Finally, the experimental results are summarized, the shortcomings of

the research are pointed out, and future research directions are proposed.

2. Related works

With the development of urbanization in China, processing traffic trajectory data is crucial.

Map matching is one of the important links in traffic trajectory data analysis, which maps tra-

jectory data to corresponding locations on the map. This field has attracted the attention of

massive scholars. To estimate travel time from sparse or low resolution trajectory data, K.

Zhang et al. designed a generative adversarial network algorithm which considered spatio-

temporal correlation and generated travel time for road segments without sufficient observa-

tion data. The experimental results showed that this algorithm could effectively estimate the

average travel time of the link under various data loss rates, and was superior to other algo-

rithms. In addition, the accuracy of the algorithm reached more than 98%, and the average

time was 120ms. However, the weakness of this study is that the algorithm is often not stable

enough, and is prone to pattern oscillation and gradient disappearance [8]. To construct the

spatial semantic road map, J. Huang et al. proposed a divide and conquer approach, which

integrates multiple data sources. This method includes two tasks: road structure reconstruc-

tion and road attribute inference. Example analysis showed that in the application of Wuhan

City, this method could construct a routable road map with enhanced geometric structure and

rich semantic information. In addition, the spatial semantic road map constructed could pro-

vide data support for vehicle navigation and spatial data infrastructure updates, and had good

quality. However, this study also has certain shortcomings, such as difficulty in data integra-

tion, data security issues, and management costs [9]. Regarding the calibration issue of the car

following model, R. Keane and other researchers compared different solving algorithms and

finally determined an effective optimization method. This method could calibrate any car fol-

lowing model to adapt to various trajectory data, including lane changes, etc. The results indi-

cated that the quasi Newtonian algorithm using the adjoint method was faster than the genetic

algorithm and achieved higher calibration model accuracy. Besides, the accuracy of the quasi

Newton algorithm using adjacency method was as high as 97.52%, and the computational cost

was relatively low. However, this study also has shortcomings, such as increasing the complex-

ity of the problem, requiring a large amount of computation, and not being suitable for solving

non smooth problems [10]. To generate a qualified trajectory dataset that is difficult to distin-

guish from real trajectories, X. Chen et al. proposed two advanced solutions, TrajGAN and

TrajVAE. These methods used long short-term memory models to model trajectory features

and generated trajectory data using generative adversarial networks and variational autoenco-

der frameworks. The experimental results showed that the average accuracy values of the Traj-

GAN and TrajVAE models were 97.82% and 98.87%, respectively, and the generated
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trajectories were very close to the existing trajectories. These methods are more accurate and

stable than baseline models. However, there are also shortcomings in this study, such as the

tendency for gradient vanishing, difficulty in controlling the quality of generated samples, sen-

sitivity to parameter settings, and high demand for computing resources [11].

To solve the efficiency degradation of TMM methods based on HMM when facing dense

road networks, G. Cui and other experts designed a line segment-based HMM map matching

model. This model requires dividing the GPS trajectory into multiple sub-trajectories. The

results indicated that the proposed method improved the effectiveness and efficiency of TMM

methods. The accuracy of this method was over 92%, with an average time of 213ms and an F1

value of 0.973. However, this study also needs to be improved, such as a high demand for com-

puting resources [12]. M. Dogramadzi and other scholars proposed a map matching algorithm

based on HMM to reduce measurement errors in travel trajectory data. This algorithm could

accelerate the calculation of transition probability through high data availability instances. The

results showed that this model was able to reduce the running time by about 0.90 compared to

the traditional HMM. The accuracy of this model could reach up to 99.21%, which can reduce

the demand for processor and memory usage, and accelerate the calculation of transition prob-

abilities. However, this study can further improve the simulation of GPS errors [13]. To solve

the positioning errors in map matching, P. Alrassy and other experts proposed a map match-

ing algorithm with traffic data and trajectory data and combined a map matching framework

based on probability and weight. In addition, the ground reality data collected by the vehicle

sensor device was analyzed and compared with the commonly used off-the-shelf map match-

ing platform. The results showed that the algorithm had strong robustness, with an accuracy of

97.45%, especially when map data is dense and GPS noise is high. In addition, this algorithm

can perform map matching quickly and accurately. However, this study also has certain short-

comings, such as a lack of in-depth exploration in data security and privacy, and insufficient

consideration in the practical implementation [14]. To reduce the impact of positioning errors

and accelerate the matching process of high sampling rate trajectories, L. Huang et al. pro-

posed a batch matching strategy model for track data sub-sequences. To ensure that the sub-

sequences to be matched are on the same road section, the speed estimation was used as a con-

straint to determine the sub-sequence size and the local features of the road network. The

results indicated that this algorithm was superior to algorithms designed for low sampling rate

trajectories. This algorithm has good efficiency and accuracy, and can effectively reduce the

impact of positioning errors. However, there are still significant shortcomings in the incre-

mental map matching algorithm, and further research is needed [15].

In summary, scholars and experts have designed some trajectory data and Markov models

for various fields. However, there is rare research on traffic trajectory data and applying it to

map matching algorithms. Therefore, this study proposes an HMM-based map matching algo-

rithm, which introduces HMM model and time series information, comprehensively considers

the semantic information of adjacent time intervals of trajectory points to infer the true loca-

tion. The goal is to solve problems in traffic trajectory data analysis and improve the accuracy

and practicality of the map matching algorithm.

3. Methodology

Traditional technical methods usually start from a geometric perspective and use methods

such as projection and point-to-point distance for matching [16]. However, as the complexity

of roads increases, the matching accuracy of traditional technical means gradually decreases.

Therefore, a map matching algorithm based on HMM is proposed.
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3.1 Design of HMM and trajectory matching

Trajectory matching matches the obtained trajectory data with the actual road using a specific

algorithm. Due to the limited accuracy of existing positioning instruments, there may be some

deviation between the data collected by the instruments and the actual road conditions. There-

fore, it is necessary to match the data with the actual road conditions [17,18]. Track data T is a

series of data generated in chronological order, including longitude, dimensionality, and time

information, as shown in Eq (1) [19].

L ¼ fp1; p2; � � �; png ð1Þ

In Eq (1), pi 2 L contains three elements, as shown in Fig 1. The time difference between pi
and pi+1 is only t.

From Fig 1, a series of data between P1 and Pn have different trajectories and information.

The longitude, dimension, and time information of a series of data between P1 and Pn are

shown in Table 1.

From Table 1, the longitude of the data from P1 to P8 is around 30.70, the latitude is around

104.0 and 104.1, and the time is around 9:30 am. The determination of trajectory data T is

mainly obtained through sampling instruments. Road segment e can be cut from a real section

of the road according to certain rules, where eid means the id of that section of the road. eid,start

represents the beginning of the section of road. eid,end denotes the end of this section of road,

as shown in Fig 2.

Network route map G(V, E) represents the network route map to be processed, where V
contains the start and end points of all road segments. E represents all line segments. Line seg-

ments are elements in a network circuit diagram that represent paths or connections in a net-

work [20,21]. The specific form is shown in Fig 3.

Fig 1. Trajectory data diagram.

https://doi.org/10.1371/journal.pone.0302656.g001
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Table 1. The longitude, dimension, and time information of a series of data between P1 and Pn.

Data Latitude Longitude Time

P1 104.10041 30.70883 9:24

P2 104.10018 30.70847 9:27

P3 104.10002 30.70823 9:30

P4 104.09996 30.70811 9:33

P5 104.09988 30.70794 9:36

P6 104.09983 30.70788 9:39

P7 104.09979 30.70782 9:42

P8 104.09975 30.70766 9:45

. . .. . . . . .. . . . . .. . . . . .. . .

Pn . . .. . . . . .. . . . . .. . .

https://doi.org/10.1371/journal.pone.0302656.t001

Fig 2. Road segment group map.

https://doi.org/10.1371/journal.pone.0302656.g002
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By providing a trajectory data T, it searches for a set of real e in network line G to represent

the trajectory data. This algorithm for finding real data is called map matching. However, geo-

metric map matching algorithms often face problems such as noise and uncertainty, deviation

from paths, data sparsity, dynamic changes, and multiplicity [22,23], as shown in Fig 4.

Fig 4 shows a schematic diagram of map matching using track data. Simply considering the

geometric factors without considering the logic in the time series of the trajectory point, the

point will be located on line B, but its true matching point is on line A. This shows that if

matching is based only on geometric proximity, the algorithm may ignore the logic in the time

series of the trajectory points. The complexity of urban road networks may also lead to the

inaccuracy of pure geometric matching methods. Intersections, parallel roads, overpasses and

other factors can make the closest distance not always represent the correct match. Therefore,

a map matching algorithm considering the logic of time series was adopted.The algorithm can

match the map more accurately by introducing HMM, considering the geometry, and combin-

ing the time series information of track points. The HMM model can process data with tempo-

ral characteristics, that is, there is a chronological order between the data. The key concepts

include observed variables, hidden states, observed state generation matrix and state transition

matrix [24,25]. Fig 5 shows a detailed form.

In Fig 5, Z represents hidden variables, i.e. observable data. X represents an observational

variable, which is data that cannot be observed directly. Zn is related to Zn-1. Xn is related to Zn.

The distribution of the model can be represented as shown in Eq (2) [26].

pðxi; � � �; xN ; z1; � � �; zNÞ ¼ pðz1Þ½
YN

n¼2
pðznjzn� 1Þ�½

YN

n¼1
pðxnjznÞ� ð2Þ

Fig 3. Road network map.

https://doi.org/10.1371/journal.pone.0302656.g003
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In Eq (2), p(xi, . . ., xN, z1, . . . zN) represents the sequence of observed variables, which repre-

sents the probability of xi, . . ., xN under the hidden variable z1, . . ., zN. p(z1) indicates the prob-

ability of initializing hidden variables. p(zn|zn-1) represents the probability of transitioning

from the hidden variable zn-1 state to the state zn. p(xn|zn) represents the probability of the

observed variable under the hidden variable zn. By initializing the parameters of hidden vari-

able probability, state transition probability, and observation variable generation probability,

an HMM can be uniquely determined. Among them, the probability of initializing the hidden

variable is assumed to be a random distribution θ, as the variable does not have a direct precur-

sor node. The normalization condition needs to be met as
XN

i¼0
yi ¼ 1, where there are N dif-

ferent states. If a state i is represented as Z1, the probability distribution is represented as

shown in Eq (3) [27–29].

pðZ1jyÞ ¼
YN

i¼1
Z1i

i ð3Þ

Assuming Zn-1 is represented as the current state, each state can be represented by a vector

for K, and each value in the vector only goes to (0, 1). So, the probability of generating the next

state Zn is represented by the state transition matrix using the matrix A. The j in the i line rep-

resents the probability of the K th element of state Zn-1 taking j as Zn under the premise of i.
The distribution can be written as shown in Eq (4) [30].

pðznjzn� 1;AÞ ¼
YK

j¼1

YK

k¼1
AZn� 1 ;j

Znk

j;k ð4Þ

The observation state generation matrix represents the probability of transitioning from an

implicit state to an observable value, p(xn|zn,;), where one state is represented by the size of K.

Fig 4. Track data map matching diagram.

https://doi.org/10.1371/journal.pone.0302656.g004
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When znk = 1, it can represent the conditional probability at the K value, as shown in Eq (5) [31].

pðxnjzn; ;Þ ¼
YK

k¼1
pðxnj;kÞ

znk ð5Þ

3.2 Design of map matching algorithm based on the HMM

This study proposed a map matching algorithm based on HMM, aiming to solve this problem

from a global perspective. Study set a parameter K to select the closest line segments of K to

reduce computational complexity. It identified candidate points through these K line segments

and calculated the probability of generating observation states using a normal distribution. At

the same time, a measurement method based on distance, velocity, and angle changes was pro-

posed to construct a state transition matrix [32–34]. In the algorithm, the confirmation of can-

didate lines and candidate points under K values was first studied. To achieve this goal, the

study adopted a segmented cutting method. Specifically, whenever a break occurs in a line seg-

ment, this study will segment the entire network into multiple road segments and label each

segment with a unique id. By using the pending point p, the point to line expression is as

shown in Eq (6) [35].

d ¼
jAx0 þ By0 þ Cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2
p ð6Þ

In Eq (6), the line is represented as Ax0 + By0 + C = 0, where A, B, and C are the parameters

of the line. The first K segments closest to the test point p are selected as candidate segments

[36,37], and the projection points from the processing point p to each candidate segment are

Fig 5. HMM diagram.

https://doi.org/10.1371/journal.pone.0302656.g005
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calculated based on the selected candidate segments e1, e2 . . . etc., as shown in Eqs (7–9) [38].

jBDj ¼ BA �
BC
jBCj

ð7Þ

BD ¼ jBDj �
BC
jBCj

¼ BC �
BA � BC
jBCj2

ð8Þ

D ¼ Bþ BD ð9Þ

In Eqs (7–9), D represents the projection of the assumption on the BC line segment, and A
represents the p point. In the algorithm, the confirmation of the observation generation matrix

is to determine the distribution relationship between the positioning accuracy and the real road.

It is generally assumed that this difference follows a normal distribution and its variance is set

to 1 [39,40]. The standard deviation can be determined using the method given in Eq (10) [41].

m ¼

XK

k¼1
½pi � pk

i �

K
ð10Þ

In Eq (10), i represents the point to be processed. pk
i represents the k th candidate point of

the i th true point. k represents the number of candidate points. It calculates the distance from

each candidate point to that point, and takes the mean, as shown in Eq (11) [42].

NðcjiÞ ¼
1
ffiffiffiffiffiffi
2p
p

s
e�
ðxji � mÞ

2

2s2 ð11Þ

In Eq (11), xj
i represents the distance between the i th point and the candidate point j. For the

confirmation of the state transition matrix, this study proposes to start with the angle, velocity,

and distance between the processing point pt and its previous point pt—1. Firstly, the ratio of

the distance between the processing point and its precursor candidate point to the distance

between the positioning point can be determined using Eq (12) [43].

Lðcti� 1
! csiÞ ¼

di� 1!i

wði� 1;tÞ!ði;sÞ
ð12Þ

In Eq (12), i represents the current pending point. i—1 represents front wheel drive. t and s
represent the determined candidate points, where d distance and w calculate the distance of the

positioning point. It further combines speed changes to calculate the speed of candidate line

segments. Specifically, the distance d can be determined by the distance between the previous

and subsequent candidate points, and the instantaneous velocity on the line segment can be cal-

culated, as shown in Eq (13) [44].

�vði� 1;tÞ!ði;sÞ ¼
du

Dti� 1!t
=vði� 1;tÞ!ði;sÞ ð13Þ

Finally, the similarity of angles can be combined to verify whether the change angles of the

selected candidate points are similar. This can be achieved with Eq (14) [45].

rjk ¼

Xn

i¼1
xijxik

ð
Xn

i¼1
x2

ij

Xn

i¼1
x2

ikÞ
1
2

ð14Þ

In summary, the similarity of distance, speed, and angle can be combined to calculate the
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overall formula, as shown in Eq (15) [46].

Ftðc
t
i� 1
! csiÞ ¼ Lðcti� 1

! csiÞ þ �vði� 1;tÞ!ði;sÞ þ 1=rjk ð15Þ

Finally, it will normalize the results and calculate the state transition matrix. In this study, an

algorithm is used to cut the line and the nearest K different segments are selected to reduce

computational overhead and determine candidate points for each segment. To achieve this

goal, a state transition matrix and an observation generation matrix are constructed based on

HMM. Through these matrices, this study can calculate results that accurately express specific

line groups. The specific algorithm is shown in Table 2.

In Table 2, first is to input trajectory data, circuit diagram, and a specific value. Trajectory

data is a series of positional information used to represent the movement path of a trajectory.

Route maps are pre-prepared geographic information data such as road networks or bus

routes. The selection of values is related to the accuracy and efficiency of matching. Next, for

each trajectory data point, it will output the corresponding line segment group. Then, it will

initialize the data and set an K value to affect the accuracy and effectiveness of subsequent

matching results. Subsequently, the overall route map is cut into fragments related to each tra-

jectory data point. Finally, the probability of generating the trajectory data for all line segments

is calculated. The above steps need to be repeated N times to process and match all trajectory

data points.

3.3 Source of trajectory data information

According to the Gaia Trajectory Data Open Program, data was collected from partial areas of

the Second Ring Road in Xi’an and Chengdu from October 2016 to November 2016. Table 3

provides specific information on these data. These data can be used to analyze information on

traffic flow, travel patterns, and road utilization.

Table 3 shows the relevant data information of Gaia data. The city name represents the

source city of the data. The schedule shows the time range of data collection. The data volume

represents the size of the compressed data. The type represents the meaning represented by

each data. The collection interval represents the time interval of data collection, usually 3 sec-

onds. In a large amount of traffic trajectory data, there is often a lot of irrelevant information.

Therefore, before conducting research, it is necessary to pre-process the data. The Chengdu

Second Ring Road ride hailing Gaiya data is taken as an example, as shown in Table 4.

According to the attributes of ride hailing data in Table 4, each record contains the follow-

ing information: vehicle ID, order information, time information, latitude and longitude infor-

mation, start time, end time, the latitude and longitude of boarding and alighting. Among

them, vehicle ID is used to identify each ride hailing vehicle. Order information is a randomly

Table 2. K-HMM algorithm flow table.

Algorithm flow

Input: track data, route diagram, K value

Output: the group of line fragments corresponding to each track data

Repeat the following steps N times:

(1) Initialize data and set K value

(2) Cut the overall circuit diagram.

(3) Determine the nearest K lines and candidate points by calculating formulas 6 and 9

(4) Calculated the observation generation matrix and state transition matrix by formulas 11 and 15

(5) Calculate the probability of generating the trajectory data for all medium line segments

https://doi.org/10.1371/journal.pone.0302656.t002
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generated string of symbols by the system that represents a unique customer order. The time

information records the time at which each data is generated. The latitude and longitude infor-

mation represents the specific location of the ride hailing service. The start and end time

record the start and end times of the ride hailing service, respectively. The latitude and longi-

tude of boarding and alighting record the positions of passengers boarding and alighting,

respectively.

In Table 5, there are issues with missing, memory confusion, and redundancy in the origi-

nal trajectory data. To address these issues, it is necessary to perform simple data processing.

In the data pre-processing phase, the study first examined each record to confirm if there is

any missing information. Then, the redundant data was processed to identify and delete all

duplicate records with identical properties in the data set. Further, it should pay attention to

the accuracy of the time logic. In addition, the positional logic was scrutinized to ensure that

no physically impossible speeds or distances occur. Table 6 shows the processed data. Through

these steps, more accurate trajectory data can be obtained.

4. Results

In this research experiment, the dataset used in this study is sourced from Section 3.3. For

hardware environments, research used Intel Core i7-8700k processors and 16GB of memory.

The operating system was Windows 10, and the software environment was Python 3.7 pro-

gramming language for algorithm implementation and data processing. The development

environment was Anaconda, the data analysis library was Pandas and NumPy, and the map

matching algorithm library was HMM library.

Table 3. Data information table.

City name Time Data volume Type Acquisition interval

Xi ’an Second Ring Road October 2016 5.5 Tracking point 2–4

Chengdu Second Ring Road October 2016 8.0 Tracking point 2–4

Xi ’an Second Ring Road November 2016 5.3 Tracking point 2–4

Chengdu Second Ring Road November 2016 10.1 Tracking point 2–4

https://doi.org/10.1371/journal.pone.0302656.t003

Table 4. Original network car properties sheet.

Attribute Name Example Description

Vehicle ID String a739b90e4907fa30b0d6a3a3b39e67bb Uniquely marked vehicle

Order ID String 982bf243c3202415d6252271b2693161 Uniquely represents order information

Time Time 1478041356 The time format is nix time cut, accurate to seconds

Longitude Double 104.10018 The format is GCJ-02

Dimensionality Double 30.70847 The format is GCJ-02

Start time Time 1478041359 The time format is nix, accurate to second

End time Time 147804149 The time format is nix, accurate to second

Boarding longitude Double 104.10018 The format is GCJ-02

Boarding dimension Double 30.70847 The format is GCJ-02

Alighting longitude Double 124.10057 The format is GCJ-02

Exit dimension Double 30.70908 The format is GCJ-02

https://doi.org/10.1371/journal.pone.0302656.t004
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4.1 Trajectory data results and analysis of HMM-based map matching

algorithm

In the experimental verification, the study used GPS trajectory data from the real world and

employed screening methods and mapping formulas. In addition, the study also calculated the

trajectory segments and generated corresponding state matrix results. The experimental data

was sourced from the Gaia Trajectory Data Open Program, which selected local data from

Chengdu Second Ring Road and preprocessed the data to remove redundant and missing

data. K selected candidate paths and candidate points are shown in Fig 6. From Fig 6(A), the

fine-grained offset data appeared in a trajectory data, which required map matching work. Fig

6(B) shows the effect of calculating the K line segment closest to the processing point according

to the corresponding Eq 6, and the segment was numbered when K is shown in the figure.

It was filtered through candidate paths, and then mapping formulas were utilized to find

the mapping points between the processing points and each line. However, solely considering

the distance between the processing point and the candidate point to determine which seg-

ment the processing point belongs to did not provide high positioning accuracy from a geo-

metric perspective, as shown in Fig 7.

From Fig 7, in the map matching, only considering the geometric proximity of the nearest

route and candidate points might lead to matching errors. From Fig 7(A) and 7(B), if candi-

date points were selected only based on geometric distance, then the calculated distance

between the point to be processed and candidate point was closer than that of candidate point

3. Then candidate point 2 might be mistakenly replaced by the pre-processing point. From Fig

Table 5. Part of the original data.

Vehicle ID Order ID Time Longitude Dimensionality Start time

a739b90e4907fa 982bf243da 1478041353 104.10057 30.70908 1478041353

a739b90e4907fa 982bf244da 1478041356 104.1005 30.70883 1478041353

a739b90e4907fa 982bf245da 1478041359 104.10018 30.70847 1478041353

a739b90e4907fa 982bf246da 1478041362 30.7082 104.2 1478041353

a739b90e4907fa 982bf247da 1478041365 104.09992 30.70807 1478041353

a739b90e4907fa 982bf248da 1478041368 104.09992 30.70807 1478041353

a739b90e 982bf248 1.5E+09 140.1 30.72 1.5E+09

End time Boarding longitude Boarding dimension Alighting longitude Exit dimension \

1478042363 104.10057 30.70908 104.10350 30.71446 \

1478042363 105.10057 30.70908 105.10350 31.71446 \

1478042363 106.10057 30.70908 106.10350 32.71446 \

1478042363 107.10057 31.70908 107.10350 33.71446 \

1478042363 108.10057 30.70908 108.10350 34.71446 \

1478042363 109.10057 29.70908 109.10350 35.71446 \

1.5E+09 110.20000 30.71 110.10349 36.72 \

https://doi.org/10.1371/journal.pone.0302656.t005

Table 6. Retain a valid field property list.

Attribute Name Example Description

Vehicle ID String a739b90e4907fa30b0d6a3a3b39e67bb Uniquely marked vehicle

Order ID String 982bf243c3202415d6252271b2693161 Uniquely represents order information

Time Time 1478041356 The time format is nix time cut, accurate to seconds

Longitude Double 104.10018 The format is GCJ-02

Dimensionality Double 30.70847 The format is GCJ-02

https://doi.org/10.1371/journal.pone.0302656.t006
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7(B), by adding other track points of the track data where the candidate point was located, the

real candidate point of the candidate point should be candidate point 3. Therefore, in the map

matching, only from the geometric point of view was not enough to ensure high precision

results. This is similar to the research results of K. Researchers K. Zhang et al. [47] designed a

spatio-temporal trajectory data compression algorithm that identifies the turning and speed

change behavior of vehicles by analyzing their motion patterns, and extracts feature points

from multiple perspectives.

Fig 6. Candidate path display diagram.

https://doi.org/10.1371/journal.pone.0302656.g006

Fig 7. Candidate points and partial trace points.

https://doi.org/10.1371/journal.pone.0302656.g007
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4.2 Results and analysis of trajectory data after removing noise

According to the analysis results in the previous section, this study obtained a batch of data for

map matching after removing noise in Section 2.1. The trajectory data after removing noise

was local data from the Chengdu Second Ring Road in the preprocessed Gaia trajectory data

open plan. It intended to test the superiority of K-HMM algorithm in map matching of trajec-

tory data. In Fig 8, the trajectory data exhibited certain curves, variations, and intersections.

This reflects the complexity and diversity of transportation networks in the real world.

Fig 8(A) shows the complex route map of Chongqing Second Ring Road, which shows the

interweaving of traffic trajectories and presents a very complex situation, making it difficult to

handle. Fig 8(B) shows a real ride hailing trajectory point. From the figure, due to factors such

as the complexity of the transportation network, the trajectory points have shifted on various

routes, which was not consistent with the real route. The algorithm proposed in this study

used a K value of 5 to calculate the trajectory segment, and the generated state matrix results

are shown in Table 7.

In Tables 7 and 2 decimal places were retained, and each data was generated using a normal

distribution. Its practical significance was that the closer the positioning point was to the can-

didate point, the closer its value was to 1. Among them, pi represents the trajectory point of the

i th positioning, and i represents different points when taking different values. cj represents the

j th candidate point, while j points to different candidate points with different values, with the

highest value being K. Each pi corresponds to its own cij selection point, with the highest j value

taken as K. For the state transition matrix, it integrates information on velocity, angle changes,

and distance. Therefore, the study used normalization methods to calculate the state transition

matrix between candidate points ci� 1
j corresponding to time pi-1 of time ti-1, and the state tran-

sition matrix of candidate point cij corresponding to time pi of time ti. Fig 9 shows the relation-

ship between all positioning points and their corresponding candidate points.

Fig 9 shows that the state transition matrix needs to calculate the state transition matrix

between the candidate points in the previous moment and the candidate points in the next

Fig 8. Complex traffic line and track point diagram.

https://doi.org/10.1371/journal.pone.0302656.g008
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moment. Table 8 shows the state transition table between the candidate points corresponding

to p1 to p2.

As shown in Table 8, the state transition matrix table from p1 to p2 should retain two signifi-

cant digits after the decimal point. It simply calculated the state transitions of all trajectory

points to be processed from p2 to p3, p3 to p4, and combined the state generation matrix table

with the state transition matrix table to calculate the combination of all candidate points. It

selected the candidate combination with the largest data as the true matching path, as shown

in Fig 10, which is a complex traffic route and trajectory point map.

Fig 10(A) shows the online ride hailing positioning data represented by red trajectory points,

while yellow trajectory points represent results that only consider geometric relationships

(neighboring points). From the figure, the nearest algorithm that only considered the distance

between points and lines was prone to positioning errors. This is due to without considering the

connectivity issue of the line and the temporal dimension characteristics of trajectory data, and

Table 7. State generation matrix table.

/ c1 c2 c3 c4 c5

p1 0.84 0.56 0.42 0.44 0.37

p2 0.62 0.63 0.34 0.54 0.76

p3 0.59 0.54 0.76 0.13 0.62

p4 0.36 0.66 0.72 0.66 0.22

p5 0.12 0.4 0.25 0.69 0.55

p6 0.89 0.68 0.58 0.57 0.99

p6 0.7 0.79 0.36 0.25 0.28

https://doi.org/10.1371/journal.pone.0302656.t007

Fig 9. The relationship diagram between the candidate points corresponding to the anchor points.

https://doi.org/10.1371/journal.pone.0302656.g009
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there was correlation between trajectory points. Fig 10(B) shows the processing results of the

proposed algorithm. The red points represent the original positioning data points, while the yel-

low trajectory points represent the results processed by the algorithm. The proposed algorithm

considered the average speed, distance, and angle of candidate paths as starting points, and

studied the relationship between the two points before and after. Therefore, the accuracy has

significantly improved. In this algorithm, the study involved selecting the nearest line, which

requires a manually specified value. 10 to 20 independent experiments were performed for each

K value to ensure the reliability of the statistical results. This study was measured from the time

and accuracy, and provided the appropriate value that guarantees accuracy and efficiency. The

experimental results are shown in Table 9. When K = 5, the algorithm accuracy reached 95.3,

and the calculation time was only 51ms. Compared with K = 7 (accuracy was 97.1, calculation

was102ms), the calculation time was greatly reduced while maintaining high accuracy. This bal-

ance was based on consideration of the application scenarios of the algorithm. During the

experiment, statistical analysis was also conducted. The study used chi square test to compare

multiple sets of data pairwise and output a significance value p.

The time loss in Table 9 refers to the average time spent processing a trajectory point, com-

pared to accuracy. From the results in the table, as the K value changed, the average time to

Table 8. State transition table.

/ c2
1

c2
2

c2
3

c2
4

c2
5

c1
1

0.57 0.32 0.1 0.02 0.04

c1
2

0.24 0.36 0.21 0.12 0.12

c1
3

0.69 0.04 0.22 0.06 0.04

c1
4

0.13 0.03 0.72 0.09 0.08

c1
5

0.32 0.57 0.04 0.07 0.05

https://doi.org/10.1371/journal.pone.0302656.t008

Fig 10. Complex traffic line and track point diagram.

https://doi.org/10.1371/journal.pone.0302656.g010
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process a trajectory point continued to increase. However, when the K value reached a certain

value, the increase in accuracy did not change much. Considering both time loss and accuracy,

K = 5 was chosen as the optimal value for processing trajectory data. Through the above exper-

imental results, the algorithm performed best when the K value was set to 5. p<0.05 in Table 9

indicates that the corresponding data was significant. The comparison of accuracy and time

loss with other algorithms is shown in Fig 11.

Fig 11(A) shows that the algorithm proposed in this study performed well in various road

conditions, with the best performance in parallel road sections and an accuracy of about 96%

in mixed road sections. The accuracy of the algorithm designed by the research on parallel,

crossing, overpass, and mixed sections was 98.3%, 97.5%, 94.8%, and 96%, respectively, with

an average value of 96.65%. The accuracy of the traditional HMM algorithm was 95.9%,

95.7%, 95.4%, and 94.6%, with an average of 95.4%. The accuracy of the direct projection algo-

rithm was 95.2%, 93.1%, 90.4%, and 84.4%, respectively, with an average value of 90.775%. The

accuracy of curve fitting was 96.3%, 94.9%, 94.2%, and 90.8%, respectively, with an average

value of 94.05%. Fig 11(B) shows the average time loss of various algorithms in processing

positioning points. From the figure, the time loss of the proposed algorithm was reduced, with

a time loss of nearly 60ms in the overpass section. The time loss of the proposed algorithm on

parallel, crossing, overpass, and mixed sections was 53.1ms, 55.9ms, 60ms, and 58.8ms, respec-

tively, with an average value of 56.95ms. The time loss based on traditional HMM algorithm

was 53.8ms, 57.5ms, 68.9ms, and 62.8ms, with an average value of 60.75ms. The time loss of

the direct projection algorithm was 23.5ms, 32.1ms, 42.6ms, and 39.7ms, respectively, with an

average value of 34.475ms. The time loss for curve fitting was 27.6ms, 38.3ms, 48.2ms, and

46.3ms, respectively, with an average value of 40.1ms. Overall, although the algorithm

increased time loss compared to algorithms based on geometric principles, its accuracy perfor-

mance was very stable. In summary, a detailed explanation of the map matching algorithm in

this study was provided. The final results of using the K-HMM algorithm on Chengdu data are

shown in Fig 12.

5. Discussion

A map matching algorithm based on HMM was studied and designed to address the issue of

deviation between positioning data and real roads in traffic trajectory data analysis. This algo-

rithm not only introduced HMM, but also involved considering geometric shapes and com-

bining time series information of orbital points. The results showed that the map matching

algorithm based on HMM had good performance, with good accuracy and time loss. The

accuracy was about 96% in mixed road sections, and it reduced nearly 60 milliseconds in over-

pass sections. This result was consistent with existing research on HMM. F. Liu et al. [48]

designed a Gaussian HMM for the regionalized decision-making problem of human-machine

Table 9. A table of time loss and accuracy under different K values.

/ Time loss (ms) Accuracy rate (%) p
K = 1 9 78.7 0.031

K = 2 13 79.6 0.027

K = 3 33 85.7 0.023

K = 4 46 89.0 0.034

K = 5 51 95.3 0.022

K = 6 90 97.0 0.019

K = 7 102 97.1 0.017

https://doi.org/10.1371/journal.pone.0302656.t009
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shared control. The results showed that the model performed well in both accuracy and time

loss, and could adaptively adjust the driver’s control switching.

6. Conclusion

This study introduced the source and composition of data, and discussed pre-processing

methods for trajectory data, as well as map matching algorithms for processing biased data.

Due to the inconsistency between the data obtained by the positioning tool and the actual

path, path matching work needed to be carried out. TMM techniques only considers geometric

information, resulting in low accuracy. Therefore, a map matching algorithm based on HMM

was proposed. From a global perspective, K candidate paths and points were selected, and an

observation variable generation matrix was constructed using the idea that the accuracy error

generally follows a normal distribution. The state transition matrix was determined by fusing

the speed of the candidate road segment, the distance from the positioning data, and the angle

information to complete the map matching work of the entire algorithm. The experiment

selected a K value of 5 as the optimal value to process trajectory data, with a time loss of 51 ms

and an accuracy of 95.3. The proposed algorithm performed well, with the best performance

in parallel road sections and an accuracy of about 96% in mixed road sections. The time loss

was also reduced, with nearly 60 ms in the overpass section. Although the algorithm proposed

in the study increased time loss compared to algorithms based on geometric principles, its

accuracy performance was very stable. However, there are shortcomings in this study. Due to

data collection conditions and cost limitations, the scale of traffic trajectory data used in the

study is relatively small. When processing deviation data, its accuracy needs to be further

improved, and more suitable means are needed to extract the information vector of trajectory

data points. This is also an area where further research can continue to improve.

Fig 11. Algorithm comparison graph.

https://doi.org/10.1371/journal.pone.0302656.g011
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