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Abstract

Growing evidence has increasingly suggested a potential linkage between the oral micro-

biome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). How-

ever, the utilization of gene-level information derived from the oral microbiome for

diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel

potential of leveraging genomic signatures associated with antibiotic resistance genes

(ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of

oral microbiome samples obtained from PDAC patients, we successfully identified specific

ARGs that displayed distinct sequence abundance profiles correlated with the presence of

PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs

were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited

promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and

early detection method. Our findings not only provide novel modal data for diagnosing

PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.

Introduction

Over the past decade, advancements in high-throughput sequencing technologies, particularly

metagenomics, have revolutionized our understanding of the oral microbiome [1–3]. These

techniques allow researchers to identify and analyze the vast array of microorganisms present

in the oral cavity, beyond those that can be cultivated using traditional microbiological meth-

ods. The oral microbiota is a complex ecosystem composed of bacteria, fungi, viruses, and

archaea, all working in harmony or dysbiosis depending on the balance of their populations

[4]. Understanding the composition, diversity, and functionality of oral microbiota is essential

for host health [5, 6]. Notably, the oral microbiota has been associated with systemic health

conditions [7, 8].

The human microbiome contains repositories of antibiotic resistance genes (ARGs) that

are present across numerous microbiomes. Surveillance of ARGs is a key tenet of the human

health [9]. The oral microbiome serves as a recognized hub for acquiring and disseminating
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ARGs, playing a role in the widespread emergence of antimicrobial-resistant infections [10].

Previous has described the oral microbiome diversity and prevalence of ARGs in periodontal

health and disease [11]. Specifically, recent studies have shed light on the intricate relationship

between the oral microbiome and pancreatic cancer (PDAC) [12], a highly aggressive malig-

nancy with a low survival rate. Furthermore, the oral microbiome exhibits the potential to

serve as a source of biomarkers for the early detection and diagnostic stratification of PDAC

[12]. Specific microbial signatures and changes in microbial gene expression have been identi-

fied in PDAC patients, suggesting their potential utility as non-invasive diagnostic tools. How-

ever, there are additional biomarkers, specifically at the gene level, that have yet to be explored,

such as ARGs. ARGs play a crucial role in microbial populations and have gained significant

attention in recent years due to their impact on human health [11, 13], including their associa-

tion with various diseases and their potential as diagnostic markers [14]. The presence of

ARGs within the oral microbiome can provide insights into the microbial ecology, as well as

antibiotic usage and exposure history of an individual [15, 16].

One study by Fan et.al observed that patients with PDAC were more likely to have antibod-

ies against Porphyromonas gingivalis, an oral bacterium, indicating a past infection [17]. The

presence of pathogenic bacteria has been proposed to contribute to systemic inflammation,

which is a recognized risk factor for the development of PDAC. Further, Fulop et.al found that

receipt of perichemotherapy antibiotics was associated with improved survival among patients

treated with gemcitabine [18]. They think that antibiotics may modulate bacteria-mediated

gemcitabine resistance and have the potential to improve PDAC outcomes. In the context of

PDAC, understanding the abundance and diversity of ARGs within the oral microbiome

could have important implications.

In this study, our primary objective was to explore a novel approach by examining the

untapped potential of utilizing genomic signatures specifically linked to ARGs present within

the saliva for improving the diagnostic capabilities of PDAC. By focusing on these genomic

signatures, we aimed to investigate their association with PDAC and evaluate their effective-

ness in distinguishing between individuals with PDAC and those without, offer a non-invasive

and promising avenue for improving patient outcomes.

Materials and methods

Data collection

47 salivary samples from patients with PDAC and 235 salivary from healthy control were col-

lected by Nagata et.al study [12]. Notably, the authors considered confounding factors such as

gender and age when collecting saliva samples from these patients and healthy control. Fur-

thermore, these confounding factors does not affect the composition of the oral microbiome.

Therefore, in this study, we no longer consider the influence of confounding factors. The data

was downloaded using the prefetch v2.10.7 (https://github.com/ncbi/sra-tools). The process of

data collection and processing can be found in Fig 1A.

Quality control of shotgun metagenomic sequence

Subsequently, Trimmomatic v0.39 [19] was employed to remove adapter sequences and low-

quality bases (ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true TRAILING:20 MINLEN:60).

After quality control, the reads were further processed to remove human genomic sequences

using bowtie v2.4.4 [20]. To achieve this, we utilized the T2T-mY-rCRS genome [21] (https://

github.com/marbl/CHM13, PARs on chrY hard masked to "N" and mitochondrion replaced

with rCRS), which is essential for effectively removing human genomic contamination, partic-

ularly in saliva samples with high host genomic content.
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ARGs annotation

Following the removal of human genomic sequences, we performed alignments against the

Comprehensive Antibiotic Resistance Database (CARD [22], https://card.mcmaster.ca/

download) using bowtie v2.4.4 [20] and samtools v1.13 [23]. This enabled us to determine the

number of reads that matched ARGs in each sample. To accurately quantify their abundance,

we applied corrections for both sequencing depth and the gene lengths specific to the ARGs

[14]. Consequently, standardized relative abundance information was obtained, which will be

utilized for subsequent analyses.

Diagnostic model construction

A Random Forest classifier was utilized in this study to construct a diagnostic model for pan-

creatic cancer. Our research dataset consists of genomic features related to the oral

Fig 1. The analysis workflow and the calculation of alpha diversity. (A) Data acquisition and processing workflow. (B)

Calculation and comparison of alpha diversity using Shannon and Simpson indices.

https://doi.org/10.1371/journal.pone.0302361.g001
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microbiome, specifically antibiotic resistance genes, with the aim of utilizing them fully for

diagnosing pancreatic cancer. Initially, the dataset is loaded. The dataset contains information

regarding various genomic features and their respective disease outcomes. The dataset is

divided into input features (X) and target variables (y). X encompasses the genomic features,

while y represents the disease outcomes. Subsequently, highly correlated features with the dis-

ease outcome are filtered out by calculating Pearson correlation coefficients between each fea-

ture and the target variable. The top 2000 most relevant features were selected for further

analysis. Then, the dataset is split into a training set and a test set, allocating 80% of the data

for training and 20% for testing. Lastly, a diagnostic model is built using a Random Forest clas-

sifier. Parameters such as the number of decision trees (n_estimators) and the maximum

depth of trees (max_depth) are configured to optimize performance on the test set. The perfor-

mance of the model is evaluated by calculating ROC curves and AUC values (area under the

curve). These metrics aid in measuring the classification performance of the model.

Statistical analysis

The statistical analyses were conducted using R 4.3.2. Alpha diversity (Shannon and Simpson)

was calculated by vegan package. To calculate the Bray-Curtis distance, the ARGs profiles was

directly computed. PCoA analysis was performed in R using the ade4 package [24]. The Ado-

nis analysis was conducted using the vegan package. To test the differential abundances of

ARGs, the Wilcoxon rank-sum test was employed, and the Benjamini-Hochberg (BH) proce-

dure was used to correct the p-values, with significance defined as p-adjust< 0.05. For creating

boxplots and PCOA plot, the ggplot2 package was utilized. The heatmap was constructed

using the pheatmap package. The receiver operating characteristic (ROC) curves were built

using the pROC package. Additionally, bioinformatic analysis was performed using the Omic-

Studio tools athttps://www.omicstudio.cn/tool.

Results

PDAC patients have higher alpha diversity of ARGs in their oral

microbiome

We determined the normalized sequence relative abundance of ARGs in all samples through

the analysis workflow shown in Fig 1A. To explain the distribution of oral ARGs in PDAC

patients, in Table 1, we present the top 20 ARGs with the highest average relative abundance

in each group and across all samples, listed as tet(M), mel, tetA(46), ErmX, ErmB, tetB(46),

RlmA(II), tet(O/M/O), tet(W/N/W), tet(W), tet(Q), patA, patB, tetA(60), CfxA, CfxA3, lsaC,

pmrA, CfxA2 and ErmF. We found that the composition of ARGs in the top 20 of healthy peo-

ple and PDAC patients was the same, but the rank of each ARGs was different. We found that

these ARGs are mainly associated with tetracycline, erythromycin and cephalosporinase in

healthy and PDAC group. The relative abundance ranking of ARGs differs in PDAC and

healthy control, suggesting a potential difference in ARG composition. Subsequently, we com-

puted the alpha diversity of ARGs encoded by the oral microbiome in PDAC patients and

healthy individuals using normalized sequence relative abundance, including Shannon and

Simpson diversity. We found that the ARGs of oral microbiome of PDAC patients exhibited

higher alpha diversity (Fig 1B), including Shannon (p = 0.01455) and Simpson (p = 0.01068).

The implications of these findings suggested a potential link between the oral microbiome

composition, ARGs, and the presence of PDAC, highlighting the importance of further explor-

ing and understanding the associations between ARGs of oral microbiome and PDAC.
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ARGs with differentially abundance between PDAC and healthy control

Subsequently, we delved into a detailed exploration of the differentiation in ARGs between

individuals with PDAC and those in health by assessing beta diversity measures. Based on the

relative abundance of ARGs, we calculated the Bray-Curtis distance and assessed the dissimi-

larity using Adonis. However, we found no significant difference in beta diversity between the

two groups (Fig 2A, p = 0.3145). Undeterred by the lack of significant differences in beta diver-

sity, we proceeded to scrutinize the distinctiveness of ARGs present in both groups. We com-

pared the abundance differences of ARGs in PDAC and healthy individuals, with p-values

adjusted by the BH adjust method. We identified a total of 24 differentially abundant ARGs

(Fig 2B), with 3 enriched in healthy individuals and 21 significantly elevated in PDAC. This

marked enrichment of numerous ARGs in the PDAC group suggests a potential link between

antibiotic resistance and the occurrence of PDAC. To provide a comprehensive understanding

of these findings, we further calculated the fold change values and visually presented them in

Fig 2B. We found some ARGs that varied more than twice in abundance, suggesting that these

ARGs might be biomarkers for PDAC patients. Subsequently, we presented the abundance

information of these ARGs using a heatmap (Fig 2C). It can be observed that ARGs represents

the mel, tetB(46) and tet(O/M/O) ARGs enriched in the healthy group, while tet(Q), APH(3’)-

IIIa, SAT-4, APH(3’’)-Ib, CfxA2, CfxA4, CfxA3, CfxA5, tet(O/32/O), OXA-85, APH(3’)-Ia, tet

(37), SPU-1, tetB(60), CfxA, CSP-1, TEM-112, mefE, kdpD, tet(C) and APH(6)-Id represents

the 21 ARGs enriched in PDAC. Overall, we were able to identify biomarkers at the genetic

level in the oral microbiome of PDAC patients that need to be explored further.

Co-occurrence analysis showed different correlations among ARGs in

healthy and PDAC group

The exploration of co-occurrence correlations among ARGs serves as a valuable approach to

unveil potential synergistic or antagonistic interactions among these genes and their impact

Table 1. The abundance of top 20 ARGs in each group and across all samples.

PDAC (%) CTRL (%) All (%)

ARO:3000186|tet(M) 13.18 15.33 14.25

ARO:3000616|mel 10.71 13.06 11.88

ARO:3004032|tetA(46) 7.08 8.67 7.87

ARO:3000596|ErmX 8.73 5.21 6.96

ARO:3000375|ErmB 5.53 6.95 6.24

ARO:3004033|tetB(46) 5.19 4.39 4.79

ARO:3001301|RlmA(II) 4.94 4.22 4.58

ARO:3007120|tet(O/M/O) 3.82 4.09 3.96

ARO:3004442|tet(W/N/W) 4.17 3.67 3.92

ARO:3000194|tet(W) 3.11 4.11 3.61

ARO:3000191|tet(Q) 2.31 3.83 3.07

ARO:3000024|patA 2.72 2.54 2.62

ARO:3000025|patB 2.74 2.35 2.54

ARO:3004035|tetA(60) 1.83 2.17 2.01

ARO:3003001|CfxA 1.88 1.83 1.86

ARO:3003003|CfxA3 1.91 1.72 1.81

ARO:3003112|lsaC 1.91 1.43 1.71

ARO:3000822|pmrA 1.95 1.46 1.71

ARO:3003002|CfxA2 1.44 1.88 1.66

ARO:3000498|ErmF 1.57 1.09 1.33

https://doi.org/10.1371/journal.pone.0302361.t001
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on the host. To investigate this, we calculated the co-occurrence correlation among the top 20

abundant ARGs using Pearson correlation in both PDAC and healthy individuals (Fig 3A, 3B).

By comparing the differences in co-occurrence between the two groups, we found significant

co-occurrence correlations between tetA(46) and tetB(46), patA and patB, RlmA(II) and

pmrAas, among CfxA3, CfxA2 and CfxA as well as among patA, patB, RlmA(II) and pmrA in

both groups. However, In the healthy individual cohort, a strikingly robust co-occurrence cor-

relation was identified between tet(W/N/W) and other ARGs, a phenomenon not replicated in

the PDAC group. Conversely, in the PDAC cohort, a more robust co-occurrence correlation

was observed between tetA(60), ErmF, and other ARGs, a correlation absent in the healthy

individuals. This delineation of co-occurrence patterns sheds light on the intricate relation-

ships and potential interactions among specific ARGs in the context of PDAC and healthy

states.

ARGs can be used for PDAC diagnosis

The specific distribution of ARGs in PDAC suggests their potential use as a novel modality for

diagnosing PDAC. To achieve this, we developed a predictive model for PDAC using profiles

of ARGs. The implementation of the random forest algorithm demonstrated strong diagnostic

abilities, exhibiting high accuracy and robustness in identifying pancreatic cancer. In Fig 4A,

we present the top 20 ARGs that contributed most to the model, predominantly tet(Q), CSP-1,

and mefE, which are known for their resistance against various antibiotics. Furthermore, we

trained the model that the model’s diagnostic accuracy in differentiating PDAC based on these

Fig 2. Beta diversity and differential AGRs. (A) Assessment of beta diversity based on Bray-Curtis distance and p-

values calculated using Adnois. (B, C) Calculation of differentially abundant ARGs, with p-values adjusted using the

Benjamini-Hochberg correction.

https://doi.org/10.1371/journal.pone.0302361.g002
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ARG profiles stood at an impressive 79%, underscoring the potential of ARGs harbored within

the oral microbiome as promising alternative biomarkers for the early detection and diagnosis

of PDAC.

Discussion

The oral microbiome has gained substantial attention in recent years due to its potential role

in various systemic diseases [1], including PDAC [12]. In this study, we investigated ARGs of

oral microbiome in patients with PDAC. Our findings revealed significant alterations in the

ARGs of oral microbiome of PDAC patients compared to healthy controls. Specifically, we

observed the increase in alpha diversity, as evidenced by Shannon diversity and Simpson

Fig 3. The co-occurrence correlation among ARGs. (A) Healthy group. (B) PDAC group. Pearson correlation was

used in this analysis.

https://doi.org/10.1371/journal.pone.0302361.g003
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diversity index. The diversity of ARGs may suggest that PDAC patients have been exposed to a

range of antibiotics. Due to this exposure, selecting for a more diverse set of resistant bacteria

could potentially occur within their microbiomes. A higher ARG diversity within PDAC

patients’ microbiome could have direct implications for treatment, as it may predispose to

more frequent or severe bacterial infections that are resistant to standard antibiotics. Previous

study found that oral antibiotics can activate antitumor immunity and suppress tumor burden

in PDAC tumor-bearing mice [25], and clinical antibiotics can increase survival and progres-

sion-free survival of patients [18, 26]. Although antibiotics are beneficial for PDAC, the accu-

mulation of ARGs in the human symbiotic microbiome needs to be considered as antibiotic

resistance has become a significant global health concern. In addition, there exists moderate

evidence indicating that the excessive or prolonged utilization of antibiotics throughout an

individual’s lifespan is correlated with a slight elevation in the risk of diverse cancer [27].

Hence, understanding the prevalence of ARGs in the oral microbiome is crucial [9, 28, 29].

We identified a variety of ARGs, indicating a potential reservoir of resistance genes within the

oral microbial community. Our findings highlight the importance of considering the oral

microbiome as a potential source of antibiotic resistance in PDAC patients. Further under-

standing of the effects of these ARGs on the host is essential.

Furthermore, we identified specific ARGs that exhibited differential abundance in PDAC

patients, highlighting their potential as biomarkers for the disease. These findings support pre-

vious research demonstrating the dysregulation of the oral microbiome in PDAC [12, 30].

However, PDAC is one of the most aggressive malignant tumors characterized by the lack of

biomarkers for early detection [31]. To address the tissue, we have developed a novel PDAC

diagnostic model with an accuracy of 79% based on ARGs of oral microbiome, Comparing the

performance of the diagnostic models could provide valuable insights and contribute to

Fig 4. Construction of the diagnostic model. (A) Identification of the top 20 ARGs contributing the most to the model. (B) Evaluation of the accuracy of the

diagnostic model.

https://doi.org/10.1371/journal.pone.0302361.g004
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improving the overall diagnostic accuracy and treatment options for PDAC patients. The accu-

racy of model using gut microbiota profiles based on Japanese, Spanish and German cohorts

was 74% to 83% [12]. In addition, Farrell et al. integrated two microbes as bacterial biomarkers

for PDAC, achieving an accuracy of 90% [32], though the biomarkers could not be confirmed

[33]. However, previous studies found there is likely to be population heterogeneity in oral

microbes as biomarkers [32–35]. Hence, Applying the model to cross-population cohorts is

one of the means to test noninvasive diagnosis [12, 36]. Although our research has made sig-

nificant progress based on functional genome rather than microbial composition, the diagno-

sis model needs further validation and improvement by considering populations from

different countries with varying dietary habits and characteristics. Our research cannot explain

the reasons for ARGs enrichment and their effects on the host, which require further

investigation.

In conclusion, we revealed the distribution of ARGs of oral microbiome in PDAC patients

and developed a diagnostic model for PDAC based on the functional genome of oral micro-

biota. Our model will further drive the exploration of multi-modal data in disease diagnosis.

Further research is warranted to explore the functional implications of these findings. Under-

standing the interplay between the oral microbiome, PDAC, and antibiotic resistance will con-

tribute to improved therapeutic interventions and personalized treatment strategies for

patients with this devastating disease.
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