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Abstract

The yolk shell is widely used in optoelectronic devices due to its excellent optical properties.

Compared to single metal nanostructures, yolk shells have more controllable degrees of

freedom, which may make experiments and simulations more complex. Using neural net-

works can efficiently simplify the computational process of yolk shell. In our work, the rela-

tionship between the size and the absorption efficiency of the yolk-shell structure is

established using a backpropagation neural network (BPNN), significantly simplifying the

calculation process while ensuring accuracy equivalent to discrete dipole scattering

(DDSCAT). The absorption efficiency of the yolk shell was comprehensively described

through the forward and reverse prediction processes. In forward prediction, the absorption

spectrum of yolk shell is obtained through its size parameter. In reverse prediction, the size

parameters of yolk shells are predicted through absorption spectra. A comparison with the

traditional DDSCAT demonstrated the high precision prediction capability and fast computa-

tion of this method, with minimal memory consumption.

Introduction

The yolk shell structure is a new type of nano multiphase composite material formed by intro-

ducing voids between the core and shell through certain technical means on the basis of the

core-shell structure. At present, common shell materials include carbon, TiO2, and metal

shells, and core materials can also be modified according to needs. In this composite structure,

the carbon shell can improve conductivity, the TiO2 shell increases structural stability, and the

metal shell can enhance its absorption capacity. This structure indicates that the yolk shell

structure may have excellent optical properties and has been widely studied in fields such as

nanophotonics, biosensors, and solar cells [1–5]. The optical properties of the yolk shell is

influenced by changes in its structural parameters, including the size of shell, cavity, and core

[6, 7]. The freedom of size provides new insights and research freedom for the study and devel-

opment of novel optoelectronic sensors [8–13]. However, the preparation process of yolk-shell

structures is complicated in practical, making it difficult to precisely control their size parame-

ters [14, 15]. Moreover, the use of strong acids and other substances in their fabrication may
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lead to environmental pollution [16]. Simulating yolk-shell structures using software requires

a significant amount of time, computer storage space, and labor costs for subsequent data pro-

cessing and analysis. Until now, precise control of the optical properties of yolk shell structure

remains a challenge [17–20].

The combination of neural networks with various physical problems for theoretical

research is focused in current studies [21, 22]. Since 2006, deep learning has witnessed numer-

ous types of neural networks with diverse functionalities emerging [23–26]. For instance,

radial basis function networks address function approximation problems, while Boltzmann

machine networks learn probability distributions from raw data for inferring new data [27–

30]. In this study, a relatively basic multilayer feedforward neural network called backpropaga-

tion neural network (BPNN) was selected to investigate the mapping relationship between the

size parameters of yolk shell and their absorption efficiency. The BPNN possesses advantages

such as a concise network structure, excellent generalization ability, and strong learning capa-

bility, making it one of the widely used neural networks at present [31, 32]. BPNN uses tradi-

tional backpropagation algorithm for training, while typical artificial neural network uses

gradient descent method. By learning and storing a large amount of input-output data, the

BPNN can capture complex nonlinear mapping processes [33]. The BPNN method iteratively

reduces network errors through the backpropagation process, and continuously improves net-

work weights and thresholds using the steepest descent method [34, 35]. Compared to the

results obtained using the discrete dipole scattering (DDSCAT), the BPNN based equivalent

fast calculation method in this paper exhibits significant advantages in terms of computational

accuracy, speed, and memory usage. DDSCAT is a numerical simulation program using the

discrete dipole approximation (DDA) method, used to simulate the absorption, scattering, and

electric field around nanomaterials. As shown in Fig 1, the basic BPNN algorithm comprises

two processes: forward propagation of signals and backward propagation of errors. When

propagating forward, the input samples are passed in from the input layer, processed layer by

layer by each hidden layer, and then transmitted to the output layer. If the actual output of the

output layer does not match the expected output (teacher signal), it enters the backpropagation

stage of the error.

Related work

Ethics Committee approval was obtained from the Institutional Ethics

Committee of Northwest Institute of Mechanical & Electrical Engineering

to the commencement of the study

The yolk-shell material structure employed in this section consists of three components: a core

made of Au, an intermediate air cavity, and an outer shell comprising dielectric material TiO2

and metallic material Au. Fig 2(A) illustrates the schematic representation of the yolk-shell

structure. As depicted in Fig 2(B), the size parameters of the yolk-shell structure are defined by

the core diameter, denoted as R, the distance between the core and the shell, denoted as C, and

the shell thickness, denoted as S.

Due to limitations in the DDSCAT software, the dimensions of the structures simulated

using discrete dipole approximation require integers. We use DDSCAT to calculate the

absorption spectra of approximately 1000 yolk shell structures with different size parameters.

The dielectric functions of the shell dipoles were assigned as Au and TiO2 to differentiate

between the two types of outer shells, yielding a total of 2000 different yolk-shell structures

with distinct materials. The absorption spectra of these structures were obtained in the wave-

length range of 400–1000 nm, with a sampling interval of 3 nm, resulting in 200 data points.

The dielectric function for Au was interpolated from experimental data by Johnson and
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Christy [36], while the dielectric function for TiO2 was interpolated from Devore’s experimen-

tal results [37]. The cavity region was set as air with a refractive index of 1 and the yolk shell

placed in air.

Deep learning algorithm

Algorithm parameter settings

For a given composition and set of size parameters of a yolk shell structure, a unique absorp-

tion spectrum can be obtained [38, 39]. Therefore, neural networks are well-suited for con-

structing this complex mapping relationship, where the size parameters (core diameter, cavity-

to-shell distance, and shell thickness) serve as inputs, and the absorption spectrum serves as

the output. Once the entire neural network is trained, providing the size parameters of a yolk-

shell structure to the network directly yields the corresponding absorption spectrum, signifi-

cantly improving computational efficiency. In this study, this deep learning-based computa-

tional method is referred to as the Back Propagation Neural Network (BPNN) method.

Fig 1. BP basic network structure.

https://doi.org/10.1371/journal.pone.0302262.g001

Fig 2. Schematic illustration for geometry of the (a) yolk-shell structure.(b) Front view of yolk shell structure.

https://doi.org/10.1371/journal.pone.0302262.g002
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In this study, the BPNN will be employed to establish the relationship between the size

parameters and absorption spectra. As shown in Fig 3, a multilayer neural network, compris-

ing an input layer, at least one hidden layer, and an output layer, is utilized. Each neuron is

responsible for processing the signals from the previous layer and transmitting them to the

next layer. To calculate absorption efficiency, BPNN aims to establish a mapping relationship

between yolk shell size parameters and absorption spectra [40]. Therefore, the cavity, core, and

shell sizes are taken as input parameters, while the absorption coefficient is considered as the

output. The training dataset consists of 80% of the simulation results. Each sample consists of

200 data points, each containing three inputs: shell thickness, core diameter, and core to shell

distance. These 200 data points are generated in the wavelength range of 400-1000nm with a

step size of 3nm. The training dataset is then divided into three parts, with two parts used for

parameter selection and model investigation during training. The parameter selection uses

grid search method to determine the optimal parameters suitable for the algorithm, the other

part is used for model training after the parameters are determined. The remaining part serves

as the testing dataset to evaluate the generalization ability of the model. Each subset is used to

test the network and optimize the weights, allocating the average component function based

on the root mean square error. Finally, the model depth is determined. The optimization of

hyperparameters minimizes the offline cost as much as possible. Once the parameters are

determined, all data except for the testing dataset will be used for training. The absorption

spectra results will be obtained by inputting the size parameters of the yolk-shell. The specific

process of constructing the network structure is described as follows.

To establish the mapping between the size parameters of the yolk-shell structure and its

absorption efficiency, the network structure depicted in Fig 3 is employed. The three input var-

iables are the core diameter, the maximum distance between the core and the shell, and the

shell thickness of the yolk-shell structure, while the output is the absorption spectrum of the

yolk-shell structure within the range of 400 to 1000 nm. The above data are all from the calcu-

lation of DDSCAT.

The design of hidden layers plays a crucial role in the learning efficiency and generalization

capability of deep learning networks. In this study, based on repeated training experiences, a

neural network structure with four hidden layers, each containing 1024 nodes, was adopted.

The choice of learning rate significantly impacts the training of the neural network. After mul-

tiple experimental verifications, an initial learning rate of 0.0001 was selected. If the initial val-

ues of the parameters in the neural network are set too large, the output values of the input

signals may enter the saturation region of the activation function after being processed by

Fig 3. Structure diagram of forward prediction neural network.

https://doi.org/10.1371/journal.pone.0302262.g003
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these parameters. Therefore, in this study, the initial values of the weights and thresholds were

set to truncated normal distribution random numbers with a mean of 0 and a standard devia-

tion of 1. In the BP neural network, the activation function performs a nonlinear transforma-

tion on the input information before passing it to the next layer of the neural network. After

multiple validation attempts, the Sigmoid function was chosen as the activation function in

this study.

f ðxÞ ¼
1

1þ e� x
ð1Þ

Algorithm optimization is achieved by selecting appropriate parameters, such as the num-

ber of hidden layers and activation functions. All of this data comes from grid search, and the

training data used is the parameter optimization dataset selected in the dataset. For applica-

tions involving optical devices, the maximum energy density of solar radiation received on the

Earth’s surface occurs in the visible to near-infrared wavelength range. Therefore, in this

study, the wavelength range was selected within the visible to near-infrared spectrum. This

choice limits the application range of the BPNN algorithm. When the absorption coefficient

wavelength falls within this range, the neural network can obtain absorption spectra with

higher precision.

Forward learning algorithm

A total of 1600 yolk-shell structures with different materials were used for training, while the

remaining samples were used as a validation dataset. After training, the testing dataset was

employed to evaluate the entire training process. The evaluation primarily focused on two

aspects: fitting accuracy and computational efficiency. To validate the fitting accuracy of the

BPNN method, the computational results of yolk-shell structures with different shells were

compared at various sizes. Additionally, 100 additional data points were generated using the

DDSCAT software for result validation purposes.

Fig 4 presents a comparison between the predicted absorption spectra and simulated results

for yolk-shell structures with TiO2 and Au shells when the Au core diameter is 2 nm and the

distance between the gold core and the shell is 4 nm. The thickness of the shell is represented

on the left axis, with color intensity indicating the level of absorption efficiency. As shown in

Fig (4), the simulation results using the BPNN is great agreement with the forward simulations

in terms of the absorption efficiency in different wavelength ranges for yolk-shell structures

with different materials. The learning curves in Fig 4(A) and 4(D) demonstrate that the BPNN

model converges rapidly. As the epochs increase, the loss gradually decreases. The predicted

results of the neural network for data not present in the training set closely match the actual

results, indicating that the network has converged without overfitting.

In this study, the computational speed of the neural network is another prominent advan-

tage over traditional simulation calculations. Therefore, to further test the model, a set of

parameters was used as input to obtain the corresponding absorption spectra using the BPNN

algorithm. If the calculations were performed using the DDSCAT software, it would take

approximately 5 hours from the initiation of the design model to the convergence of a set of

parameters. In contrast, using the proposed forward prediction network in this chapter, the

computation time is only 3.9 ms. For the training time, when the parameters are determined

and the training data is ready, the training of the neural network will also be completed within

30 minutes, which greatly improving efficiency.

The above results demonstrate that the proposed algorithm in this section not only achieves

the same accuracy in obtaining absorption spectra as the DDSCAT algorithm but also allows
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for more efficient calculations, particularly for models that consume a significant amount of

time in DDSCAT calculations. The BPNN algorithm offers a size accuracy range that far

exceeds that of the DDSCAT algorithm. Therefore, in this section, the BPNN algorithm was

also utilized to generate yolk-shell structure sizes with lower resolutions. By expanding the size

parameters, further investigation into the impact of size parameters on the absorption effi-

ciency of yolk-shell structures can be conducted with greater precision.

Fig 5 illustrates the dependency of yolk shell structures on different size parameters within

the 400 to 1000 nm wavelength range. For each plot, size parameters that are not labeled in the

Fig 4. (a) Learning curve of the BPNN model with BPNN algorithm prediction results of Au@TiO2, R = 2 nm, C = 4 nm, (b) prediction

results, (c) simulation results. (d) Learning curve of the BPNN model with Au@Au, R = 2 nm, C = 4 nm, (e) prediction results, (f)

simulation results.

https://doi.org/10.1371/journal.pone.0302262.g004
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figure remain constant during data generation. The left axis represents the parameter that var-

ies solely within the plot, while the varying absorption coefficients are represented by increas-

ingly darker colors on the right side. In Fig 5, the size parameters of the yolk shell structures

were expanded using the BPNN method. Each result in every plot consists of 90 data sets, with

a resolution of 0.1 nm between the variable sizes represented on the right axis.

Fig 5(A)–5(C) depict the trend of absorption efficiency of yolk shell structures with varying

gold core diameters. It can be observed that as the gold core diameter increases, the absorption

intensity gradually rises, and there is a noticeable redshift in the absorption peak position.

Additionally, with increasing diameter, the responsive range of the absorption spectrum wid-

ens. When the gold core size remains constant, for structures with shell thicknesses of 4 nm, 5

nm, and 7 nm, it is apparent that with smaller cavities exhibit higher absorption intensity,

while the width of the absorption spectrum remains relatively stable. Fig 5(D)–5(F) present the

variation of absorption efficiency of yolk-shell structures with different core-to-shell distances.

It can be observed that yolk-shell structures with smaller cavities have higher absorption effi-

ciency.The peak of absorption efficiency is redshift with the increased of the cavity size. Fig 5

(G)–5(I) demonstrate the impact of shell thickness on the absorption efficiency of yolk shell

structures. It can be observed that increasing the shell thickness significantly shields the yolk

shell structure, leading to a significant decrease in absorption efficiency. Moreover, the respon-

sive range of the absorption spectrum narrows with increasing shell thickness. Within the

study range, yolk shell structures with dielectric shells primarily exhibit absorption spectra

concentrated in the visible light range. The absorption intensity is more influenced by size

Fig 5. BPNN prediction of Au@TiO2. An absorption spectrum with a distance of 5 nm from the Au core to the shell, (a) S = 4 nm, (b)

S = 7 nm, and (c) S = 9 nm; The diameter of Au nucleus is 6 nm, (d) S = 3 nm, (e) S = 5 nm, (f) S = 7 nm; The diameter of the Au nucleus

is 7 nm, with (g) C = 6 nm, (h) C = 7 nm, and (i) C = 9 nm.

https://doi.org/10.1371/journal.pone.0302262.g005
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parameters compared to the absorption peak position. Therefore, for yolk shell structures with

TiO2 shells, those with medium cavity distances, larger gold cores, and thinner shells exhibit

better absorption intensity.

For the Au@Au yolk shell structure, different trends can be observed from the results. Fig 6

presents the absorption efficiency results of Au@Au for varying parameters. It can be seen that

the absorption efficiency of Au@Au is significantly greater than that of Au@TiO2 in terms of

absorption intensity. Notably, larger-volume Au@Au structures exhibit two absorption peaks,

and the responsive width of these peaks is also larger. This suggests that Au@Au structures

may possess a wider absorbable wavelength range and higher absorption efficiency.

The trained neural network can better expand its output to obtain absorption coefficients

for more combinations of parameters. The BPNN algorithm used here requires significantly

less resources for computational methods that produce equally dense output data comparable

to DDSCAT. Comparing the two computational methods for a specific combination of geo-

metric parameters, running the DDSCAT software on a computer with an i7 chip would take

at least 2 hours to complete the convergence and output of absorption efficiency. And the neu-

ral network model used in this study can output the absorption spectra for a given set of

parameters in less than a second after the network has been trained. On the other hand, for

sampling density in this study with same output of neural netwaork, would consume an aston-

ishing amount of time, taking about 5 years to complete, during which the computer must run

continuously without being turned off. Therefore, in this research, using the neural network

Fig 6. BPNN prediction of Au@Au. The absorption spectrum of Au with a distance from the core to the shell of 5 nm, (a) S = 4 nm, (b)

S = 7 nm, (c) S = 9 nm; The diameter of Au nucleus is 6 nm, (d) S = 3 nm, (e) S = 5 nm, (f) S = 7 nm; The diameter of the Au nucleus is 7

nm, (g) C = 5 nm, (h) C = 7 nm, and (i) C = 9 nm.

https://doi.org/10.1371/journal.pone.0302262.g006
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approach is far superior in terms of computational speed and lower energy consumption com-

pared to traditional software.

Reverse prediction algorithm

After achieving gerat accuracy in forward design, the reverse path design needs to be further

explored. For devices based on yolk-shell nanostructures, the reverse parameter design of the

yolk-shell nanostructure is often required after determining the operating environment and

the corresponding absorption peak position or intensity. Therefore, it is necessary to design

and investigate algorithms that are different from forward prediction. The training data used

in the reverse prediction algorithm is sourced from DDSCAT. Specifically, the absorption

spectra of yolk shell nanostructures are used as input parameters to output the size parameters

of the yolk shell structure, including the gold core diameter, denoted as R, the maximum dis-

tance between the gold core and the shell denoted as C, and the shell thickness denoted as S.

However, compared to forward prediction algorithms, the reverse design path is more com-

plex and more sensitive. This is because in this study, there are 200 data points for the absorp-

tion spectra, while there are only 3 data points for the size parameters, resulting in a significant

imbalance between the input and output dimensions.

In this study, a neural network structure was initially designed using the BPNN network,

with the absorption spectra as input and the size parameters of the yolk-shell structure as out-

put. The design of this reverse prediction network is the same as that of the forward prediction

network. However, upon testing, the output results of this reverse model were not satisfactory.

The specific reasons are as follows: (1) Although the design of the model can continue to use

the previous sampling results, the mismatched input-output relationship (input of 200 data

points and output of 3 data points) may lead to information loss, especially in complex struc-

tures; (2) The neural network structure is not sufficiently deep to handle complex nonlinear

tasks, and excessively deep connected layers can cause gradient vanishing, thereby increasing

the complexity of the model.

In order to utilize the absorption spectra as input and achieve more accurate retrieval of

geometric parameters in the output, adjustments were made to the forward prediction net-

work. The spectrum data was first connected to two typical convolutional neural networks

(CNNs), with the first CNN comprising layers with 4x3x1 kernels and the second CNN with

layers containing 1x2x3 kernels. These CNNs were then connected to a neural network with

four hidden layers, as shown in Fig 7. By performing computations through the first two con-

volutional layers, the correlation between the input and output data was effectively enhanced.

Running this reverse prediction network allows for the prediction of geometric parameters by

providing the absorption spectrum, and the results closely resemble the parameters generated

by the forward prediction of absorption efficiency spectra.

Fig 7. BPNN reverse design architecture.

https://doi.org/10.1371/journal.pone.0302262.g007
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From the results in this work, the size parameters of these yolk-shell structures are interde-

pendent and highly sensitive to variations in the absorption efficiency. Therefore, for the vali-

dation of reverse prediction, the method involves inputting the absorption spectrum and

obtaining the corresponding size parameters as output. These output size parameters are then

fed back into the forward prediction network to plot the predicted absorption spectra against

the true size parameters and examine the relationship between the predicted size parameters

and the true absorption spectra.

The comparison between the reverse prediction network and the true results is shown in

Fig 8. From the figure, it can be observed that the neural network’s configuration is essentially

correct by comparing the simulated spectra with the corresponding predicted spectra. Fig 8(B)

and 8(D) represent the spectra of Au@Au yolk shell structures under the same conditions.

Although there are slight differences between the simulated results and the machine learning

predicted spectra, the absorption peak positions and intensities of the absorption spectra are

essentially consistent. Furthermore, Fig 8 also demonstrates that good reverse prediction

results can be obtained for yolk shell structures with different material shells. This indicates

that the proposed prediction model in this section is applicable to different materials.

Conclusion

A novel learning network based on the BPNN algorithm is proposed in this paper for predict-

ing the absorption spectra of yolk-shell structures with metal cores. The results demonstrate

that the prediction method proposed in this study not only achieves the same level of accuracy

as the DDSCAT method but also significantly improves computational efficiency. By utilizing

Fig 8. Reverse prediction results. (a) Au@TiO2 Predicted results and actual data, (b) Au@Au Comparison of size parameters between

predicted results and real data, reverse prediction and forward prediction, (c) Au@TiO2, (d) Au@Au.

https://doi.org/10.1371/journal.pone.0302262.g008
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the BPNN approach, new insights are provided for modeling yolk-shell composite structures

of different sizes, making it an effective computational tool for predicting absorption spectra

in metallic composite structures.
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