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Abstract

To study the propagation pattern of congestion risk in the traffic network and enhance risk

control capabilities, a model has been developed. This model takes into account the proba-

bilities of five threats (the risk occurrence probability; the risk of loss; the unpredictability of

risk; the uncontrollability of risk; the transferability of risk) in the traffic network to define the

risk entropy and determine the risk capacity, analyze the mechanism of congestion risk

propagation, and explore the impact of risk resistance, the average degree of risk capacity

at intersections, and the degree of correlation on congestion risk propagation. Further, a

control method model for risk propagation is proposed. Numerical simulation results demon-

strate that the risk resistance parameter θ can inhibit the propagation of congestion risk dur-

ing traffic congestion. The highest efficiency in controlling risk propagation is achieved when

θ reaches a threshold value θ*. Furthermore, the average degree of intersection risk capac-

ity α shows a positive correlation with θ* and a negative correlation with control efficiency.

However, the degree of associationω has a negative effect on risk propagation control,

decreasing the degree of association between nodes aids in risk propagation control.

Introduction

Recently, with the growth of the national economy, people are more willing to choose mobility

vehicles for traveling, which increased pressure on intersections, making them more prone to

congestion. Because intersections are interconnected, the network congestion risk propagates

among them over time, resulting in an overall increase in congestion risk within the entire traf-

fic network. This, in turn, negatively impacts orderly and stable social traffic. Therefore, study-

ing the propagation behavior and control of congestion risk between individual intersections is

of great importance for the smooth operation of urban traffic. Currently, most research on risk

propagation is focused on corporate R&D networks [1, 2], public emergencies [3–8], power sys-

tems [9–12], supply chains [13–15], aviation operations [16–19],and similar areas. There are
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only a few studies on the propagation behavior and control of congestion risk in urban trans-

port networks. Huang et al.examined the influence of travelers’ behavioral characteristics on

the propagation of road congestion risk using an improved infectious disease UAU–SIR model

[20]. Hu et al.constructed SIR models to control risk nodes while considering urban congestion,

effectively suppressing the scale of traffic accident risk contagion [21]. Chen et al.revealed how

sudden incidents in metro operations can trigger the spread of crowding risks, leading to pas-

senger strandings, line changes, panic, and stampede accidents [22]. Chen et al.also developed a

weighted complex network to identify an optimal strategy for resisting congestion contagion

risk [23]. Fei et al.analyzed congestion risk propagation characteristics by modeling the propa-

gation speed of congested road sections [24]. Shan et al.proposed a greedy algorithm–based

method for estimating the propagation path of traffic congestion and built a propagation net-

work of weighted directed graphs to predict the propagation process of congestion between dif-

ferent network segments [25]. Cheng et al.identified the propagation paths of periodic

congestion and analyzed their mechanisms using dynamic Bayesian networks, thereby alleviat-

ing traffic congestion at its source and blocking the propagation paths [26].

Most scholars have primarily used methods such as complex networks and contagion models

to study the mechanisms of traffic congestion risk propagation. However, Priambodo et al.devel-

oped a method to predict the impact of road congestion on traffic conditions by analyzing spa-

tial and historical data on traffic flows and employing statistical methods to establish

relationships between traffic conditions (congestion or smooth flow) and traffic patterns [27].

Chen et al.attempted to model the congestion propagation phenomenon using a space–time

congestion subgraph [28]. Predicting and controlling the spread of traffic congestion remains an

ongoing challenge in most urban settings. Saberi et al.applied a transmission model of infectious

disease spread in a population to a traffic congestion model and validated its effectiveness using

large-scale data from six cities worldwide [29]. The congestion propagation modeling algorithm

proposed by Nagy and Simon was the first algorithm to determine the propagation time expec-

tation and the propagation probability of any propagation pattern using Markov chains [30].

In summary, existing research has focused on identifying and predicting congestion risk and

using infectious disease models to explore the issue of congestion risk propagation mechanisms.

However, relatively little research has been conducted to control the propagation of congestion

risk. Moreover, classical infectious disease models only propagate the health or infection status

of a node, ignoring that risk can accumulate at a node until it exceeds its tolerable range. There-

fore, this study makes the following improvements to the risk contagion model based on the

risk capacity proposed by Liu et al [1]: (1) adding indicators that quantify risk in terms of infor-

mation entropy and (2) incorporating the degree of correlation between nodes into the model.

The study is organized as follows: in Chapter 2, a scale-free network is constructed to simu-

late the traffic network, using information entropy to quantify the risk of congestion at each

intersection and calculate the risk capacity of each intersection. In Chapter 3, a model is devel-

oped to control congestion risk contagion by considering risk resistance and the degree of

association. Chapter 4 analyzes the propagation mechanism of congestion risk through

numerical simulations as well as the impact of the risk resistance parameter θ, the average

degree of intersection risk capacity α, and the degree of association ω at intersections on the

control of congestion risk. Finally, the full text is summarized in Chapter 5.

Problem description and modeling

Construction of the traffic network generation model

First, this study assumes that the traffic network is a complex network comprising numerous

road intersections. In this network, the nodes represent intersections and the lines between
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two points represent edges, indicating the propagation path of congestion risk in the network.

Considering the mutual role of road intersection risk propagation in reality, this study chooses

the undirected graph G(V,E), where V = {1, 2, 3, . . ., N} is the set of all road intersections and

E = {eij j i, j 2 V}� V × V is the set of roads. A = [aij]N×N is the adjacency matrix of the traffic

network, where aij = 1 indicates that junctions i and j are connected and aij = 0 indicates that

they are not yet connected. Second, people’s choice of roads for travel is characterized by

growth and meritocracy, with “growth” primarily reflecting the fact that travelers are con-

stantly selecting intersections and thus adding them to the network. Starting with an initial

network of m0 intersections, a new intersection is introduced simultaneously and connected to

m existing intersections (m�m0). “Meritocratic selectivity” indicates that travelers prefer cer-

tain roads for travel. Specifically, the closer an intersection is to its destination and centrally

located, the more travelers it attracts. Here, the probability of a new intersection connecting an

existing intersection i is ∏i = (di + 1)/∑j(dj + 1), where di is the degree of the intersection i.
Therefore, this study develops a propagation model for BA scale-free networks to simulate the

risk of traffic congestion, as shown in Fig 1.

Risk contagion model based on information entropy

The occurrence of risk outbreaks and crisis events is an extraordinary event with a small prob-

ability. Owing to its interdisciplinarity, complexity, and uncertainty, grasping the intrinsic

causes of its development, the mechanism of its evolution, and the law of contagion becomes

difficult. Therefore, this study draws on the five-dimensional structure proposed to measure

the magnitude of risk. The model for the five-dimensional structure of road congestion risk

can be obtained as follows:

F ¼ ð f ðr1Þ; f ðr2Þ; f ðr3Þ; f ðr4Þ; f ðr5ÞÞ: ð1Þ

In Eq (1), f(r1) denotes the risk occurrence probability; f(r2) denotes the risk of loss; f(r3)

denotes the unpredictability of risk; f(r4) denotes the uncontrollability of risk; and f(r5) denotes

the transferability of risk. Because all five measures are cost-based, the higher the value of F,

the higher the risk. Let a junction i(i = 1, 2, . . ., n) have j(j = 1, 2, . . ., m) states denoted by sij.
When utilizing the five-dimensional metric parameters for risk measurement, a dimensionless

Fig 1. Traffic scale-free network.

https://doi.org/10.1371/journal.pone.0300422.g001
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process is employed to ensure that the values of the five parameters lie within the [0, 1] inter-

val, where the parameters are random variables that fall within the [0, 1] interval.

Congestion risk: Without considering the correlation between the metric parameters, the

risk R(sij) of a junction i can be defined using the geometric mean approach, as presented in

Eq (2)

RðsijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðr1Þ � f ðr2Þ � f ðr3Þ � f ðr4Þ � f ðr5Þ

5
p

: ð2Þ

Entropy [31], used to describe the state of matter, is an important parameter for measuring the

disorder of a system. The concept has been expanded and subsequent scholars have utilized

this parameter to describe the movement and disorder of all matter, things, and systems.

Because every system is in constant motion, entropy reflects the state of change of the struc-

tures at the micro and mesoscopic levels within a given macroscopic state; it describes the

degree of disorder in the system. Generally, the higher the entropy, the more chaotic a system

is, while the lower the entropy, the more orderly a system is. Therefore, the emergence and

transmission of the risk of road congestion can be measured in terms of entropy to analyze the

emergence and dynamics of the crisis.

Congestion risk entropy: based on the information entropy theory, the congestion risk

entropy H(sij) of a junction i can be defined as follows:

HðsijÞ ¼ � RðsijÞ lnRðsijÞ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðr1Þ � f ðr2Þ � f ðr3Þ � f ðr4Þ � f ðr5Þ

5
p

� ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðr1Þ � f ðr2Þ � f ðr3Þ � f ðr4Þ � f ðr5Þ

5
p

:

ð3Þ

The correlation between the congestion risk state and entropy is established in Eq (3). Gener-

ally, a higher risk state, as measured by the risk state, corresponds to greater entropy. This indi-

cates that the state of the road intersection was more disorderly and uncertain at that time.

This method allows for a quantitative measure of the risk state of a particular intersection in

the entire traffic network.

In the case of the entire traffic network, different intersections will have different positions

and hence different risk capacities. Successive failure theory [32] indicates that the capacity of

an intersection to handle congestion risk is related to its degree as well as the degree of all

neighboring intersections. The higher the degree of the intersection and its neighboring inter-

sections, the greater the capacity of that intersection to handle congestion risk. Moreover, dif-

ferent traffic networks face variations in the magnitude of congestion risk. The higher the risk

faced, the greater the relative risk capacity of all intersections. Therefore, the risk capacity of i
is calculated as follows:

Ci ¼

ðdi
X

j2Gi

djÞ
a

max ðdk
X

i2Gk

diÞ
a
j k ¼ 1; 2; . . . ;N

( ) �V : ð4Þ

In Eq (4), α(0� α� 1) denotes the average degree of intersection risk capacity; the smaller its

value, the more evenly distributed the intersection risk capacity and greater the variability; di
denotes the degree of the intersection i, Γi denotes the set of neighboring intersections of the

intersection i, Γi = {jjaij = 1}; �V denotes the average congestion risk size of the entire traffic net-

work, �V ¼
PN

i¼1
HðsijÞpi where pi is the probability of occurrence of congestion risk H(sij).
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Most risk propagation studies rely on virus propagation dynamics models in complex net-

works, such as the SIS and SIR models, to investigate the phenomenon of risk propagation and

its principles in various domains. However, the aforementioned models depict a chain reaction

of network nodes when exposed to risk, focusing solely on transmitting the health or infection

status of the node. These models ignore the fact that risk can accumulate within a node until it

surpasses its tolerable threshold.

Therefore, the entropy H(t)>Ci of congestion risk on junction i at time t, where the conges-

tion risk exceeds the bearable maximum risk resistance capacity, i.e., the risk capacity, has a

certain probability of transmitting the risk to neighboring junctions and triggering their

potential congestion risks. Therefore, P(Hj|Hi) represents the conditional probability of the

congestion risk at junction i triggering the potential congestion risk at junction j. Therefore,

the congestion risk Hj(t + 1) of junction j at time t + 1 is determined by both the congestion

risk Hj(t) at time t and the potential congestion risk P(Hj|Hi) triggered by its neighboring junc-

tions:

Hjðt þ 1Þ ¼ HjðtÞ þ
X

Hk2cjðtÞ

�

Hi � OR
n
�
ij
lkðt þ 1Þji 2 G0jðtÞ;Hl 2 FiðtÞ

o�

; ð5Þ

where ψj(t) denotes the set of potential congestion risks at junction j at time t,

cjðtÞ ¼
n
Hk j Z

j
kðtÞ ¼ 0

o
; G0jðtÞ denotes the set of neighboring intersections of node j at time

t, where the risk of congestion exceeds the risk capacity, G0iðtÞ ¼
n
ijtiðtÞ ¼ 1; aij ¼ 1

o
; Fi(t)

denotes the set of risks that have occurred at the neighboring junctions iði 2 G0jðtÞÞ at time t,

FiðtÞ ¼ HljZ
j
lðtÞ ¼ 1; �

ij
lkðt þ 1Þ denotes the status of the potential risk Hk of junction j trig-

gered by the congestion risk Hl that has occurred at the neighboring junction i at time t + 1.

�
ij
lkðt þ 1Þ ¼ 1 denotes the potential risk of the triggered junction j and �

ij
lkðt þ 1Þ ¼ 0 denotes

the potential risk of untriggered junction j. OR is an or operator that yields a result of 1 if any

of the participating set elements is 1; otherwise, it is 0. The potential congestion risk at junction

j is triggered when any of the neighboring junctions exceeds the risk capacity.

Control strategies for congestion risk propagation

Improving intersection resilience

Before the risk of congestion contagion occurs, the risk capacity of each junction is increased

by external forces, such as government intervention and traffic control by the relevant authori-

ties, to prevent congestion risk contagion. Based on this, the risk capacity of each junction i is

C0i ¼ ð1þ yÞCi; ð6Þ

Where i = 1, 2, � � �, N, and the intersection risk resistance parameter θ(θ� 0) indicates the

amount of risk capacity at the intersection that can be controlled through the intervention of

the government and other relevant authorities to counteract congestion risk contagion. The

higher the value, the more resources the government must invest in congestion risk control at

the intersection and the more risk capacity is added to each intersection. By continuously add-

ing external forces to match C0i to the congestion risk, the intersection risk resistance parameter

θ reaches a threshold θ* as in Eq (7) (the meaning of the variables in Eq (7) is the same as in Eq

(4) and will not be repeated here), indicating that the government and relevant departments

invest the least amount of external resources to achieve the maximum congestion risk
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resistance.

y
∗
¼

HiðtÞ ∗max

( 

dk
X

l2Gk

dl

!a

j k ¼ 1; 2; . . . ;N

)

� �V ∗

 

di
X

j2Gi

dj

!a

�V ∗

 

di
X

j2Gi

dj

!a : ð7Þ

Reducing the strength of node association

When congestion risk contagion occurs, the degree of association between intersections influ-

ences the behavior of congestion risk contagion in the entire traffic network, with varying lev-

els of association corresponding to different levels of contagion. The degree of association

between intersections i and j is ωij. When ωij is constant, the association between junction i
and j is linear; when ωij is a time-varying function, the coupling between junction i and j is

nonlinear. However, in a real traffic network, the degree of risk transmission from one inter-

section to its neighboring intersection varies. The more critical the intersection, the stronger

the degree of association with its neighboring intersection, resulting in a higher risk of conges-

tion transmission. Consequently, the previous equation is enhanced and represented by Eqs

(8), (9) and (10) as follows:

Hjðt þ 1Þ ¼ HjðtÞ þ
X

Hk2cjðtÞ

½Hi � oij�; ð8Þ

oij ¼
Ki

Qj
; ð9Þ

Qj ¼
X

m2Gj

Km; ð10Þ

where Ki denotes the degree of intersection i, Γj denotes the set of neighboring intersections of

intersection j, and Kμ denotes the degree of neighboring intersection μ of intersection j. Modi-

fying the degree of association between junctions to regulate the level of congestion risk conta-

gion decreases the risk entropy value of the junction, thereby slowing down the congestion

risk transmission behavior between junctions.

Simulation design and analysis of results

Before carrying out numerical simulations, certain parameters in the model must be set. First,

a BA scale-free network with N = 1000, m0 = 6, and m = 3 is generated, and the five-dimen-

sional parameter f(r1), f(r2), f(r3), f(r4), f(r5) for risk is set to a random value within [0, 1]. Sub-

sequently, numerical simulations are employed to analyze the congestion risk contagion

process in the network and to investigate the influence of three parameters: the risk resistance

parameter θ, the average degree of intersection risk capacity α, and the degree of association

ωij between intersections on the control method for congestion risk contagion.

Analysis of congestion risk transmission processes

As each junction can bear different levels of congestion risk, when the congestion risk at a

junction accumulates to a level that exceeds its risk capacity, it has a certain probability of
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distributing its own risk to neighboring junctions. This results in the propagation of conges-

tion risk between each individual in the network. To analyze the process of congestion risk

propagation between each intersection, numerical simulations are conducted for the risk

capacity Ci of each intersection, the risk entropy H(t) of each intersection at time t, and the

risk entropy H(t + 1) at time t + 1.

Fig 2 shows that the risk capacity is distributed around 0.2718. The entropy of congestion

risk at time t is distributed around 0.333 and at time t + 1 is distributed around 0.3352. It can

be observed that the entropy of congestion risk at junctions changes during the propagation

process. For instance, at junction 377, the congestion risk is lower than its risk capacity at time

t. Here, no congestion risk propagation behavior occurs at this junction. However, at time t
+ 1, the congestion risk considerably surpasses its risk capacity, indicating that the neighboring

junction transmits risk to this junction, resulting in an increased congestion risk at junction

377. At junction 514, the risk capacity of this junction is approximately 0.323 and the entropy

of congestion risk at this junction at time t is 0.347. Hence, the risk of congestion at this junc-

tion is transmitted to other neighboring junctions; however, the congestion risk at time t + 1 is

higher than that at time t. This indicates that while this junction propagates risk to neighboring

Fig 2. Congestion risk propagation process.

https://doi.org/10.1371/journal.pone.0300422.g002
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junctions, other junctions with greater risk capacity than itself will also propagate their own

risk to the junction with a certain probability. As a result, the junction receives a higher

entropy of congestion risk than the entropy of the risk transmitted out. At junction 527, the

risk entropy at time t + 1 is lower than the risk entropy at time t, indicating that the congestion

risk received by this junction is less than the risk transmitted to neighboring junctions. There-

fore, this simulation result demonstrates that risk propagation at each junction in the traffic

network is a complex process. When the congestion risk of a junction accumulates and exceeds

its risk capacity, it will propagate its risk to neighboring junctions with a certain probability

and receive congestion risk from other neighboring junctions.

The risk resistance parameter θ indicates the degree of external control exerted to prevent

the propagation of congestion risk, such as government intervention or traffic control by rele-

vant authorities. A higher value implies greater investment in risk control resources within the

network, resulting in increased risk capacity at each intersection and greater risk resistance. α
represents the average degree of intersection risk capacity. A smaller value indicates a more

even distribution of risk capacity among intersections, whereas a larger value signifies greater

variability. Further, to verify the influence of θ on congestion risk control, numerical simula-

tions of the relationship between congestion risk entropy, intersection congestion risk capac-

ity, and θ at varying α values of 0.15, 0.2, 0.25, and 0.3 were conducted and the results are

shown in Fig 3.

Fig 3 demonstrates that, regardless of the value of α, when the risk resistance θ is below a

certain threshold, the congestion risk entropy is greater than the risk capacity, and the conges-

tion risk is still propagated between the intersections. As θ increases, the risk capacity of each

intersection increases and the congestion risk entropy decreases, indicating that the propaga-

tion of congestion risk among intersections is controlled to a certain extent. When θ exceeds a

certain threshold, the risk capacity is greater than the congestion risk entropy of the intersec-

tion. Thus, the propagation of the congestion risk in the network is well controlled and the

intersection gradually returns to its normal state until the congestion risk of the entire traffic

network is minimized. For example, when α = 0.15, the risk entropy is initially maximum,

indicating that the congestion risk propagation has induced a traffic network failure. Here, the

risk entropy decreases gradually as θ increases until θ� 4.72. At this time, the risk entropy

decreases sharply, indicating that the congestion risk propagation in the traffic network has

vanished, returning the intersection gradually to its normal operation. Therefore, θ = 4.72 is

the threshold, called the key risk resistance threshold of the traffic network. When θ� θ*, all

junctions can resist the congestion risk, eliminating the occurrence of congestion risk propaga-

tion in the entire traffic network. However, when θ< θ*, the risk capacity is limited after the

increase of most junctions, congestion risk will continue accumulating at the junctions via

mutual propagation, resulting in network failure. The threshold represents the ability of the

network to resist the propagation of congestion risk with minimal external resources; the

lower the value, the more efficient it is to control the spread of congestion risk; otherwise, it is

less efficient. Therefore, the most efficient method for controlling congestion risk propagation

is when the government applies an external force θ*.
Fig 3 also shows that θ* = 4.72 at α = 0.15, θ* = 4.82 at α = 0.2, θ* = 4.88 at α = 0.25, and θ*

= 4.92 at α = 0.3. This indicates that as α increases, the key risk resistance threshold θ* of the

traffic network increases α, indicating that the variability of the intersection risk capacity dis-

tribution increases. The only way to effectively control the occurrence of congestion risk prop-

agation is to keep increasing the intersection risk capacity threshold, implying that congestion

risk control becomes less and less efficient. Therefore, to improve the efficiency of regulating

congestion risk propagation, the degree of variation in the risk capacity distribution at inter-

sections should be considerably reduced. Thus, congestion should be carefully considered
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Fig 3. Relationship between congestion risk entropy H, risk capacity C and parameter t for different θ. (a).α =

0.15;(b).α = 0.2;(c).α = 0.25;(d).α = 0.3.

https://doi.org/10.1371/journal.pone.0300422.g003
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when choosing an intersection to minimize traffic flow variations at intersections, ensuring

that different intersections have approximately the same level of congestion risk resistance.

Impact of ω on risk control

The intersection association degree ω represents the degree of mutual influence between two

intersections and describes the influence of the neighboring intersections on each other. In an

unweighted undirected network, ω is expressed as the ratio of the congestion risk degree to the

sum of the congestion risk degrees of the neighboring intersections. Therefore, to assess the

impact of ω on congestion risk control, the value of ω for each intersection is calculated based

on the proposed model. The numerical simulation of ω and the congestion risk entropies at

times t and t + 1 are selected, as shown in Fig 4.

As shown in Fig 4, H(t) and H(t + 1) increase as ω increases, implying that the greater the

value of ω, the greater the risk of congestion at the intersection and greater the probability of

congestion risk propagation. After ω attains a certain value, the congestion risk increases more

gently at time t, indicating that the risk propagation peaks between the intersections at this

point. As shown in Fig 3, the risk capacity is approximately 0.259 when no external force is

Fig 4. Relationship between ω and H(t) as well as H(t + 1).

https://doi.org/10.1371/journal.pone.0300422.g004
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applied. As shown in Fig 4, ω = 0.23 and the congestion risk at this time is equal to the initial

risk capacity of the intersection, implying that at ω< 0.23, the intersection has no congestion

risk contagion. However, when ω exceeds 0.23 with the accumulation of the intersection’s con-

gestion risk, the congestion risk exceeds the risk capacity, and thus, congestion risk propaga-

tion occurs at this intersection. When 0.23< ω< 1.71, the risk at time t + 1 is less than the

risk at time t, indicating that the output congestion risk at the intersection is greater than the

received congestion risk, resulting in decreasing risk. When ω = 1.71, H(t) = H(t + 1), indicat-

ing that the received congestion risk is exactly equal to the output congestion risk. When ω>
1.71, the congestion risk at time t + 1 is greater than the congestion risk at time t, indicating

that the congestion risk absorbed by the junction is higher than the output congestion risk. ω
= 0.23 reflects the maximum degree of association the intersection can withstand to prevent

congestion risk propagation. ω = 1.71 represents the minimum degree of association at which

the intersection absorbs more risk than the input risk. It can be observed that the degree of

association ω between intersections negatively impacts the control of congestion risk propaga-

tion. However, reducing the degree of association between intersections aids in controlling

congestion risk propagation behavior in the traffic network.

Conclusion

In this study, we propose a control method model for congestion risk propagation that takes

into account the probabilities of five threats (the risk occurrence probability; the risk of loss;

the unpredictability of risk; the uncontrollability of risk; the transferability of risk) in the traffic

network, in terms of improving the risk resistance of intersections and reducing the degree of

association among them. We employ numerical simulations to analyze the effects of the risk

resistance parameter θ, average degree of risk capacity of intersections α, and degree of associa-

tion ω on congestion risk control. The results reveal that risk propagation at intersections in a

traffic network is relatively complex. When the congestion risk of an intersection exceeds its

risk capacity, it has a certain probability of propagating its risk to neighboring intersections

while also receiving congestion risk from them. Increasing the risk capacity of an intersection

through external forces like government intervention or traffic control by relevant authorities

does not necessarily control the propagation of congestion risk to a certain extent. However,

when θ exceeds the threshold θ*, congestion risk propagation can be effectively prevented and

controlled, resulting in the highest control efficiency. As the variability of risk capacity distri-

bution at intersections increases, the occurrence of congestion risk propagation can only be

effectively controlled by raising the risk capacity threshold θ*. To enhance the efficiency of

controlling congestion risk propagation, minimizing the variability of the risk capacity distri-

bution at intersections is crucial. The degree of association ω between intersections negatively

impacts the efficiency of controlling congestion risk propagation. Hence, reducing the degree

of association among intersections becomes essential for controlling the propagation of con-

gestion risk in traffic networks. Based on information entropy, the risk propagation and con-

trol method proposed in this study provides a new perspective for studying urban congestion

risk. Moreover, it provides new ideas for preventing and controlling the propagation of con-

gestion risk on a larger scale. Subsequent research will concentrate on the behavioral charac-

teristics of travelers, constructing multiple network models and conducting targeted studies

on the propagation and control of different risks. This approach aims to provide a closer repre-

sentation of real-world scenarios.
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