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Abstract

Introduction

Child immunization, though cost-beneficial, experiences varying costs influenced by individ-

ual facility-level factors. A real-time solution is to optimize resources and enhance vaccina-

tion services through proper method to measure immunization facility efficiency using

existing data. Additionally, examine the impact of COVID-19 on facility efficiency, with the

primary goal of comprehensively assessing child immunization facility efficiency in Pakistan.

Methods

Utilizing survey data collected in four rounds from May 2018 to December 2020, the

research focuses on doses administered and stock records for the preceding six months in

each phase. In the initial stage, Data Envelopment Analysis (DEA) is utilized to compute

facility efficiency, employing two models with varied outputs while maintaining consistent

inputs. Model 1 assesses doses administered, encompassing three outputs (pentavalent

vaccine 1, 2, and 3). Meanwhile, Model 2, focuses on stock used featuring a single output

(total doses used). The inputs considered in both models include stock availability, staff

members, cold chain equipment, vaccine carriers, and vaccine sessions. The second stage

involves the application of two competing regression specifications (Tobit and Simar-Wil-

son) to explore the impact of the COVID-19 pandemic and external factors on the efficiency

of these facilities.

Results

In 12 districts across Punjab and Sindh, we assess 466 facilities in Model 1 and 455 in

Model 2. Model 1 shows 59% efficiency, and Model 2 shows 70%, indicating excess stock.

Stock of vaccines need to be reduced by from 36% to 43%. In the stage, COVID-19 period

reduced efficiency in Model 1 by 10%, however, insignificant in Model 2.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0298308 March 22, 2024 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ahmad T, Ibrahim M, Naz O, Abdullah M,

Khan A, Ali M, et al. (2024) Optimizing

immunization services: A Data Envelopment

Analysis (DEA) of child immunization facilities in

Pakistan. PLoS ONE 19(3): e0298308. https://doi.

org/10.1371/journal.pone.0298308

Editor: Furqan Kabir, Aga Khan University,

PAKISTAN

Received: May 18, 2023

Accepted: January 23, 2024

Published: March 22, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0298308

Copyright: © 2024 Ahmad et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

https://orcid.org/0000-0002-1648-2353
https://orcid.org/0000-0002-5612-231X
https://orcid.org/0000-0002-2923-0526
https://orcid.org/0000-0002-3816-3943
https://doi.org/10.1371/journal.pone.0298308
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298308&domain=pdf&date_stamp=2024-03-22
https://doi.org/10.1371/journal.pone.0298308
https://doi.org/10.1371/journal.pone.0298308
https://doi.org/10.1371/journal.pone.0298308
http://creativecommons.org/licenses/by/4.0/


Conclusions

The proposed methodology, utilizing DEA, emerges as a valuable tool for immunization

facilities seeking to improve resource utilization and overall efficiency. Model 1, focusing on

doses administered indicates facilities low efficiency at average 59% and proves more perti-

nent for efficiency analysis as it directly correlates with the number of children vaccinated.

The prevalent issue of overstocking across all facilities significantly impacts efficiency. This

study underscores the critical importance of optimizing resources through the redistribution

of excess stock with low efficiency.

Introduction

The World Health Organization’s (WHO) Immunization Agenda 2030 (IA2030) aims to

reduce morbidity and mortality from vaccine-preventable diseases through increased vaccine

coverage globally [1]. However, immunization coverage at scale is costly. For example, in

2018, Pakistan secured funding of USD 171 million for immunization, accounting for 7% of all

public sector spending on health [2, 3]. Given that resources are always scarce, optimizing of

available resources allows more children to be immunized with these limited resources, ulti-

mately improving coverage. The need to optimize resources has been further highlighted in

the aftermath of disruption of global supply chains and reduced demand for routine immuni-

zation during the COVID-19 pandemic [4].

The Expanded Program for Immunization (EPI) for child immunization was initiated in

Pakistan in 1978 and immunizes children against childhood diseases such as pertussis, tuber-

culosis, poliomyelitis, tetanus, diphtheria, and measles [5, 6]. The current rate of 76% full

immunization coverage at the national level is somewhat below the 81% global average (WHO

2021), and results in approximately 0.7 million children that are under or unimmunized [7].

Low uptake of immunization has been associated with inadequate service delivery resulting in

poor service utilization [8], distances to EPI centers, inadequate outreach [9], inefficient utili-

zation of funds [10], and unavailability of human resources or cold chain equipment [9]. The

latter was addressed in a recent grant from the Gavi, the Vaccine Alliance.

A variety of techniques have been used to investigate efficiency in public health service

delivery, such as WHO’s National Immunization Program Reviews, to reveal components

adversely impacting overall performance [11]. This and other techniques seek to explore waste

or underutilization of resources, either by reducing the number of inputs to achieve minimal

constant outputs–e.g., through a Data Envelopment Analysis (DEA) [12–18]–or to increase

output levels while keeping the number of inputs fixed. DEA is employed to construct an

empirical efficient surface for decision-making units (DMUs) with multiple inputs and out-

puts [19].

This methodology has found application in various sectors, including the banking industry

and the education sector, and has been employed in consensus ranking [20–22]. While DEA

has proven valuable in assessing the efficiency of healthcare facilities in recent years, its appli-

cation to the evaluation of immunization facilities remains relatively limited [23–25], with no

documented evidence from Pakistan. Additionally, the methodology has yet to be utilized in

immunization facilities to analyze the optimal targets for maximizing input utilization.

This analysis presents the first application of DEA to evaluate the efficiency levels of child

immunization facilities in Pakistan. We use data from EPI facilities, which were collected
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during an assessment of the Cold Chain Equipment Optimization Platform (CCEOP) project,

funded by Gavi, the Vaccine Alliance, which assessed the facilities in four different time peri-

ods where last assessment fell during the COVID-19 period. This created the additional possi-

bility to conduct secondary analysis to explore the external impact of COVID-19 on the

facilities’ efficiency.

Methodology

Data collection

We use the data of EPI facilities from an assessment of the Cold Chain Equipment Optimi-

zation Platform (CCEOP) project, funded by Gavi, the Vaccine Alliance. The study team for

this project included John Snow Incorporation (JSI) and Research and Development Solu-

tions (RADS). Originally, the project was designed to estimate quality improvement

through providing cold chain equipment to 136 EPI facilities and 4 district stores that had

been randomly selected from a list of facilities and stores in the 12 districts of Punjab and

Sindh provinces. Twelve facilities/district stores were selected at random from each district

except Sujawal from Sindh, where we took the sample of eight facilities/district stores only.

Inclusion criteria included those facilities/district stores who received the cold chain equip-

ment during the project. Facilitates which were closed due to lack of vaccinations or any

other reason were excluded from the sampling framework. The number of facilities/district

stores to be interview were provided by JSI team given the cost consideration for this

project.

The data collection process started from May 2018 and ended in December 2020 and

included four cross-sectional surveys of same facilities. Data was collected through Sur-

veyCTO which is computer assisted personal interview (CAPI) tool for tablet-based data

collection. Verbal consent was taken from the facilities/district stores and recorded on Sur-

veyCTO to document it before starting the interview. Survey data were collected in four

rounds in May 2018, December 2018, December 2019 and December 2020 respectively.

Data about doses administered and records of stocks were collected for 6 months prior to

survey in each phase. In the first phase, recorded data was from October 2017 to March

2018 (T1). Second phase data was collected from May 2018 to October 2018 (T2). For

third and fourth phases, data was recorded for the same months in two different years,

June to November for 2019 (T3) and 2020 (T4) respectively. Since data collection for the

last phase fell during the COVID-19 period, it also allowed assessment of the impact of the

pandemic. As the survey did not involve any human subjects, hence, ethics approval was

not required.

Statistical analysis. We use a two-stage approach to estimate the technical efficiency of

immunization facilities and the impact of exogenous variables, particularly the COVID-19

period. The first stage includes estimation of technical efficiency using Data Envelopment

Analysis (DEA) for immunization facilities using the necessary inputs and outputs. For

immunization facilities, inputs are stock of doses available, number of cold chain equip-

ment, number of staff members for immunization, number of days vaccines are adminis-

tered (vaccination sessions) and number of cold boxes used for outreach (vaccine carriers),

and outputs are the number of doses used (stock used) or number of doses administered

(Table 1). We take these inputs because they are assumed to influence the vaccination pro-

cess and have been used in prior studies [23, 26].

To identify which variables would be better suited as outputs in the first stage, we compare

the doses administered and stock used variables. Logic dictates that total doses administered

(Pentavalent vaccine 1 and 3) cannot be higher than stock used. However, we found such
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discrepancies in 43 observations where doses administered numbers were higher than stock

used. This stems from the fact that facilities occasionally acquire additional doses from other

facilities, but which are not recorded in their ledger. For instance, if a facility is short of doses,

then a vaccinator borrows doses from a nearby facility and records doses administered but

does not record the corresponding additional stock in the stock ledger. Hence, the stock used

numbers fall below doses administered. However, 22 facilities were dropped from the data

because discrepancy was higher than expected (50 percent). While it might be possible that a

facility may have borrowed more than 50 percent of its average stock of vaccines, there is even

a higher chance of outliers or data issues that may have an adverse impact on the analysis;

hence, dropping these facilities is preferred. The facility with missing observations for any

input or output were dropped from the analysis by the DEA methodology.

The second stage captures the influence of exogenous variables, including catchment popu-

lation, facility type, location and time period (COVID-19 last period), on efficiency scores

using Tobit and Simar-Wilson regression specifications. The first and second stage models are

explained in detail below. Stata 17 software is used for empirical analysis.

Data Envelopment Analysis (DEA)

DEA is a non-parametric methodology using linear programming algorithm to compute the

efficiency score for each DMU, i.e., immunization facility. Computation of each facility’s tech-

nical efficiency is dependent upon other facilities, where most efficient facilities are using least

number of inputs to maximize outputs and are set as a benchmark for others to describe the

minimum number of inputs required for given set of outputs. In this way, the DEA calculates

a measure of relative efficiency. For instance, if one facility is using more inputs for the same

output level compared to the most efficient facility, its technical efficiency will drop. The most

efficient facilities are given a value of 1 (100%) whereas the least efficient facilities are near the

value of 0 (or 0%); as the value drops from 1 (100%) and it’s closer to 0 (0%), the technical effi-

ciency of the facilities decreases.

An advantage for using DEA is that it accommodates multiple outputs with different

denominators. Hence, it makes DEA suitable for immunization facilities/health units as they

produce multiple outputs within a facility using different inputs. Secondly, DEA methodology

calculates weights after standardizing the inputs and outputs for all decision making units

(immunization facilities in our case), and these weights allow to manage miscellaneous pro-

duction functions which are not restrictive to corporate/industrial sector [27].

Table 1. Inputs and outputs for models 1 and 2.

Model 1 Model 2

Inputs

Stock available × ×
Staff for immunization × ×
Cold chain equipment × ×
Vaccination carriers × ×
Vaccination sessions × ×
Outputs

Pentavalent vaccine 1 doses administered ×
Pentavalent vaccine 2 doses administered ×
Pentavalent vaccine 3 doses administered ×
Stock used ×

https://doi.org/10.1371/journal.pone.0298308.t001
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First stage model specification. We estimate two different models using DEA to calculate

technical efficiency scores. Model 1 uses the first, second and third doses of pentavalent vac-

cine, while model 2 uses the total stock of pentavalent vaccine as outputs estimates. Both mod-

els have five inputs (Table 1). The model specifications are as below:

In the above equation, hk is defined as the relative efficiency of facility k. The numerator

explains the weighted sum of outputs and denominator depicts weighted sum of inputs for

facility k. The value of hk is censored between 0 and 1 as efficiency cannot exceed 100% and

cannot be non-positive. urk and vik are the weights for each input and output which explain

their relative importance while calculating efficiency.

We use the linear programming form of the primal Charnes, Cooper and Rhodes (CCR)

model, in which denominator is set equal to 1 and the numerator is maximized [28]. An

input-oriented model is adopted as immunization facilities are provided with predefined set of

vaccines doses. The number of doses is determined in accordance with the catchment area of

the facility and other resources are aligned. The DEA was run with constant returns to scale, as

all facilities are homogenous in nature. The equipment is similar and same level of staff is dedi-

cated for immunization services across all facilities. The final equations are as below:

Where:

• hk is the relative efficiency of facility k

• Zk is optimized value of efficiency indicator

• vi is the weights for input i

• ur is the weight for output r

• xik is the input i used by facility k

• yrk is output r produced by facility k

• m is the total number of inputs

• s is the total number of outputs

• N is total number of facilities

Maximize hk ¼

Ps

r¼1
urkyrkPm

i¼1
vikxik

https://doi.org/10.1371/journal.pone.0298308.t002

Zk ¼ max
Xs

r¼1

ur yrk

Subject to:

Xs

r¼1

ur yrk �
Xm

i¼1

vi xik � 0
k = 1, 2,. . ., N

Xm

i¼1

vi xik ¼ 1

ur, vi�0 i = 1, 2,. . ., m r = 1,2,. . .,s

https://doi.org/10.1371/journal.pone.0298308.t003
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Second stage model specification. In the second stage, we estimate the effects of external

variables on efficiency using Tobit and Simar-Wilson regression specifications [29]. Both these

methods are based on censored data, which means dependent variable is fixed within a specific

range. In case of efficiency estimates, the variable ranges from 0 to 1, making both regression

models relevant.

Even though Tobit regression is used for censored data, it has some limitations in terms of

efficiency variables. First, since the technical efficiency is calculated using DEA, the Tobit

model lacks a clear theory of the data generating process. Furthermore, the Tobit regression

assumes that efficiency scores are independent observations in the sample but in reality, these

scores are calculated from a common sample of data. To adjust for these issues, Simar-Wilson

proposes an alternate procedure by creating a data generating process which assumes trun-

cated rather than censored regression technique. Moreover, applying the bootstrap method in

the Simar-Wilson specification solves the issue of efficiency scores being correlated and pro-

duces unbiased standard errors and confidence intervals. Therefore, both methodologies are

incorporated to analyze the variation in the results produced by each regression.

The empirical model specification is given as:

Yit ¼ b0 þ b1LOGX1it þ b2X2it þ b3X3it þ b4X4t þ �it

Where:

• Yit is the efficiency score of facility i for the time period t

• LOGX1it represents logarithm of under two-year-old population of the facility catchment

area

• X2it is a dummy variable for provinces (Punjab = 1 and Sindh = 2)

• X3it is a categorical variable for the type of facility (Basic Health Unit (BHU) = 1, Rural

Health Center (RHC) = 2, Dispensary/Clinic = 3 and Hospital/Tehsil Headquarter (THQ)/

District Headquarter (DHQ) = 4)

• X4t is a categorical variable for the four-time periods (T1 = 1, T2 = 2, T3 = 3 and T4 = 4)

• �it is the residual term capturing the variance not included in the model

Data transformation

For targeted population, we compute the proportion of children under two years of age out of

the total population for each district from the population census of Pakistan [30]. After getting

the proportion of children under-two for each district, we multiply it with the total catchment

population (all-age groups) reported in the data. Thus, we impute the number of children

under-two among the catchment population. We then take log-transformed values of catch-

ment population to normalize it and reduce its skewness.

Our methodology focuses on outputs of facilities. Some data issues were analyzed while

comparing the doses administered and stock used at facilities. Doses administered are the

number of vaccines injected (separate numbers for each pentavalent vaccine 1 and pentavalent

vaccine 3 administered, and not necessarily unique children vaccinated). In order to complete

the doses administered data, pentavalent vaccine 2 is imputed taking the average of pentava-

lent vaccine 1 and 3. From national survey, it is clear that percentage of children receiving the

first dose is high and percentage for the third dose is low, while the number of children vacci-

nated for second dose falls in between [31]. Whereas stock used is the aggregate of all doses

administered, wastage, and stock given to neighboring facilities.
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Results

Table 2 presents summary statistics for all surveyed facilities across four distinct time periods.

During the second period, there is a notable decrease in the average administration of Pentava-

lent doses. The Covid-19 period follows as the second lowest in terms of doses administered

among the four periods. While stock availability is also at its lowest during the second period,

the averages of all other inputs remain relatively consistent across the surveyed facilities.

Our DEA model shows that hospitals are the most efficient facility type for both doses

administered (model 1) and stock used (model 2), whereas BHUs (0.57) are the least efficient

facility type for doses administered (model 1) and dispensaries/clinics (0.69) for stock used

(model 2). In both models, the T1 period (0.65 and 0.74) was the most efficient, and T2 (0.55

and 0.66) was the least. Mean efficiency is 59% for model 1 and 70% for model 2 (Table 3).

Apart from calculating efficiency scores, DEA allows us to suggest inputs adjustment for

each facility type so that facilities can move towards 100% efficiency (Fig 1). The adjustment is

recommended based on the reference group, which includes already-efficient facilities. The

inputs adjustment shows that stock available is the most important input which should be

reduced; even though the percentage difference of stock available is less than other inputs, the

absolute difference is higher. Since model 2 has higher efficiency, its difference percentages are

lower for all inputs on average as compared to model 1. After stock available, cold chain equip-

ment seems to be the second most important input which needs reduction.

Since hospitals are the most efficient facility type in our sample, the input reduction (per-

centage difference) is lower for them on average as compared to other types of facilities.

Table 2. Summary statistics for variables.

Variables Overall Mean (CI) [32] T1 Mean (CI) {2} T2 Mean (CI) {3} T3 Mean (CI) {4} T4/Covid-19 Mean (CI) {5}

Outputs/Inputs

Pentavalent 1 dose administered 86.1 (81.3,90.9) 88.2 (77.7,98.7) 80.0 (69.9,90.1) 90.1 (80.8,99.4) 86.1 (77.3,94.8)

Pentavalent 2 dose administered 80.74 (76.4,85.1) 81.46 (71.8,91.1) 74.62 (65.9,83.4) 85.2 (76.7,93.6) 81.54 (73.7,89.4)

Pentavalent 3 dose administered 74.66 (70.7,78.7) 74.3 (65.1,83.5) 68.2 (60.6,75.8) 79.6 (71.7,87.4) 76.5 (69.1,83.8)

Pentavalent vaccine stock used 245.5 (232.5,258.5) 257.4 (228.2,286.6) 221.6 (197.1,246.0) 262.2 (234.9,289.5) 240.8 (217.7,264.0)

Pentavalent vaccine stock available 360.0 (341.1,378.9) 367.3 (327.4,407.3) 329.7 (296.0,363.4) 393.2 (349.1,437.2) 350.0 (316.9,383.1)

Staff for Immunization 2.7 (2.5, 2.9) 3.39 (2.8,4.0) 2.5 (2.29,2.8) 2.4 (2.1,2.7) 2.6 (2.4,2.8)

Cold Chain Equipment 1.7 (1.6,1.7) 1.2 (1.1,1.3) 1.8 (1.7, 1.9) 1.5 (1.4,1.6) 2.0 (1.8, 2.2)

Vaccination Carriers 2.9 (2.7,3.1) 2.0 (1.69,2.3) 3.2 (2.8, 3.6) 3.3 (2.8,3.8) 3.0 (2.8,3.3)

Vaccination Sessions 5.4 (5.2,5.5) 5.5 (5.2,5.7) 5.3 (5.0,6.0) 5.4 (5.1,5.7) 5.4 (5.1,5.7)

External Variables

Population Under Two Years of Age 3,212 (2,830,3,594) 3439 (2428,4449) 3287 (2210,4364) 2836 (2554,3117) 3275 (2936,3615)

Province
Punjab 0.5 (0.5,0.6) 0.5 (0.4, 0.6) 0.5 (0.4,0.6) 0.5 (0.4, 0.6) 0.5 (0.4, 0.6)

Sindh 0.5 (0.4,0.5) 0.5 (0.4, 0.6) 0.5 (0.4, 0.6) 0.5 (0.4, 0.6) 0.5 (0.4,0.6)

Facilities
BHU 0.6 (0.5,0.6) 0.6 (0.5,0.7) 0.6 (0.5,0.7) 0.6 (0.50,0.7) 0.6 (0.5,0.7)

RHC 0.1 (0.1,0.1) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2)

Dispensary/Clinics 0.19 (0.16,0.22) 0.19 (0.13,0.26) 0.20 (0.13,0.26) 0.19 (0.13, 0.26) 0.2 (0.1, 0.3)

Hospital/THQ/DHQ 0.1 (0.1, 0.1) 0.1 (0.06,0.2) 0.1 (0.1,0.2) 0.1 (0.1,0.2) 0.1 (0.1,0.2)

Note: Column 1 shows mean of all time periods combined. Pentavalent vaccine 1 doses administered, Pentavalent vaccine 3 doses administered, Pentavalent vaccine

stock used and Pentavalent vaccine stock available were calculated by taking six-month average for each facility. While Pentavalent vaccine 2 doses administered was

imputed using the average of Pentavalent vaccine 1 and 3 doses administered.

https://doi.org/10.1371/journal.pone.0298308.t004
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The inputs adjustment can also be viewed with respect to the four time periods in our sam-

ple (Fig 2). In the T1 period, the staff should be reduced by three in model 1 and two in model

2. Results suggest that staff should be reduced more as we move towards the endline. Cold

Fig 1. Doses administered and stock used slacks in percentage by facility type. Note: Above graph shows results from doses administered and stock used (as

outputs). The x-axis shows the average units of each input. Actual is the average input used by the facility, whereas projected is the desired level calculated

through DEA methodology. Percentages shown in the plot region are the average reduction rates for each type of facility.

https://doi.org/10.1371/journal.pone.0298308.g001

Table 3. Doses administered and stock used efficiency statistics by facility type and time period.

Doses Administered (Model 1) Stock Used (Model 2)

Facility Type N Mean Confidence Interval N Mean Confidence Interval

All 466 0.59 (0.57, 0.61) 455 0.70 (0.69, 0.72)

BHU 276 0.57 (0.55, 0.60) 271 0.70 (0.68, 0.72)

RHC 52 0.59 (0.52, 0.64) 50 0.72 (0.66, 0.77)

Dispensary/Clinics 84 0.60 (0.56, 0.65) 82 0.69 (0.64, 0.73)

Hospitals 54 0.65 (0.60, 0.70) 52 0.75 (0.70, 0.80)

Time Period 1

T1 95 0.65 (0.61, 0.70) 96 0.74 (0.71, 0.78)

T2 120 0.55 (0.51, 0.58) 114 0.66 (0.62, 0.69)

T3 124 0.60 (0.56, 0.63) 121 0.71 (0.68, 0.74)

T4 127 0.58 (0.54, 0.62) 124 0.71 (0.68, 0.74)

https://doi.org/10.1371/journal.pone.0298308.t005
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chain equipment should be reduced by one unit on average across all time periods. Vaccine

carriers/boxes should be reduced by two units on average for both models across all time peri-

ods except in T1, where these need to be reduced by one unit. Vaccine sessions need to have a

uniform decrease of three session per week for both models across all time periods. Lastly,

stock available requires the highest absolute reduction out of all five inputs. The reduction in

stock available is shown to be the lowest in T1 as that was the most efficient time period, while

it is the highest for third time period (T3).

The second stage results (Table 4) show positive and significant relationship between effi-

ciency and population (under two years old age group). As population grows around the facil-

ity, it is anticipated that the efficiency of the facility is likely to increase because higher

population increases the percentage number of vaccinations administered. However, prov-

inces show different coefficients for doses administered and stock used. Sindh is more efficient

as compared to Punjab in model 1 in Tobit but insignificant in Simar-Wilson regression, while

Punjab is more efficient in model 2 in both Tobit and Simar-Wilson regressions with 5% sig-

nificance level. Facility type does not appear to be statistically significant across all regression

specifications except for model 2 while using Simar-Wilson regression, where hospitals appear

Fig 2. Doses administered and stock used slacks in absolute values by time period. Note: Above graph shows results from doses administered and stock

used (as outputs). The x-axis shows the average units of each input. Actual is the average input used by the facility, whereas projected is the desired level

calculated through DEA methodology. Numbers shown in the plot region are the average absolute number of units need to be reduced in each time period (1

denotes starting time period, likewise 4 is the last time period).

https://doi.org/10.1371/journal.pone.0298308.g002
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to have a significant positive coefficient, suggesting that hospitals are more efficient as com-

pared to BHUs.

The time variables show that efficiencies of facilities have dropped in all time periods as

compared with T1 (baseline). However, the magnitude of the decline in efficiency varies across

the time periods. Since efficiency is the highest in the T1 (baseline) time period, the succeeding

time periods (T2 and T3) are associated with lower efficiency as compared to the baseline (see

Table 3). The time variable also captures the T4/COVID-19 time period and it shows a nega-

tive relationship with efficiency for model 1 in both Tobit and Simar-Wilson regressions. It

implies that efficiency is low in T4/COVID-19 period as compared to the T1 (baseline). Inter-

estingly, T4/COVID-19 variable is not statistically significant for model 2 for both regressions.

Discussion

Data Envelopment Analysis (DEA) of efficiency of immunization facilities in Punjab and

Sindh shows efficiency to be 59% for doses administered (model 1) and 70% for stock used

(model 2), suggesting that facilities have excess inputs by 44–47%. Furthermore, among the

Table 4. Doses administered and stock used second stage regression results.

Doses Administered Stock Used

(1) (2) (3) (4)

Efficiency Tobit Model Simar-Wilson Model Tobit Model Simar-Wilson Model

Log under two years old population 0.078* 0.095* 0.047* 0.057*
(0.047, 0.109) (0.065, 0.124) (0.020, 0.075) (0.020, 0.094)

Province [Base: Punjab]

Sindh 0.045* 0.032 -0.058* -0.086*
(0.005, 0.084) (-0.002, 0.066) (-0.093, -0.022) (-0.132, -0.040)

Facility Type [Base: BHU]

RHC -0.001 0.009 0.001 -0.012

(-0.061, 0.060) (-0.044, 0.062) (-0.054, 0.055) (-0.082, 0.059)

Dispensary/Clinic 0.010 0.017 0.016 -0.006

(-0.042, 0.062) (-0.030, 0.063) (-0.031, 0.063) (-0.067, 0.055)

Hospital/THQ/DHQ 0.052 0.039 0.053 0.089*
(-0.011, 0.114) (-0.018, 0.095) (-0.002, 0.109) (0.009, 0.169)

Time [Base: T1]

T2 -0.125* -0.088* -0.084* -0.082*
(-0.180, -0.070) (-0.136, -0.039) (-0.133, -0.035) (-0.147, -0.017)

T3 -0.069* -0.045 -0.036 -0.038

(-0.124, -0.015) (-0.094, 0.004) (-0.085, 0.012) (-0.104, 0.028)

T4/COVID-19 period -0.093* -0.099* -0.045 -0.052

(-0.148, -0.039) (-0.149, -0.049) (-0.093, 0.003) (-0.118, 0.015)

Constant 0.031 -0.137 0.398* 0.364*
(-0.215, 0.277) (-0.369, 0.095) (0.180, 0.615) (0.077, 0.650)

Variance of efficiency 0.040* 0.032*
(0.035, 0.046) (0.027, 0.036)

Sigma 0.167* 0.195*
(0.155, 0.180) (0.175, 0.214)

Observations 461 431 451 436

Mean efficiency 59% 70%

*Significant at 95% CI, 95% CI in parenthesis

https://doi.org/10.1371/journal.pone.0298308.t006
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facilities, hospitals are the most efficient which is expected because hospitals are mostly situated

in densely populated areas. A second stage analysis indicates that COVID-19 reduced the effi-

ciency of immunization facilities for doses administered (model 1) but the effect was insignifi-

cant for stock used (model 2), perhaps due to reduction in vaccination clients at the facilities.

Given that most facilities have defined catchment populations that they serve, their outputs are

relatively fixed. From a policy or program perspective, this analysis allows a means to under-

stand when facilities are being oversupplied with inputs. Specifically, of the given inputs in our

models, personnel and equipment are relatively fixed over time, however, how much vaccine is

made available can be better adjusted using an efficiency analysis such as the one we describe.

Despite recent gains in vaccination coverage, Pakistan successfully vaccinates only around

76% of its children [31, 33] in part due to budget constraints, lack of major resources, and inef-

ficient management [34]. In addition, it relies extensively on international donors for its

Expanded Program for Immunization (EPI) [5]. An efficiency analysis can therefore serve as a

simplified tool for facilities to promote optimal use of limited resources. In particular, it can

help with optimal supply of vaccines to individual facilities where they can be used best. The

best part of this methodology is that it may be automated through algorithms that can work

with existing datasets such as the vaccine logistics management system and would not require

inputs from statisticians. Furthermore, this analysis can be devolved from federal or provincial

EPI to districts or even individual facility level.

Efficiency is an interplay between facility level outputs, i.e., the number of children vacci-

nated, and inputs, i.e., vaccine stocks, personnel, equipment and vaccination sessions [35].

Since most facilities have maximized the number of children they vaccinate in their catchment

areas, including through outreach, efficiency may only be addressed by optimizing inputs [36].

Since personnel and equipment are often fixed for individual facilities or at least subject to

only infrequent and long-term changes, stocks availability is the most flexible input that can be

modulated. The analysis shows that DEA can be used to optimize the resources by identifying

facilities overstocking and to maintain sufficient stocks, these facilities can reallocate to other

facilities where stocks are needed. Conversely, our findings also suggest why interruption in

supplies may not be immediately noticed by the personnel in the system as at least in the

beginning, diminishing supplies may make the previously overstocked facility seem efficient.

Additionally, given the issues of sporadic interruption in vaccine supplies, the program may

want to identify the optimal level of efficiency that allows sufficient back up stores without

wastage. DEA is the most applicable methodology in the literature to measure the technical

efficiency of health facilities but immunization facilities are not covered extensively. However,

given the scope of services provided by each health facility, inputs and output vary between

them and across countries as well.

In the second stage, we have applied two regressions Tobit and Simar-Wilson to analyze the

effect of external variables on efficiency of facilities. The magnitude of the coefficients is very

similar and signs are consistent across both regressions. Since Simar-Wilson corrects for the

bias resulting from correlation of efficiency values across facilities by bootstrapping them, it is

suggested as the preferred regression method.

One of data collection periods (endline period in 2020) was affected by COVID-19 and

therefore allowed us to measure its impact. In our analysis, COVID-19 has negative association

with efficiency in model 1 (doses administered) while it is statistically insignificant for model 2

(stocks used). This is consistent with our above discussion that the number of children vacci-

nated is a primary driver of efficiency (in addition to stocks). Since fewer children could access

facilities for vaccination during the period, efficiency fell [37, 38]. On the other hand, other

observations suggest that transport of essential drugs and supplies such as vaccines was

restored within a month in April 2020 (Khan et al., manuscript in process).
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We have used two different model specifications that differ in terms of outputs only. Given

this, we conclude that the preferred model is doses administered (model 1) as it does not over-

state the output and represents accurate efficiency even though it is low. Stock used (model 2)

overestimates efficiency due to increased output, which is another reason for insignificant

effect of COVID-19. Overall, the immunization facilities need to improve their operational

management as they are currently operating under par. A developing country like Pakistan

needs to increase input utilization to generate maximum benefit from limited resources. The

proposed methodology in this paper can serve as an instrument for resource allocation across

all immunization facilities in Pakistan and effects of external variables can also be analyzed on

the efficiency.

Limitations

Despite the robustness of the study’s results, several limitations have been identified, opening

avenues for valuable future research. The initial constraint revolves around the limited dataset,

specifically the absence of essential variables like energy consumption (electricity) that could

potentially impact the immunization process. Additionally, the study relied on imputed data

for pentavalent vaccine 2 doses administered, underscoring the need for enhanced recording

and reporting practices. To address this, future research should consider comprehensive data

collection to encompass a broader range of influential factors. Additionally, there is a need to

validate the accuracy of catchment population figures, as the reliance on self-reported data

from facility heads may introduce discrepancies. Enhancing accuracy through cross-referenc-

ing with official records or alternative data collection methods is recommended. Beyond these

data-related concerns, future research directions could explore additional factors influencing

immunization facility efficiency, such as socio-economic variables, local infrastructure, and

governance structures. By addressing these aspects, future research can significantly enhance

the depth and applicability of findings, contributing to a more nuanced understanding of

immunization facility performance.

Conclusion

We use a two-stage DEA to measure efficiency of facilities using endogenous variables and

then estimate the impact of exogenous variables. We employ two models which differ in terms

of outputs which are doses administered and stock used. Facilities are operating at low effi-

ciency levels of 59% and 70% for doses administered and stock used outputs respectively. This

implies that facilities are allocated with excess inputs given their output level. Analysis high-

lights the problem of overstocking in all facilities which can be utilized elsewhere. This meth-

odology for the immunization facilities can play an important to optimize resources and

improve overall efficiency level. In the second stage, we find negative impact of COVID-19

with efficiency majorly due to fear of parents to catch infection. In order to improve resource

utilization and to increase the outreach of immunization facilities, sophisticated quantitative

analysis should derive inputs allocation for each facility. Such methodologies could be rolled

out to federal, provincial, district level or even facility level for routinely assessment of effi-

ciency to get maximum benefit.
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