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Abstract

The clustering analysis approach treats multivariate data tuples as objects and groups them

into clusters based on their similarities or dissimilarities within the dataset. However, in mod-

ern world, a significant volume of data is continuously generated from diverse sources over

time. In these dynamic scenarios, the data is not static but continually evolves. Conse-

quently, the interesting patterns and inherent subgroups within the datasets also change

and develop over time. The researchers have paid special attention to monitoring changes

in cluster solutions of evolving streams. For this matter, several algorithms have been pro-

posed in the literature. However, to date, no study has examined the effect of variability in

cluster sizes on the evolution of cluster solutions. Moreover, no guidance is available on

determining the impact of cluster sizes on the type of changes they experience in the

streams. In the present simulation study using artificial datasets, the evolution of clusters is

examined concerning the variability in cluster sizes. The findings are substantial because

tracing and monitoring the changes in clustering solutions have a wide range of applications

in every field of research. This study determines the minimum sample size required in the

clustering of time-stamped datasets.

1 Introduction

The clustering approach is an unsupervised learning problem that considers multivariate data

tuples as objects and partitions them into a prespecified number of clusters. Entities in each

cluster are comparably similar to one another than entities belonging to different clusters.

Commonly, the similarity is measured in terms of a distance function between each pair of

objects [1]. Some well-known similarity measures include Euclidean, squared Euclidean, Man-

hattan, cosine, and Chebyshev distance functions. The notion of a cluster is not specifically

defined, and the standards can vary significantly from case to case [2–4]. Some algorithms aim

to minimise the intracluster variation, while others identify clusters as the dense region in the

feature space. From the perspective of cluster definition, the traditional algorithms are divided

into five categories namely partitioning, hierarchical, density-based, grid-based, and model-

based clustering algorithms [5].
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In today’s world, a bulk of information is continually generated by different sources over

time. In these applications, the data are not stationary but rather evolves. Consequently, the

interesting patterns and natural subgroups in the datasets do not remain stagnant; they change

and evolve over time. In such a dynamic environment, the entire training dataset is not avail-

able to the learning algorithm at once. Consequently, a sequence of cluster solutions needs to

be generated at some discrete points in time [6]. This phenomenon raises an important ques-

tion: are these cluster solutions static over time or do they experience any transitions? Signifi-

cant work has been conducted in monitoring and tracking changes in these clustering

solutions obtained at successive time points in all these years.

Over the past two decades, practice of monitoring and tracing the evolution of clustering

solutions within data streams has gained considerable importance across various domains.

The clusters undergo certain changes, and comprehending the type of transitions that occur

can provide a significant advantage. The elements within the clusters may migrate from one

cluster to another, leading to the disappearing, merging, and splitting of the clusters at later

time points. Similarly, the surviving clusters can adopt internal transitions, such as changes in

size, location, and cohesion [7, 8]. Applications of monitoring changes in cluster solutions

span a diverse range of fields and scenarios. Some key applications include, businesses utilize

cluster monitoring to cluster customers based on purchasing behavior, detecting sudden shifts

in cluster solutions can help identify anomalies in data streams, monitoring cluster changes

can reveal evolving patterns in patient data, Monitoring cluster evolution in social networks

helps uncover changing community structures, tracking changes in species distribution

through clustering helps assess ecosystem health and detect potential threats, changes in prod-

uct data clusters can reveal production variations and help maintain quality standards, etc. Atif

et al. [9] provided a comprehensive review of the literature on the various techniques used to

monitor and trace the development of clustering solutions over time. The discussion has made

it abundantly clear that tracking and monitoring changes in a dynamic environment are essen-

tial for forecasting the future and formulating policies. Nevertheless, segmentation studies are

inherently exploratory and are greatly influenced by the number of variables and the sample

size. A comprehensive simulation study is crucial to estimate the minimum sample size neces-

sary to ensure statistical validity without the need to reduce the number of variables.

The novelty in estimating the minimum sample size necessary for monitoring changes in

cluster solutions lies in its pioneering approach. This research breaks new ground by address-

ing the often-overlooked aspect of sample size determination in the context of evolutionary

cluster analysis. By focusing on this critical element, it offers a fresh perspective on ensuring

the validity of results, and adapt to evolving data patterns.

The key contribution of the present study is to establish sample size requirements for data-

driven segmentation analyses. This provides data analysts with a valuable tool to assess

whether the available sample for monitoring and tracking changes in clusters is adequate, con-

sidering the number of variables within the segmentation base. It helps analysts determine

whether they should collect additional data or reduce the number of variables used in their

analysis to ensure robust and meaningful results. A comprehensive review of the literature has

been conducted, and the algorithms proposed for tracing the cluster solutions are discussed in

the next section.

2 Related work

The evolutionary clustering framework was first introduced by Chakrabarti et al. [10]. This

framework generate a series of clustering solutions {ξ1, ξ2, � � �, ξn} at consecutive discrete time

points. In other words, it provides a clustering solution ξi = {X1, X2, � � �, Xk} for each time point
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ti in the stream. The algorithm works by simultaneously maximising two criteria. First, each

clustering solution must directly represent the dataset at the associated time point as closely as

possible. Second, the clustering solution should not significantly deviate from the result

obtained at the adjacent time point. The evolutionary clustering framework was initially devel-

oped for k-means and agglomerative hierarchical clustering techniques. The spectrum cluster-

ing problem is expanded within the evolutionary paradigm by Chi et al. [11], producing more

reliable and consistent outcomes. Spectrum evolutionary clustering is more stable against

long-term drift and less sensitive to short-term noise. However, these algorithms are incapable

of detecting the emergence of new clusters and the aging of existing clusters. To address this

issue, Zhang et al. [12] combines the concept of evolutionary clustering with density-based

algorithms to prevent arbitrary groups from developing and disappearing in dynamic social

networks. These techniques greatly improve the evolutionary clustering literature; however,

they cannot capture a variable number of clusters over time. The hierarchical Dirichlet process

and the hidden Markov model are combined by Xu et al. [13] to handle this problem and sig-

nificantly boost performance.

Using self-organising maps, Denny and Squire [7] proposed a method for identifying struc-

tural changes in cluster solutions of temporal datasets. This approach involved comparing

clustering results at various points in time and monitoring how the new results differed from

the old one. This research work uses world development indicators to assess the performance

of the proposed algorithm. However, this algorithm failed to detect the newly emerged and dis-

appearing clusters. This issue was addressed by the Relative Density Self-Organising Map

(ReDSOM), a visualization-based approach developed by Denny et al. [14]. The algorithm

could recognize various changes in cluster structures, including the formation of new clusters,

disappearance, splitting, merging, expansion, centroid movement, and changes in

cohesiveness.

The MONIC framework, used for modeling and monitoring changes in clustering solutions

of cumulative data streams over time, was introduced by Spiliopoulou et al. [8]. This frame-

work compares the results obtained at two subsequent time periods to track the structural

changes in the clusters. The changes adopted by the clusters can generally be categorized into

two groups: external transitions and internal transitions. External transitions encompass the

survival, merging, splitting, disappearance, and re-emergence of clusters. Internal transitions

involve adjustments in the size, cohesion, and location of the surviving clusters. The overlap, a

non-symmetric matrix that serves as the foundation for the MONIC framework, is expressed

by the following expression:

OverlapðXi;YjÞ ¼
jXi

T
Yjj

jXij
; i ¼ 1; 2; � � � ; k1; j ¼ 1; 2; � � � ; k2

ð1Þ

where Xi is a member of the set of clusters produced by the first clustering and Yj is a member

of the set of clusters produced by the second clustering. A matrix of order k1*k2 is produced,

where k1 and k2 represent the number of clusters from the first and second clustering, respec-

tively. The similarity index between clusters is represented by the value on the appropriate ele-

ment of the matrix and acts as a marker for tracking the external transition. The cluster

membership is assessed to track the internal transition of the clusters that have survived.

The Monitoring Clusters Transition (MClusT) algorithm, developed by Oliveira and Gama

[15], visualizes the transition of clusters on a bipartite graph by utilizing conditional probabili-

ties as edge weights. MClusT incorporates a tracking technique based on graph theory, a tran-

sition detection algorithm, and a taxonomy of transitions. For each pair of clusters obtained

from the stream at successive time points, the algorithm calculates conditional probabilities.
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These conditional probabilities act as indicators for monitoring the cluster solutions. For more

in-depth information on real-time detection of changes in clusters using density-based algo-

rithms, interested readers can refer to articles [16–18]

3 Methodology

This paper aims to demonstrate the influence of variability in cluster sizes on clusters’ tempo-

ral evolution. Additionally, it seeks to identify the minimum sample size required in dynamic

streams. For this purpose, we implement the MONIC framework in R-software, which can be

downloaded from the URL https://CRAN.R-project.org/package=clusTransition [19, 20]. A

comprehensive literature review reveals the introduction of several algorithms designed for

monitoring the changes in cluster solutions of streaming datasets. However, to our knowledge,

no research work has been conducted to examine the effect of variability in cluster sizes on

their evolution in streams. Consequently, there was no guidance available to choose the perfor-

mance measures and assess how cluster size influences the changes adopted by the clusters

over time.

3.1 Methods

In supervised learning, the performance of the model is evaluated by comparing the predicted

class with the true class labels of the outcome attribute. However, in unsupervised learning

problems, the true class labels are not provided to the learning algorithms. Hence, assessing

the performance of unsupervised learning algorithms is quite challenging [21, 22]. Given the

lack of pertinent literature, identifying performance indicators in this research study proved to

be a formidable challenge. Generally, the consistency of cluster solutions over time and the

accurate identification of changes in the stream represent critical performance indicators. In

this study, we applied both the conventional logistic regression and the generalized additive

logistic regression models to fit the binary response variable. The logistic regression model uti-

lizes the logistic function to model the probability of a specific event. In this research, we con-

sider survival of the smallest cluster as event of interest and record the dichotomous response

variable yi used in these models as:

yi ¼
1; If the smallest cluster surviveðwith probability pðxÞÞ

0; If the smallest cluster experience transitionðwith probability 1 � pðxÞÞ

(

ð2Þ

It is computed as follows: In each iteration of the simulation, the datasets generated at time

point t2 have identical cluster centers to the those that evolved at time point t1. Ideally, all the

clusters at time point t2 should survive, and therefore, the small cluster in the stream should

not experience any external transitions. The response variable records the status of the smallest

cluster, indicating whether it survives or undergoes a transition. To model this phenomenon,

the conventional logistic regression model is given as:

Model 1 : logitðpiðxÞÞ ¼ a þ
Xp

j¼1

bjðxjÞ ð3Þ

where xj’s represents the co-variates included in the study and βj’s are the corresponding

regression coefficients. The predictors and their respective levels included in the study are pre-

sented in Table 1. These predictors encompass the size of the smaller cluster, the number of

clusters, the number of variables, and the separation between clusters. The model includes

both their main effects and second-order interaction terms. The term π(x) = P(yi = 1|X) com-

putes the conditional probability that the smallest cluster survives at subsequent time point.
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We can write the binary generalised additive model structure as:

Model 2 : logitðpiðxÞÞ ¼ a þ S1ðSizeÞ þ
Xp

j¼2

SjðxjÞ ð4Þ

The terms S1 is the smooth non-parametric basis function that transform Size with the spe-

cific form depending on the chosen basis. On the other hand, Sj’s are the linear functions cap-

turing the effects of other co-variates.

Generalised Additive Models (GAMs), introduced by Hastie and Tibshirani [23], belong to

a family of statistical models that utilize smoothing functions to capture the non-linear rela-

tionships between the response variable and predictors, thereby accommodating the data’s

complexities. GAMs offer a reliable approach for smoothly fitting unseen data while avoiding

excessive model complexity. The core concept involves fitting smooth non-linear functions to

a set of predictors Xi to uncover the relationships among the variables in the model [24, 25]. In

the case of GAMs, the relationship between individual predictors and the response variable fol-

lows some linear or non-linear smooth pattern. This pattern can add up to predict the expected

value of the dependent variable.

3.2 Data generation

Clustering analysis is an unsupervised learning technique that seeks interesting patterns in

datasets without pre-existing true class labels. Since the true class labels are unknown, and

hence the true structure can not be predicted in the dataset [26, 27]. To overcome this limita-

tion, we use the simulated datasets to achieve the study objectives. One significant advantage

of using a simulation study over real-life datasets is the availability of true class labels in simu-

lated data. This enables the tracking of data item migration between clusters based on their

actual class memberships, facilitating monitoring of the cluster evolution.

3.3 Clustering algorithm

The MONIC framework operates under the assumption that each data item is exclusively

assigned to one and only one cluster. This assumption effectively eliminates the feasibility of

applying density-based and model-based clustering algorithms. This constraint leads us to

focus on partitioning methods for clustering. Among these methods, one of the most common

and suitable choices is the traditional k-means algorithm. The true number of classes (i.e.,

Table 1. Overview of the factors used in simulation study.

Factors Levels

Number of variables (d) 2, 3, 4, 5, 10, 15

Size of small cluster (n1) 10*d*k, 20*d*k, 30*d*k, 40*d*k, 50*d*k
60*d*k, 70*d*k, 80*d*k, 90*d*k, 100*d*k

Number of clusters (k) 3, 4, 5

Time points 2

Separation value -0.1, 0.0, 0.1

Total number of datasets 6*10*3*2*3 = 1080

The larger clusters in the datasets consist of 5000 observations each. The datasets were simulated at two time points

and the changes in cluster solutions were monitored.

https://doi.org/10.1371/journal.pone.0297355.t001
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number of clusters generated in each simulation) was used as a relevant value of k. The k-

means [28, 29] is one of the most widely used learning algorithms for partitioning data into a

specified number of clusters k. Here, k represents the optimal number of clusters pre-specified

by the analyst. The algorithm optimizes two competing criteria: objects belonging to the same

cluster display high intra-class similarity, while those from distinct clusters exhibit low inter-

class similarity.

4 Results and discussion

The results section is organized as follows: Section 4.1 presents a preliminary analysis mapping

the impact of cluster size variability on the evolution of clusters in a data stream. Ten streams

were specifically created for this purpose, with data items emerging at two successive time

points in each stream. At time point t1 in each stream, the dataset comprised four distinct clus-

ters with varying sizes (i.e. one small and three large clusters). Each of the larger clusters con-

tained 5000 observations, while the size of small clusters in the streams were 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 respectively. At time point t2, four clusters with cluster centers

similar to those that emerged at t1 were simulated, each containing 2,000 observations. The

consistency and stability of the clusters in the second clustering are assessed, as the clusters at

subsequent time periods have similar centers.

In section 4.2, data streams were generated at two consecutive time points. To ensure reli-

able recommendations different circumstances are encountered in artificial datasets, including

1) number of variables (d), 2) sample sizes, 3) number of clusters (k), 4) and separation value

between neighboring clusters. The datasets were generated using genRandomClust() functions

from clusterGeneration and cluster.Gen() function from clusterSim package in R [19, 30, 31].

The number of respondents in the small cluster was determined based on the recommenda-

tions of Qiu and Joe [32]. Their recommendations indicate a linear dependence of sample size

on the number of variables (d) and number of clusters (k). These two covariates can signifi-

cantly influence the outcomes and behavior of unsupervised learning algorithms. The number

of variables directly affects the complexity of analysis, and computation time. The number of

clusters, on the other hand, directly determines the granularity of grouping within the data. A

smaller k may result in clusters that are too generalized, while a larger k can lead to fine-

grained clustering that might not capture meaningful patterns. This results in 10*d*k, 20*d*k,

30*d*k, 40*d*k, 50*d*k, 60*d*k, 70*d*k, 80*d*k, 90*d*k, and 100*d*k objects simulated

across each data scenario. This recommendation also serves to justify the utilization of simu-

lated datasets in unsupervised learning, as the actual number of clusters remains unknown in

real datasets. Table 1 below present an overview of the factors included in the study.

4.1 Preliminary analysis

Fig 1 below demonstrates the external and internal transitions adopted by the clusters at time

point t2 in relation to different sizes of the small cluster. Though the datasets at time point t2
being simulated with centers identical to the clusters evolved at t1. Yet, extremely unstable clus-

tering solutions were obtained at succeeding time points due to variability in the cluster sizes.

Sub-plot A in Fig 1 illustrates that the algorithm identified one survived, two merged, and

one split candidate at time point t2. However, as the size of the smaller cluster exceeded 150

observations, two survived, two merged, and one newly emerged candidate were detected.

Moreover, once the size of the smaller cluster reached 400 observations, all four clusters sur-

vived at the subsequent time point. Similarly, sub-plot B in Fig 1 depicts the internal transition

of the surviving clusters at time point t2. It can be observed that the survived cluster is more

diffused than its ancestor when the size of the smaller cluster is 100 observations or less. On
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the other hand, when the size of the smallest cluster exceeds 400 observations, one cluster

experiences a change in cohesion, becoming more compact than its previous state.

This unstable clustering solution is explained in Fig 2, highlighting the impact of cluster

size variability in the stream. The color scheme represents the predicted class, whereas the

symbols depict the true class labels in the stream. The clustering solution at time point t1
clearly shows that the smallest class (�) in the dataset is a part of its neighboring larger cluster.

However, with the introduction of new data points at time point t2, the cluster splits into two

daughter clusters. Meanwhile, class (+) was divided into two clusters, which then merge into a

single cluster at the subsequent time. The method accurately identifies one split and two

merged clusters at time point t2 due to this phenomenon. However, because the smallest clus-

ter contains more than 150 observations, it is recognised as a recently emerging candidate.

Consequently, the adjacent cluster undergoes changes in cohesiveness and location. Further-

more, as the smallest segment comprises over 400 observations, all clusters manage to survive.

In light of this fact, even the smallest class is now recognised as a separate cluster.

4.2 Model 1: Logistic modeling

To further investigate the impact of sample size on the survival of clusters over time in stream-

ing datasets, we analyzed simulated data using logistic regression models. According to

Table 2 in the usual logistic regression model, the coefficients of eight factors (Sample size, d.3,

d.4, d.5, d.10, d.15, k.5, and Separation.0.1) are found to be statistically significant. Whereas six

two factor interactions (d.3:Separation.0.1, d.15:Separation.0.1, k.5:Separation.0.1, d.5:k.5,

d.10:k.5, and d.15:k.5) are found significant at 1% level of significance (see details in Table 2).

Subsequently, we enhance our model to GAM by incorporating smooth functions of the

explanatory variables. According to Table 2 all two factor interaction terms are found to be

insignificant at 1% level of significance (P − value> 0.01). However, the Separation.0.1 is the

Fig 1. The changes adopted by clusters at time point t2 with respect to the size of the smaller cluster. The x-axis represents the smaller cluster size,

while the y-axis denotes the number of clusters experiencing the corresponding transition.

https://doi.org/10.1371/journal.pone.0297355.g001
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only significant factor (P − value<.01) in the GAM model. The edf of smoothing term for

sample size is 6.43 (P − value< 7.1e − 05) indicating that the effect of sample size on log odds

is not linear.

4.2.1 Model comparison. Now, let’s compare our regular logistic model with GAM logis-

tic model using multiple performance standards. Table 3 below demonstrates some of these

performance standards for model comparisons.

Comparing these standards indicates that it is now safe to conclude that the GAM performs

considerably better than the regular logistic model. To further validate this comparison, we

conducted the standard test using R-software’s anova function to statistically compare the two

models. The results of the analysis of deviance for model comparison are presented in Table 4.

Now, with additional statistical evidence, we can confidently propose that incorporating

the non-linear relationships of the covariates significantly enhances the performance of the

model.

Fig 2. Clustering solutions at successive time points. Sub-plot A represents cluster solution at time point t1. The sub-plot B represent cluster solution

at time point t2 when the size of smaller cluster is 50, whereas sub-plot C represent cluster solution at time point t3 when size of smaller cluster is 250.

https://doi.org/10.1371/journal.pone.0297355.g002
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Table 2. Summary of regular logistic and GAM logistic regression models.

Factors Model 1 Model 2

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -38.17095 5.76496 3.56e-11 *** -49.12996 15.85510 0.001944 **
Sample size 0.34731 0.04949 2.25e-12 *** - -

d.3 7.97918 2.68648 0.002977 ** 1.14972 2.59455 0.657674

d.4 12.25383 2.97923 3.90e-05 *** -1.0024 3.67016 0.784747

d.5 13.42242 3.05780 1.14e-05 *** -4.3094 4.86085 0.375317

d.10 18.80360 3.5697 1.38e-07 *** -2.9172 6.22457 0.639307

d.15 21.87555 3.8768 1.68e-08 *** 0.00000 0.00000 NA

k.4 4.29816 2.20465 0.051225 -3.3750 1.90011 0.075693

k.5 2.84153 2.77007 3.56e-06 *** 0.00000 0.00000 NA

Separation.0 2.66206 2.18551 0.223205 2.61664 2.35764 0.267061

Separation.0.1 10.8364 2.57768 2.62e-05 *** 7.01857 2.7747 0.000424***
d.3:Separation.0 -5.14193 2.45350 0.036104* -4.18314 2.45955 0.088985

d.4:Separation.0 -2.85970 2.36917 0.227415 -2.27818 2.47028 0.356407

d.5:Separation.0 -2.84162 2.38619 0.233710 -2.21194 2.53206 0.382350

d.10:Separation.0 -1.66673 2.37178 0.482222 -0.45207 3.03939 0.881761

d.15:Separation.0 -1.66430 2.36573 0.481742 6.35778 8.87911 0.473968

d.3:Separation.0.1 -6.35238 2.45449 0.009652 ** -4.45037 2.62213 0.089652

d.4:Separation.0.1 -4.08594 2.40381 0.089174 1.25781 3.61987 0.728235

d.5:Separation.0.1 -4.03048 2.37642 0.089881 10.53441 13.7974 0.445163

d.10:Separation.0.1 -4.10004 2.40582 0.088341 17.28238 13.2744 0.192942

d.15:Separation.0.1 -6.35268 2.45433 0.009644 ** 1.61724 3.13508 0.605957

k.4:Separation.0 0.87142 1.60454 0.587062 0.34037 1.83269 0.852662

k.5:Separation.0 -0.30521 1.60208 0.848913 -1.41535 2.02644 0.48490

k.4:Separation.0.1 -1.43624 1.59846 0.368912 3.58627 2.72671 0.188431

k.5:Separation.0.1 -4.94125 1.73175 0.004326 ** -5.0120 2.39089 0.036054

d.3:k.4 1.69185 2.38524 0.478141 1.39536 2.27034 0.538817

d.4:k.4 0.51388 2.37306 0.828560 3.56847 2.96395 0.228606

d.5:k.4 0.48054 2.34861 0.837879 4.45265 2.99951 0.137687

d.10:k.4 -0.63694 2.35253 0.786586 16.7661 11.3012 0.137923

d.15:k.4 -1.78648 2.36330 0.449695 15.40508 13.82757 0.265243

d.3:k.5 0.46307 2.38456 0.846023 2.84301 2.69342 0.291180

d.4:k.5 -4.13632 2.43520 0.089403 -0.06837 3.17933 0.982843

d.5:k.5 -7.67137 2.57211 0.002859 ** -4.97685 2.79758 0.075242

d.10:k.5 -8.76143 2.63695 0.000892 *** 0.34106 33.98105 0.991992

d.15:k.5 -9.96151 2.72808 0.000261 *** -2.02651 9.06057 0.823020

Smooth term - - - edf Ref.df p-value

Sample size - - - 6.43 6.855 7.16e-05 ***
https://doi.org/10.1371/journal.pone.0297355.t002

Table 3. Model selection standards.

Models AIC BIC Pseudo R2

Model 1 169.9385 320.1434 81.3

Model 2 145.3006 318.8073 94.3

https://doi.org/10.1371/journal.pone.0297355.t003
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4.2.2 Interpretation. A comprehensive analysis of the results reveals that variability in

cluster sizes has a considerable impact on the evolution of clusters. To provide adequate rec-

ommendations regarding minimum size required for detecting the correct transitions,

smooth functions are plotted. Fig 3 below represents the smooth function of sample size on

the log-odds of the dependent variable, as explained in Eq 2, considering all levels of the

covariates. The impact of an increased sample size on the accurate detection of the transi-

tion is highly significant. The curve demonstrates a sharp ascent initially, followed by a

Table 4. Analysis of deviance table.

Models Resid. Df Resid. Dev Df Deviance Pr(>Ch5)

Model 1 505.00 99.938 - - -

Model 2 499.57 64.441 5.4296 35.497 1.912e-06 ***
https://doi.org/10.1371/journal.pone.0297355.t004

Fig 3. Plot from a GAM model in which the survival of smaller cluster has been modeled as a smooth function of the sample size of smaller

segment for aggregate data over all levels of covariates. The standard error limits are shaded.

https://doi.org/10.1371/journal.pone.0297355.g003
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gradual flattening once the size of the smallest class exceeds 70. In summary, for correct

detection of transitions in aggregate settings, the recommended sample size is determined

to be 70 * k * d.

However, Separation.0.1 is also significant in the GAM model, which suggests that sepa-

ration between neighboring clusters also plays a vital role. Fig 4 below demonstrates the

smooth function of sample size and its effect on the log-odds of dependent variable for dif-

ferent values of separation. Clearly, if there is no obvious structure in the dataset, i.e., if

neighboring clusters are close to one another, then a higher sample size is required to

achieve significantly improved results. In such cases, the impact of increasing the sample

size of the smallest cluster is particularly strong. Thus, if there is no obvious structure, higher

sample sizes are required. On the other hand, if clusters are well separated from each other,

i.e., Separation.0.1, then the function is almost horizontal. This suggests that there is no

additional effect of sample size once the size of the smallest cluster exceeds 50*k*d. The

smooth function of sample size on the log-odds of the dependent variable explained in Eq 2

over all levels of the covariates are provided in S1, S2 Figs and S1 Text available in supporting

information.

Clustering methods heavily rely on the sizes of the actual classes in a dataset. Therefore,

finding the appropriate structure in datasets becomes quite tricky if the cluster size are inade-

quate. The issue of determining minimum sample sizes required for the smallest cluster in a

dataset has been explored by a limited number of studies. For example, Dolnicar et al. [33] per-

formed a study using simulation techniques. They put forward a suggestion regarding the

smallest sample size required for data-driven market segmentation in order to precisely detect

clusters. This also plays a role in the transitions of clusters when clustering time-stamped data-

sets. If the clustering algorithm fails to capture the underlying pattern accurately, it can lead to

highly unstable cluster outcomes at consecutive time points.

Fig 4. Plot from a GAM model in which the survival of smaller cluster has been modeled as a smooth function of the sample size of smaller

segment for specific values of the Separation between neighboring clusters. The adequate sample size is mentioned with dashed lines.

https://doi.org/10.1371/journal.pone.0297355.g004
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5 Conclusion

Clustering is a data organization technique that groups data points into clusters. The key char-

acteristic is that points within the cluster are more similar to each other than to those in differ-

ent clusters. However, in recent times, a substantial volume of data is generated in the form of

continuous streams. Consequently, the underlying structure of data evolves over time, leading

to the development of algorithms specifically designed to monitor and adapt to these changes.

In recent decades, researchers have focused on tracking changes in cluster solutions for tempo-

ral datasets. However, to the best of our knowledge, no study has been conducted to explore

how variations in cluster sizes affect the temporal evolution of clusters. The primary objective

of this study is to determine the minimum sample size required for effectively monitoring

changes in temporal datasets. Results of study reveal that increasing size of the smallest cluster

within the dataset significantly improves the outcomes. Especially in situations where no dis-

tinct segmentation structure exists, larger sample sizes are required for precise detection of the

changes. The findings suggest that at least 70�k�d observations are required in the smallest

cluster. This implies that, for accurately detecting transitions in temporal datasets, a sample

size equal to 70 times number of variables and number of clusters is deemed sufficient. How-

ever, in cases where the dataset lacks clear segmentation, significantly higher sample sizes are

necessary. These findings are substantial because tracing and monitoring the changes in clus-

tering solutions have a wide range of applications in every field of research.

6 Limitations and future work

The MONIC framework operates under the assumption that each individual object is exclu-

sively allocated to a single cluster. This assumption restricts the study to only partitioning clus-

tering algorithms, effectively ruling out the possibility of applying density-based and model-

based clustering algorithms. In the future, this study could be expanded to encompass density-

based algorithms.

Supporting information

S1 Text. Smooth function of sample size.

(TXT)

S1 Fig. Smoothing curve from GAM model in which the survival of smaller cluster has

been modeled as a smooth function of the sample size.

(TIF)

S2 Fig. Smoothing curve from GAM model in which the survival of smaller cluster has

been modeled as a smooth function of the sample size.

(TIF)

S1 Data.

(XLSX)
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