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Abstract

In the realm of digital image applications, image processing technology occupies a pivotal

position, with image segmentation serving as a foundational component. As the digital

image application domain expands across industries, the conventional segmentation tech-

niques increasingly challenge to cater to modern demands. To address this gap, this paper

introduces an MCMC-based image segmentation algorithm based on the Markov Random

Field (MRF) model, marking a significant stride in the field. The novelty of this research lies

in its method that capitalizes on domain information in pixel space, amplifying the local seg-

mentation precision of image segmentation algorithms. Further innovation is manifested in

the development of an adaptive segmentation image denoising algorithm based on MCMC

sampling. This algorithm not only elevates image segmentation outcomes, but also profi-

ciently denoises the image. In the experimental results, MRF-MCMC achieves better seg-

mentation performance, with an average segmentation accuracy of 94.26% in Lena images,

significantly superior to other common image segmentation algorithms. In addition, the

study proposes that the denoising model outperforms other algorithms in peak signal-to-

noise ratio and structural similarity in environments with noise standard deviations of 15, 25,

and 50. In essence, these experimental findings affirm the efficacy of this study, opening

avenues for refining digital image segmentation methodologies.

1 Introduction

Stepping into the 21st century, the development of computer science and technology is chang-

ing day by day, in which the processing and analysis of digital images have formed a unique

scientific system [1]. In the processing and analysis of digital images, image segmentation (IS)

is a key part [2]. However, effective image segmentation is not easy to realize in adaptive image

processing due to insufficient a priori information and imaging noise [3]. In addition, tradi-

tional image segmentation methods usually use manual threshold selection or region growing-

based methods, which require a lot of manual intervention and are prone to errors and omis-

sions [4]. In this context, the research innovatively proposes a new image segmentation algo-

rithm based on Markov Chain Monte Carlo (MCMC), which is optimized for Markov

Random Field (MRF). This method represents the integrals as distributional expectations by
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MCMC. And it estimates the complex integrals in image segmentation processing by sampling

the sample points that follow the distribution. In addition, to address the imaging noise, an

adaptive window similarity block search algorithm based on MCMC sampling is used to opti-

mize the non-local denoising algorithm [5]. The better image segmentation results can be

obtained by converting images containing noise or noises into purer sequences. This process-

ing and optimization technique allows the algorithm to perform exceptionally well when man-

aging intricate image segmentation tasks with substantial benefits in minimizing manual

intervention and errors. This study mainly consists of five parts. The first part is an overview

of the research. The second part is a summary of relevant work at home and abroad. The third

part is divided into two sections. The first section introduces the image segmentation algo-

rithm of MRF-MCMC, and the second section introduces the adaptive segmentation image

denoising algorithm based on MCMC sampling. The fourth part is the experimental verifica-

tion of the proposed method in the research. The fifth section is a discussion of the research

methodology and its innovativeness and effectiveness in applications such as computer vision

and image processing. And the sixth section summarizes the research and looks forward to

future research. The research introduces the basic principle and implementation method of

MRF-MCMC, including image preprocessing, feature extraction, target segmentation, and

other steps. And a comparison of image segmentation and denoising algorithms is designed to

verify the application effect of the MRF-MCMC algorithm, aiming to provide new references

for digital image analysis and processing.

2 Related works

In digital image processing, image segmentation is a very important topic. It is the foundation

of image processing and understanding. At present, image segmentation technology has been

widely applied in security monitoring, remote sensing imaging, and clinical medicine. Many

scholars have conducted extensive research on image segmentation technology and its optimi-

zation methods. Luo S et al. proposed a new convex representation calculation method in

image segmentation processing. And they demonstrated that shape convexity was equivalent

to quadratic constraints of related index functions. This method was studied to improve prob-

ability-based models for extracting convex prior targets from images. The superiority of this

method had been verified through image segmentation experiments [6]. Jiang Zhe et al. found

that although deep learning had achieved certain results in image segmentation applications,

its effectiveness in real-world applications was not ideal due to the lack of high-quality training

labels. Therefore, this paper proposed a weak supervised learning framework. This learning

framework could simultaneously update deep learning model parameters and infer hidden

label positions. By improving the training labels in this way, it aimed to increase the effective-

ness of image segmentation in real-world applications. The tests on real datasets had found

that this method had better classification accuracy than other similar methods [7]. Kaushal C

and other scholars proposed an image segmentation technology based on Firefly algorithm,

which simulated mathematics and innovative technologies to solve the global nonlinear and

real life problems. This technique could be used to segment breast cancer images, regardless of

the type or mode of the image. The effectiveness of this technology was verified by comparing

the obtained results with the most advanced existing technology. The experimental results

denoted that the proposed image segmentation method based on the Firefly algorithm was

efficient in processing medical images, such as cancer cell nucleus detection, blood vessel seg-

mentation, organ or tissue structure research. And it was comparable to the existing advanced

technology [8]. Kumar A et al. proposed an improved image segmentation method for crop

image analysis. When the traditional minimum cross entropy method was used for multi-level

PLOS ONE Markov random field in image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0296031 February 22, 2024 2 / 19

https://doi.org/10.1371/journal.pone.0296031


threshold segmentation, the computational complexity increased. The recursive minimum

cross entropy was used to solve the computational complexity. And the Cuckoo search based

on Levy flight was used to find the optimal threshold of the objective function. The accuracy of

this method was tested on 10 crop images. The experimental outcomes denoted that the pro-

posed method provided the most promising results and improved accuracy [9]. Yan X and

Weng proposed an optimized fast image segmentation model based on local pre-fitting

images. This model combined the regional features of local pre-fitted images and digital

images, which not only accurately segmented images with blurred boundaries, but also had

performance in resisting large noise. In addition, the study calculated the pre-fitted function

before the curve evolution, which significantly reduced the computational complexity of the

model. The research findings indicated that the image segmentation efficiency of this model

was superior to other comparative models, and it had good parameter robustness [10].

Usually, image denoising is considered as a part of image restoration and a preprocessing

step before image segmentation. Image denoising can effectively improve the efficiency of

image segmentation and image processing. Therefore, a large number of scholars have con-

ducted research on image denoising and proposed different denoising methods. Ma R et al. pro-

posed a new proportional integral and differential attention network to address over-fitting and

low performance of deep convolutional neural networks in real-world noisy image denoising.

Research guided the learning framework to adaptively update by stacking attention modules

and utilizing second-order statistical feature correlation. The effectiveness of the proposed

method was verified in the experimental results on the dataset [11]. Han L et al. conducted

research on deburring of mechanical surfaces. To obtain more accurate burr images, a new burr

model was constructed and a real dataset was established for image denoising. To improve the

denoising effect, an online denoising algorithm was also proposed. This algorithm had good

adaptability to images with inherent noise. In the experimental results, this algorithm outper-

formed other traditional and deep learning algorithms, which had the best denoising effect [12].

Ghorbanzadeh O et al. proposed an accurate edge extraction method based on image analysis to

avoid the impact of noise imaging on image analysis. The study excluded image edge noise

through visual measurement-based image metric characteristics, thereby achieving the detec-

tion of the wear of sliding parts of trains during high-speed operation. The experiment out-

comes expressed that this algorithm could accurately detect pixel edges in images, and its

detection accuracy for wear of train sliding parts was much higher than other methods [13].

In summary, some scholars have improved the training labels by constructing a weakly

supervised learning framework to increase the effectiveness of image segmentation for real-

world applications. Some scholars have computed the prefitting function, through which the

computational amount of the image segmentation model has been significantly reduced. But

there are few studies that directly improve the accuracy of segmented images [14]. And the

existing segmentation accuracy has been unable to meet the needs of modern society [15]. For

this reason, the research innovatively proposes the MCMC image segmentation algorithm

based on MRF model. In addition, the study also combines the advantages of different image

denoising algorithms and develops an adaptive segmentation image denoising algorithm

based on MCMC sampling. The research aims to provide more effective image segmentation

techniques in the field of image processing.

3 Application of MCMC algorithm based on MRF in image

segmentation processing

MRF is a probabilistic model that accurately models the interrelationships between compo-

nents in a multidimensional dataset. And it has a wide range of applications in various fields,
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such as computer vision, machine learning, and image processing. MRF can provide an effec-

tive way of comprehensively understanding and parsing the data, taking into account a certain

amount of contextual information. In this research, the MCMC algorithm is optimized based

on MRF to improve the effectiveness and accuracy of image segmentation. The study also

introduces an adaptive window similar block search algorithm based on MCMC sampling to

optimize the non-local denoising algorithm. This optimized non-local denoising algorithm is

used as a pre-processing step aimed at enhancing the accuracy and robustness of image seg-

mentation by reducing noise. In this way, image denoising and segmentation are combined

with each other and work together to form a unified and synergistic image processing frame-

work. This not only improves the effectiveness of each individual step, but also enables a better

image understanding and analysis through their interaction.

3.1 Image segmentation algorithm based on MRF for MCMC

Image segmentation is a key step in image processing and is used to divide an image into mul-

tiple regions for subsequent analysis. With the advancement of computer technology, the

application scope of image segmentation is expanding. For example, in medical images, ana-

tomical structures can be extracted using threshold segmentation. In remote sensing pictures,

target regions are detected by region growing algorithms. In industrial inspection, edge detec-

tion algorithms can recognize the contours of metal objects [16]. The complete image process-

ing steps are shown in Fig 1.

As shown in Fig 1, the image processing is mainly divided into three parts, including image

input, preprocessing, and segmentation [17]. Image processing covers photo conversion and

digitization of image input, preprocessing, and image segmentation using techniques such as

thresholding, edge detection, and regioning. After processing, depending on the objective, fea-

ture extraction or image recognition is performed. Then the processed image is analyzed and

understood and finally interpreted. However, traditional image segmentation requires a large

amount of a priori information or it is not effective [18]. For this reason, an image segmenta-

tion algorithm is proposed based on MRF to reduce the dependence on a priori knowledge.

The MRF model can describe the local areas of an image. The interaction between local pixels

is represented by low-order MRF, and the set of low-order MRF represents the energy function

of the entire image [19]. It has been proved that only when the random field (RF) is the Gibbs

distribution of the neighborhood system @, the RF is the MRF. The equivalent form of Gibbs

distribution and MRF is shown in Eq (1) [20].

PðX ¼ xÞ ¼
1

Z
exp½�

1

T

X

c2C

VcðxsjxrÞ� ð1Þ

In Eq (1), Zmeans the normalization constant. T represents the temperature constant. C

Fig 1. Image processing.

https://doi.org/10.1371/journal.pone.0296031.g001
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denotes a set of neighboring systems containing functional groups. S is a finite set of points at

the location. Xmeans the RF at s2S. xs is the hidden state random variable on the RF. Vc
expresses the potential formula on group C. After the prior distribution and likelihood func-

tion of image samples are obtained, the prior knowledge of the image can be transformed into

a distribution model through Bayesian marking, to solve the uncertainty of MRF description.

In this study, image segmentation is performed with the Maximum A Posterior (MAP). MAP

is an estimation method based on Bayesian statistics, which is used to find the most likely val-

ues of model parameters under given observation data [21]. The optimal RF is calculated on

the basis of MAP to maximize the posterior probability distribution of the RF and minimize

the pixel classification error probability, as shown in Eq (2) [22].

X ¼ argmaxPðXjYÞ ¼ argmax
PðXjYÞPðXÞ

PðYÞ
ð2Þ

In Formula (2), X and Y represent two different RF describing images, respectively. X is

used to describe the local correlation of pixels, and X = {xs|s2S}. Y is the observation field used

to represent the distribution of observation data, and Y = {ys|s2S}. The label field prior model

can be represented by a Multi Level Regression (MLL) model. The MLL model is mainly used

to analyze the relationship between a binary response variable and one or more predictive vari-

ables, while considering the hierarchical or grouping structure of the data [23]. In this model,

it not only estimates fixed effects, but also random effects, i.e. variations between different

groups or levels. This study uses a second-order neighborhood system (SONS) as a prior

model for labeling fields. The SONS and its atomic clusters are shown in Fig 2.

Fig 2(A) is a schematic diagram of a SONS, where the blue dots represent any pixel, and the

blue dots and surrounding green dots get together to form the SONS [24]. Fig 2(B) is the

atomic clusters in a SONS, where the central pixel and the pixels in the SONS form different

atomic clusters [25]. Then, according to the Bayesian criterion, the maximum posterior proba-

bility is transformed into the energy function. For the feature field model, the grayscale

Fig 2. Schematic diagram of a second-order neighborhood system and its atomic groups. (a) Second order neighborhood system

and (b) Second order neighborhood system group.

https://doi.org/10.1371/journal.pone.0296031.g002
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attribute of the image is described by the Gaussian function, as shown in Eq (3).

PðyljxlÞ ¼
1
ffiffiffiffiffiffi
2p
p

sxl

exp �
ðyl � mxlÞ

2

2s2
xl

( )

ð3Þ

In Eq (3), mxl denotes the average pixel grayscale value of each label xl. sxl means the stan-

dard deviation of each label xl. To avoid situations where the initial values of parameters are

sensitive, the Monte Carlo (MC) is applied to set the initial state. In parameter inference of

iterative algorithms, the random vector reflects the situation of the observation vector. In

Bayesian estimation, by simplifying the complete dataset model f(y|θ), which is recorded as

yobs and the rest as ymis, the analytical form of posterior probability is found. y can be seen as

the combination of yobs and ymis, where π(θ,ymis) and f ðymis; yobsjyÞf0ðyÞ are proportional in the

joint PD. The PD of the observed data is shown in Eq (4).

ðyjyobsÞ ¼ pðyÞ ¼
Z

pðy; ymisÞdymis ð4Þ

By obtaining MC samples from the joint PD, the histogram of sample parameters can be

utilized as an approximate PD of observation data. Due to the PD requiring integration of

high-dimensional functions, a large amount of computation limits Bayesian inference [26].

The research uses MCMC algorithm to express the integral as the distribution expectation,

and estimates the complex integral in image segmentation processing by sampling the sample

points that obey the distribution. The basic principle of MCMC is to sample a stable distribu-

tion MC to obtain a large number of samples, and complete the required statistical inference

through these samples [27]. Taking the basic method of MCMC as an example, when solving a

problem, it is necessary to determine the random variable x and calculate the statistic g(x), so

that the mathematical expectation
R
g(x)f(x)dx of the statistic is equal to the target value. f(x)

represents the density function of a random variable. The average observed expression of

MCMC is shown in Eq (5).

A ¼

Z

AðxÞpðxÞdx
Z

pðxÞdx
ð5Þ

In Eq (5), π(x) means the distribution of the physical system. A(x) is the observed measure-

ment. The calculation of the observation includes two integrals.
R
A(x)π(x)dx is calculated by

using MC and π(x) is normalized using a density function. In the calculation of
R
π(x)dx, as

normalization is not possible, Metropolis sampling is used to determine the Markov process.

Thus, the full probability limit is proportional to the distribution. Metropolis sampling is a MC

method used to sample from complex distributions, especially when direct sampling is diffi-

cult. Metropolis sampling is a stochastic process, which traverses the state space in a random

way [28]. By proposing new states from a suggested distribution and accepting or rejecting

them with a certain probability, the algorithm generates a series of samples based on the target

distribution. After many iterations, the distribution of these samples will approximate the tar-

get distribution. In the process of IS, the MCMC model often suffers from local optima due to

its excessive dependence on initial conditions [29]. This study replaces the subjective step of

selecting initial parameters with MRF, thus constructing the MRF-MCMC image segmenta-

tion algorithm. The MRF-MCMC image segmentation algorithm flow is shown in Fig 3.
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3.2 Adaptive image segmentation denoising algorithm based on MCMC

sampling

Image segmentation refers to the process of dividing an image into different regions or sub

regions, aiming to separate information such as targets, noise, and background in the image.

To achieve better image segmentation results, it is necessary to denoise the segmented image

and convert images containing noise or noise into purer sequences [30]. The non-local denois-

ing method is commonly used at present. This method considers that the image is composed

of many self-similarity structures, and noise denoising is achieved by averaging the structures

[31]. The three modes of non-local denoising are shown in Fig 4.

In the non-local denoising algorithm, the mathematical model of Gaussian white noise is

shown in Eq (6) [32].

zðxÞ ¼ yðxÞ þ nðxÞ ð6Þ

In Eq (6), z(x) is the observed image. y(x) means the original image. n(x) represents noise.

The expression for non-local average filtering is shown in Eq (7) [33].

NLzðxÞ ¼
X

y2l

wðx; yÞzðyÞ ð7Þ

Fig 3. Markov random field-Markov Chain Monte Carlo image segmentation algorithm flow.

https://doi.org/10.1371/journal.pone.0296031.g003

Fig 4. Three modes of non-local denoising. (a) Point estimation, (b) Block estimation, and (c) Block combination estimation.

https://doi.org/10.1371/journal.pone.0296031.g004

PLOS ONE Markov random field in image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0296031 February 22, 2024 7 / 19

https://doi.org/10.1371/journal.pone.0296031.g003
https://doi.org/10.1371/journal.pone.0296031.g004
https://doi.org/10.1371/journal.pone.0296031


In Eq (7), w(x,y) represents the weight coefficient, and its change reflects the similarity

between pixels x and y, with
X

y

wðx; yÞ ¼ 1. The calculation of the weight coefficient is shown

in Eq (8).

wðx; yÞ ¼
1

ZðxÞ
e�
kzx � zyk22s

h2 ð8Þ

In Eq (8), Z(x) expresses the normalization constant, and its calculation is shown in Eq (9).

ZðxÞ ¼
X

y

e
�
kzx � zyk22s

h2
ð9Þ

In Eq (9), zx and zy represent the neighboring grayscale value vectors of pixels x and y, respec-

tively. kzx � zyk
2

2s
is the Gaussian weighted Euclidean distance. σmeans the standard deviation

of the Gaussian kernel. h denotes a parameter that controls the degree of attenuation. Compared

with traditional spatial denoising methods, non-local denoising introduces non-local ideas into

the search of structures similar to the image itself. On the other hand, non-local denoising algo-

rithms propose an image-based similarity measure that evaluates the success of denoising using

similarity. If the accuracy of similarity estimation is insufficient, it will instead introduce non-

similar pixels, thereby reducing the accuracy of the original image estimation. In traditional

spatial denoising algorithms, grayscale and spatial distance are generally used to measure the

similarity between pixels. However, in practical applications, these methods are not only compu-

tationally complex, but also susceptible to environmental influences and have poor robustness

[34]. To study the combination of multiple statistical features based on segmented image blocks,

an adaptive window similar block search algorithm with MCMC sampling is used to optimize

non-local denoising algorithms. During the operation of this algorithm, the size d of similar

blocks is first given, and MCMC is used to search for the neighborhood block similarity sequence

Od(Sj) of pixel point sj in the graph. Then the expected EdpðsjÞ of the similar block sequence is cal-

culated. The average similar block Ed(sj) of the neighboring blocks of multiple pixel points sj is
obtained. The variance Vd(sj) of Ed(sj) is calculated. Finally, it needs to determine whether it is

necessary to adjust the size of similar blocks based on the variance Vd(sj). In the adaptive win-

dow-based similarity block search algorithm, the neighborhood of MCMC sampling points

needs to reflect both strong locality and satisfy global sampling. The sampling process can be

understood as a local global sampling, so its distribution definition is shown in Eq (10).

Qðs0jkjsjk� 1Þ ¼
1
ffiffiffiffiffiffiffiffiffi
2pss

p exp½� ð
ðs0kj � sjk� 1Þ

2

2ss
Þ� ð10Þ

In Eq (10), σs means the spatial variance ofQðs0jkjsjk� 1Þ. s
0

jk expresses the sampling point. sjk
stands for the center point. To determine whether the sampling point is a point inO

d
pðsjÞ, the

acceptance probability function of the sampling point is established, as shown in Eq (11).

aðs0jkjsjk� 1Þ ¼ min 1;
φðs0jkjs0Þ
φðs0jk� 1js0Þ

( )

ð11Þ

In Eq (11), s0 means the estimation point. φðs0jkjs0Þ is an objective evaluation function used to

evaluate the similarity between sampling points and estimation points. To facilitate the evalua-

tion of the similarity between the two, a similarity evaluation function is defined as shown in Eq
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(12).

φðs0jkjs0Þ ¼
Y

i

exp½�
ðF

r
s0
jk ðiÞ � Frsjk ðiÞÞ2

C
� ð12Þ

In Eq (12), rs0jk
is the neighborhood block of s0jk. rsj0 means the neighborhood block of sjk. F(i)

expresses the pixel value of the pixel point i. C represents a constant. The second step of the algo-

rithm adjusts the size of similar blocks by averaging the consistency of the estimated set of similar

blocks. This study selects the mean and variance of similar block set estimation as statistics to

evaluate consistency. When there are enough similar blocks, the variance between the average

similar blocks is very small, indicating consistency between them. At this point, their size can be

increased. When there are not enough similar blocks, there are significant differences between

them, indicating that they do not have consistency and need to be reduced in size. The algorithm

ultimately needs to adjust the size of similar blocks to obtain the optimal set of similar blocks and

blocks. The calculation of the optimal similar block size is shown in Eq (13).

d ¼ maxfdijVðfE
di
p ðsjÞg

N

p¼1
Þ < Tg ð13Þ

In Eq (13), T ¼ 1

s2 represents the threshold and σ2 is the noise variance. The search for similar

blocks in adaptive variable size windows is shown in Fig 5.

Fig 5. Adaptive window similar block search.

https://doi.org/10.1371/journal.pone.0296031.g005
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When similar blocks are selected, denoising treatment needs to be taken. Currently, a large

number of processing methods use image block similarity as a weight to estimate the grayscale

values of pixels. However, in practical applications, although these methods have achieved cer-

tain denoising effects, they have caused damage to the structure and details of the image itself

[35]. The adaptive denoising algorithm based on MCMC sampling proposes in this study. The

algorithm consists of two stages: the first stage is similar block search for adaptive size win-

dows, and the second stage is a bidirectional non-local denoising algorithm. In the first stage,

the study searches for multiple sets of similar matching blocks through MCMC sampling until

obtaining the target number of similar blocks. In the second stage, the traditional bidirectional

non-local algorithm is modified by utilizing the bidirectional similarity structure of the

selected similar block set images. The estimation of the set of noiseless similar blocks obtained

through correction not only simplifies the complex calculation, but also ensures good denois-

ing performance.

4 Application testing of MRF-MCMC in IS

To ensure that the experimental environment does not cause errors in the results, the same

computer equipment was used for simulation testing in this experiment. Information about

the experimental environment is given in Table 1.

To verify the segmentation effect of the MRF-MCMC segmentation algorithm proposed in

the study, Lena original images and Berkeley segmentation datasets commonly used in the

field of image segmentation were selected for segmentation experiments. A random image (#

24063 image) was selected from the experimental results and analyzed together with the Lean

original images. The comparison algorithm used the iterative conditional modes (ICM) algo-

rithm commonly used in the image segmentation field to find the maximum number of condi-

tional probability and the more advanced mask region based Convolutional neural network

(Mask R-CNN) [36]. The result is shown in Fig 6.

From Fig 6, the algorithm proposed in this study had better segmentation performance and

accuracy. In the segmentation experiment of Lena image in Fig 6(A), MRF-MCMC segmenta-

tion was more detailed with fewer misclassifications. Overall, MRF-MCMC outperformed

Mask R-CNN and Mask R-CNN outperformed ICM in overall performance. In the segmenta-

tion experiment of building images in Fig 6(B), MRF-MCMC performed more accurate seg-

mentation on details such as windows and stairs, with better results than the other two types of

segmentation algorithms. The running time of different algorithms is shown in Table 2.

From Table 2, in Lena image and # 24063 image segmentation, the MRF-MCMC algorithm

had the shortest iteration time, followed by the ICM, and the Mask R-CNN had the longest

iteration time. The algorithm proposed in this study was verified to have better segmentation

efficiency and less running time. Compared to the Mask R-CNN algorithm, the iteration time

of MRF-MCMC in Lena image segmentation had been reduced by 13.46%, and the iteration

Table 1. Experimental environment information.

Name Configuration

Video card GTX 1080ti

CPU Inter(R)Core(TM)i5-7200U

Gpu-accelerated library CUDA 10.0

Memory 64 GB

Operating system Windows 10

Platform MATLAB R2014a

https://doi.org/10.1371/journal.pone.0296031.t001

PLOS ONE Markov random field in image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0296031 February 22, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0296031.t001
https://doi.org/10.1371/journal.pone.0296031


time in # 24063 image segmentation had been reduced by 18.36%. Compared to the ICM algo-

rithm, the iteration time of MRF-MCMC in Lena image segmentation had been reduced by

10.17%, and the iteration time in # 24063 image segmentation had been reduced by 3.81%.

The outcomes validated the effectiveness of the improvement method proposed in this study.

To evaluate the performance of the MRF-MCMC image segmentation algorithm more accu-

rately, the study measured the performance of the image segmentation algorithm in terms of

three metrics, namely, recall, precision, and DICE coefficient. Among them, the recall was the

proportion of correctly categorized pixels among all the pixels that should be segmented out.

The recall measured the ability of the algorithm to recognize the pixels that should be seg-

mented out. If the recall was higher, it meant that the possibility of missed detection was less.

The precision measured the proportion of pixels segmented by the algorithm that really should

have been segmented. If the precision was higher, it meant that the likelihood of false detection

was lower. The DICE coefficient was a measure of the similarity between two samples. In

image segmentation, it was often used to measure the similarity between the region segmented

by the algorithm and the region that should actually be segmented. The DICE coefficient was a

reconciled average of the precision rate and the recall rate, which balanced the effects of the

Fig 6. Comparison of image segmentation results. (a) Segmentation results of image Lena and (b) Segmentation result of image #24063.

https://doi.org/10.1371/journal.pone.0296031.g006

Table 2. Comparison of iteration times of different algorithms.

Category Run time (s)

ICM Mask R-CNN MRF-MCMC

Image 19.898 20.655 17.874

Lena

Berkeley 9.109 10.733 8.762

Segmentation

dataset

https://doi.org/10.1371/journal.pone.0296031.t002
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two. If the DICE coefficient was higher, it meant that the algorithm was more effective in seg-

mentation. The comparison results of recall rates were shown in Fig 7.

Fig 7 shows the recall comparison results for the different algorithms. Fig 7(A) is the com-

parison of recall between different segmentation algorithms in Lena images. From the graph,

in 20 experiments, the MRF-MCMC algorithm had the best recall performance, significantly

higher than the other two types of segmentation algorithms. The recall of Mask R-CNN algo-

rithm was slightly higher than that of ICM algorithm. Fig 7(B) shows the comparison of recall

among different segmentation algorithms in Berkeley segmentation dataset. From the graph,

in 20 experiments, the MRF-MCMC algorithm had the best recall performance, slightly higher

than the Mask R-CNN algorithm. The recall rate of MRF-MCMC and Mask R-CNN algorithm

was significantly higher than that of ICM algorithm. The experimental results denoted that the

MRF-MCMC algorithm outperformed the Mask R-CNN and ICM algorithms in correctly seg-

menting images. The accuracy of image segmentation was compared using three algorithms,

and the results are shown in Fig 8.

Fig 7. Comparison of recall rates. (a) Image Lena and (b) Berkeley Segmentation dataset.

https://doi.org/10.1371/journal.pone.0296031.g007

Fig 8. Comparison of algorithm accuracy. (a) Image Lena and (b) Berkeley Segmentation dataset.

https://doi.org/10.1371/journal.pone.0296031.g008
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Fig 8 shows the results of the accuracy comparison for the different algorithms. Accuracy

means the proportion of the intersection and union of the amount of rightly segmented pixels

and the true value in image segmentation. Fig 8(A) shows the accuracy comparison of different

segmentation algorithms in Lena images. From the graph, in 20 experiments, the accuracy of

the MRF-MCMC algorithm was higher than the other two types of algorithms, with an accu-

racy of over 90%. The accuracy of ICM was lower than that of Mask R-CNN algorithm in the

14th experiment, and higher than Mask R-CNN algorithm in other experiments. Fig 8(B)

shows the accuracy comparison of different segmentation algorithms in Berkeley segmentation

dataset. From the graph, in 20 experiments, the accuracy of the MRF-MCMC algorithm was

higher than the other two algorithms, with an accuracy rate of over 80. The accuracy of ICM

and Mask R-CNN was similar. In the first six experiments, the accuracy of Mask R-CNN algo-

rithm was slightly higher, while in the last six experiments, the accuracy of ICM algorithm was

slightly higher. The experimental results showed that the accuracy of MRF-MCMC algorithm

in image segmentation was better than that of ICM and MCMC algorithms. The DICE coeffi-

cients of three algorithms were compared in IS, and the results were shown in Fig 9.

Fig 9 shows the DICE coefficients of different algorithms. In the evaluation of image seg-

mentation effectiveness, the proportion of twice the intersection of the segmentation result

and the true value to the total of the two were calculated by the DICE coefficient. Fig 9(A)

showed the comparison of DICE coefficients between different segmentation algorithms in

Lena images. From the graph, in 20 experiments, the DICE coefficient of MRF-MCMC algo-

rithm was higher than the other two algorithms, with a DICE coefficient of over 85%. The

DICE coefficients of ICM and Mask R-CNN algorithms were close and there was no signifi-

cant difference. Fig 9(B) showed the comparison of DICE coefficients between different seg-

mentation algorithms in Berkeley segmentation dataset. From the graph, in 20 experiments,

the DICE coefficients of MRF-MCMC and Mask R-CNN algorithms were significantly higher

than those of ICM algorithm. The DICE coefficients of Mask R-CNN were higher than those

of MRF-MCMC algorithm in the 3rd, 4th, 6th, 16th, 17th, and 18th experiments, and lower

than MRF-MCMC algorithm in other experiments. The experimental results indicated that in

Lena images, the MRF-MCMC algorithm significantly outperformed the ICM and Mask

R-CNN algorithms in segmenting image DICE coefficients. Although the DICE coefficient in

Berkeley segmentation dataset was better than the ICM algorithm, there was no significant dif-

ference compared to the MCMC algorithm. It calculated the average values of accuracy, recall,

Fig 9. Comparison of algorithm dicesimilarity coefficient. (a) Image Lena and (b) Berkeley Segmentation dataset.

https://doi.org/10.1371/journal.pone.0296031.g009
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and DICE coefficients in the experiment, and the specific data results were obtained as shown

in Table 3.

As shown in Table 3, the average segmentation accuracy of MRF-MCMC in Lena image

and Berkeley segmentation dataset was 94.26% and 82.77%, respectively. The average recall

rate of MRF-MCMC in Lena images was 90.72%, and the average segmentation accuracy in

Berkeley Segmentation dataset was 94.24%. The average DICE coefficient of MRF-MCMC in

Lena image and Berkeley segmentation dataset was 92.39% and 80.72%, respectively. From the

data in the table, the MRF-MCMC algorithm performed best in all indicators in image seg-

mentation experiments, verifying the effectiveness of this study.

In the MRF-MCMC algorithm model, an adaptive segmentation image denoising algo-

rithm was proposed by combining MCMC sampling. To verify the denoising effect of the

MRF-MCMC algorithm, experiments were conducted using the Tensorflow deep learning

framework. Common image denoising algorithms were compared with Block matching and

3D filtering (BM3D) algorithm and Non-Local Mean (NLM) algorithm [37]. Performance

comparison metrics included Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity

(SSIM). Among them, PSNR was one of the most commonly used metrics to evaluate image

quality. It compared the difference between original and denoised images, and quantified the

sum of squares of errors due to noise or distortion. The higher the PSNR value, the better the

quality of the image, i.e., the better the denoising effect. SSIM is another metric for evaluating

the quality of an image, which takes into account the brightness, contrast, and structural infor-

mation of the image. SSIM metric evaluated the image quality by comparing the difference

between original and denoised images in terms of structure, brightness, and contrast. The

value of SSIM was between -1 and 1. 1 meant that the two images were exactly the same and

the closer to 1 meant the better the denoising effect. It got the training results of PSNR and loss

function, as shown in Fig 10.

Fig 10(A) shows a comparison of the training results of PSNR. The initial PSNR of the

MRF-MCMC algorithm was close to that of the BM3D algorithm and higher than that of the

NLM algorithm. The initial PSNR of the MRF-MCMC, BM3D, and NLM algorithms was

24.85dB, 24.79dB, and 21.09dB, respectively. Fig 10(B) shows the comparison of loss function

training. MRF-MCMC algorithm tended to converge after 30 rounds of training, while BM3D

and NLM tended to converge after 40 rounds of training. Compared to the other two types of

algorithms, the MRF-MCMC algorithm had faster convergence speed and lower loss values.

The experimental results verified the effectiveness of MRF-MCMC.

To compare the PSNR and SSIM performance of the algorithm, the study added additive

Gaussian white noise with and true noise standard deviation of 15, 25, and 50 to the original

test image, respectively. The real noise chosen for the study is sensor noise. Sensor noise is usu-

ally generated during the image capture phase due to the physical properties of the image sen-

sor and external environmental conditions (e.g., temperature and illumination). Real noise

helps to more accurately reflect the performance of the algorithm in real application scenarios,

Table 3. The average of accuracy rate, recall rate and dicesimilarity coefficient.

Category Accuracy (%) Recall (%) DICE (%)

ICM Mask R-CNN MRF-MCMC ICM Mask R-CNN MRF-MCMC ICM Mask R-CNN MRF-MCMC

Image 86.95 79.66 94.26 87.29 87.98 90.72 84.89 85.88 92.39

Lena

Berkeley 70.19 73.03 82.77 72.23 91.84 94.24 69.84 78.71 80.72

Segmentation

dataset

https://doi.org/10.1371/journal.pone.0296031.t003
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thus providing valuable insights for the development of image denoising techniques. It drew

the average PSNR box plot of different algorithms on the test set, as shown in Fig 11.

Fig 11(A) shows the average PSNR performance of the algorithm under Gaussian white

noise. From the figure, MRF-MCMC had the highest PSNR values at noise standard deviations

of 15, 25, and 50. When the standard deviation was 15, 25, and 50, the average PSNR value was

30.03dB, 28.24dB, and 24.73dB, respectively. Compared to BM3D, the average PSNR of

MRF-MCMC increased by 13.45%, 11.54%, and 9.19% at noise standard deviations of 15, 25,

and 50, respectively. Compared to NLM, the average PSNR of MRF-MCMC increased by

21.94%, 21.74%, and 23.68% at noise standard deviations of 15, 25, and 50, respectively. Fig 11

(B) shows the average PSNR performance of the algorithm under real noise. From the figure,

Fig 10. Comparison of training results between peak signal-to-noise ratio and structural similarity. (a) PSNR varies with the number of iterations and (b) PSNR

varies with the number of iterations.

https://doi.org/10.1371/journal.pone.0296031.g010

Fig 11. Average peak signal-to-noise ratio of different algorithms on the test set. (a) Gaussian white noise and (b) True noise.

https://doi.org/10.1371/journal.pone.0296031.g011
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MRF-MCMC had the highest PSNR value at different standard deviations, indicating the best

image denoising. Compared to compared to BM3D, MRF-MCMC improved the average

PSNR by 8.89%, 9.07% and 8.23% at noise standard deviation of 15, 25 and 50, respectively.

Compared to NLM, MRF-MCMC improved the average PSNR by 34.53%, 20.15% and 39.41%

at noise standard deviation of 15, 25 and 50, respectively. The experimental results validated

the effectiveness of the optimization method proposed in the study. It drew the average SSIM

box plots of different algorithms on the test set, as shown in Fig 12.

Fig 12(A) shows the average SSIM performance of the algorithm under Gaussian white

noise. From the figure, the SSIM values of MRF-MCMC were the highest at noise standard

deviations of 15, 25, and 50. When the standard deviation was 15, 25, and 50, the average SSIM

value was 0.91, 0.88, and 0.72, respectively. Compared to BM3D, the average SSIM of

MRF-MCMC increased by 7.12%, 12.83%, and 18.29% at noise standard deviations of 15, 25,

and 50, respectively. Compared to NLM, the average SSIM of MRF-MCMC increased by

43.23%, 45.19%, and 41.18% at noise standard deviations of 15, 25, and 50, respectively. Fig 12

(B) shows the average SSIM performance of the algorithm under real noise. From the figure,

MRF-MCMC had the highest SSIM values at noise standard deviation of 15, 25, and 50, which

indicated better image structure similarity before and after denoising. Compared to BM3D,

MRF-MCMC has improved the average SSIM by 11.23%, 18.27% and 21.09% at noise standard

deviation of 15, 25 and 50, respectively. Compared to NLM, MRF-MCMC improved the aver-

age SSIM by 39.72%, 37.84% and 46.32% at noise standard deviation of 15, 25, and 50, respec-

tively. Overall, MRF-MCMC had the best denoising performance, followed by BM3D, while

NLM had relatively poor denoising performance. The results verified that the proposed adap-

tive segmentation image denoising algorithm based on MCMC sampling had good denoising

ability and good application value.

5 Discussion

Image segmentation, as a core component of computer vision and image processing, plays a

vital role in various applications such as medical image analysis, environmental monitoring,

urban planning, etc. In this context, the research proposed MRF-MCMC-based image seg-

mentation algorithm brings new possibilities in this field. Studying the existing MRF basis, the

algorithm significantly reduces the dependence of image segmentation on a priori knowledge,

Fig 12. Average structural similarity of different algorithms on the test set. (a) Gaussian white noise and (b) True noise.

https://doi.org/10.1371/journal.pone.0296031.g012
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thus effectively dealing with problems such as imaging noise. In addition, by utilizing MCMC,

the study successfully transforms the complex integration problem into a probability distribu-

tion expectation, enabling estimation by sampling. This innovative approach avoids the exten-

sive manual intervention required for conventional image segmentation. To solve the problem

that the MCMC model is overly dependent on the initial conditions and prone to fall into local

optimal solutions, the study introduces the non-local idea to further optimize the similar struc-

ture search in the image itself. In addition, the study also utilizes multiple statistical properties

of the image and combines the adaptive window similarity block search algorithm sampled by

MCMC to optimize the non-local denoising algorithm, which results in a purer image and

improved image segmentation. In the experimental results, the proposed algorithm of the

study performs well in several key metrics. Overall, the research opens the way to a new

method of image segmentation based on MRF-MCMC, which provides new possibilities for

dealing with complex image problems, although there is still a lot of work to be done, the

research is confident in the future of this method.

6 Conclusion

This research presented an innovative image segmentation algorithm that combined MRF and

MCMC. This approach significantly reduced the dependence on a priori knowledge for image

segmentation and effectively handled issues such as imaging noise. In addition, the algorithm

introduced the non-local idea to optimize the search of the image’s own similar structure,

which made the image purer and thus improved the image segmentation. In the experimental

results, MRF-MCMC performed better than the other two algorithms in the segmentation of

Lena images and building images. The average recall, precision, and DICE coefficient of

MRF-MCMC algorithm were 92.48, 88.52, and 86.56, respectively. And all of the metrics were

better than ICM and MCMC algorithms. In addition, the denoising algorithm proposed in

this study converged faster, had lower loss during training, and had a higher average PSNR

and SSIM than the widely used BM3D and NLM denoising algorithms on the test set. This

research provided a more efficient method for image segmentation and provides new guiding

ideas in the field of digital image processing. However, due to the limitation of equipment con-

ditions, the study failed to conduct large-scale experiments, so the experimental results could

only provide some references for optimizing image segmentation algorithms. The main

research direction in the future will be to improve the applicability of MRF-MCMC and verify

its application effect on large samples.
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