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Abstract

An important challenge in microbial ecology is to infer metabolic-exchange fluxes between

growing microbial species from community-level data, concerning species abundances and

metabolite concentrations. Here we apply a model-based approach to integrate such experi-

mental data and thereby infer metabolic-exchange fluxes. We designed a synthetic anaero-

bic co-culture of Clostridium acetobutylicum and Wolinella succinogenes that interact via

interspecies hydrogen transfer and applied different environmental conditions for which we

expected the metabolic-exchange rates to change. We used stoichiometric models of the

metabolism of the two microorganisms that represents our current physiological under-

standing and found that this understanding - the model - is sufficient to infer the identity and

magnitude of the metabolic-exchange fluxes and it suggested unexpected interactions.

Where the model could not fit all experimental data, it indicates specific requirement for fur-

ther physiological studies. We show that the nitrogen source influences the rate of interspe-

cies hydrogen transfer in the co-culture. Additionally, the model can predict the intracellular

fluxes and optimal metabolic exchange rates, which can point to engineering strategies.

This study therefore offers a realistic illustration of the strengths and weaknesses of model-

based integration of heterogenous data that makes inference of metabolic-exchange fluxes

possible from community-level experimental data.

Introduction

Microbial communities carry out important processes for the planet’s ecosystem, animal

health and industrial purposes. Engineering such communities is not straightforward; they are

generally composed of many interacting microorganisms, and they are highly dynamic. Devel-

oping methods that relate the systemic properties of communities to the underlying metabolic

processes and interactions of the community members is a major challenge in microbial ecol-

ogy. Those interactions drive community behaviour, including its (in-)stability upon
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environmental perturbations [1]. Metabolic interactions between community members are

widespread and generally considered to be the dominating interactions [2–4].

Current approaches focus mostly on correlation and co-occurrence of species members for

inference of community-interaction partners [5, 6]. These approaches importantly predict the

community-interaction structure, even for large systems. It does not, however, inform us

about interaction mechanisms and their importance for species survival and community prop-

erties. This can be achieved when we know the metabolic exchange fluxes between microor-

ganisms; then we would capture both mechanism and importance of those fluxes, as those can

be linked to intracellular metabolic activities and growth. With this additional information we

could rationally design approaches that alter community behaviour upon external

perturbations.

Unfortunately, quantifying metabolic exchange fluxes—metabolic interactions—directly

from experimental data is rarely possible. Generally, only net fluxes are inferred from dynamic

metabolite levels measured at the community level that result from contributions of many spe-

cies. To determine the individual contributions of those species, we suggested that their meta-

bolic capacities, expressed in terms of quantitative models, should be integrated with

experimental data [7]. Here we illustrate that this indeed allows for the identification and

quantification of metabolic interactions between microorganisms and that those interactions

are dependent on environmental conditions.

Our approach relies on stoichiometric models of metabolism and the linkage of the metab-

olism of microbial species in the community. Stoichiometric modeling of the metabolism of

single microorganisms have been developed in systems biology in the last two decades.

Recently, such models are being considered for microbial communities [8–11], but the num-

ber of studies that combine such metabolic models with experimental data is still limited. The

first study was performed by Stolyar et al. on a methanogenic co-culture [12] and several other

co-culture studies followed [13, 14]. Also, purely computational studies investigated the poten-

tial interactions in a community [15], designed medium compositions that enforces metabolic

interactions [16] or calculated biomass ratios and fluxes under balanced growth conditions of

microbial communities [17]. The focus of those studies was mostly the prediction of the com-

munity phenotype. However, another application of those models is to use them to infer meta-

bolic exchange fluxes between microorganisms from experimental data [7].

Here we demonstrate that we are able to quantify community interactions by combining

experimental data, consisting of biomass abundances and metabolite concentrations, with stoi-

chiometric metabolism models. For this purpose, we designed a synthetic co-culture that

serves as a model for anaerobic interspecies hydrogen transfer, which is one of the driving

forces in the anaerobic digestion process, and allows for tunable metabolic interactions by

changing the environmental conditions. Quantification of the metabolic interactions contrib-

utes to identifying how this important process can be improved. Although synthetic communi-

ties are not as complex as natural ecosystems, they have shown to be useful for microbial

ecologists to examine ecological theories, such as the influence of community evenness on the

functionality of a community [18]. Additionally, synthetic communities are used to improve

industrial applications, such as bioremediation [19] or bioethanol production [20]. The co-cul-

ture we designed consists of the anaerobic bacteria Clostridium acetobutylicum and Wolinella
succinogenes. C. acetobutylicum produces H2 that subsequently is consumed by W. succinogenes
to reduce nitrate (NO3

-) into nitrite (NO2
-) or ammonium (NH4

+). NO2
- or NH4

+ can act as a

nitrogen-source for C. acetobutylicum. We varied the nitrogen source to vary the metabolic

interactions in the community, which we subsequently inferred, using a model and experi-

mental data. This study illustrates how the integration of a model, representing our knowledge
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about the metabolism of the two species, with experimental data leads to the quantification of

metabolic exchange fluxes.

Materials and methods

Strains and cultivation conditions

Co-culture experiments of Clostridium acetobutylicum DSM-792 with Wolinella succinogenes
DSM-1740 were grown in Widdel-based medium containing the following components (per

liter): 1 g NaCl, 0.4 g MgCl�6H2O, 0.1 g CaCl�2H2O, 0.5 g KCl, 0.59 g glucose�H2O, 0.15 g cys-

teine, supplemented with 1 ml of 100x RPMI-1640 vitamin solution (Sigma-Aldrich) and 1 ml

of trace elements solution, containing (per liter): 0.5 g EDTA, 3 g MgSO4�7H2O, 0.5 g

MnSO4�H2O, 1 g NaCl, 0.1 g FeSO4�7H2O, 0.1 g Co(NO3)2�6H2O, 0.1 g CaCl2, 0.1 g

ZnSO4�7H2O, 10 mg CuSO4�5H2O, 10 mg AIK(SO4)2, 10 mg H3BO2, 10 mg Na2MoO4�2H2O,

1 mg Na2SeO3, 10 mg Na2WO4�2H2O, 20 mg NiCl2�6H2O. A 20 mM Na-phosphate buffer pH

7.0 was used to maintain a constant pH during the growth experiment. The final pH of the

medium was 7.0. The medium was kept anaerobic by flushing with a gas mixture of 10% CO2

and 90% N2. Resazurine (0.01 mg/l) was used as an indicator for anaerobic conditions. The

growth experiment was performed at 37˚C in 100 ml septum vials with rubber stoppers con-

taining 50 ml of growth medium. ‘NH4
+’ condition contained 0.25 g/L NH4Cl, ‘NO3

-’ condi-

tion contained 0.85 g/l NaNO3
-, ‘NH4

+ + NO3
-’ condition contained 0.25 g/l NH4Cl and 0.85

g/l NaNO3
- and ‘N2’ condition contained no N-source, except N2 in the headspace. Cells were

taken from actively growing stock, cultivated in monoculture first in abovementioned

medium, but with yeast extract supplemented. The monocultures were added 1:1 (OD/OD) in

the media, pre-grown for 70 generations via serial transfer of the co-culture in NH4
+ + NO3

-

containing medium to create a stable co-culture. We are aware that mutations could arise dur-

ing this period which potentially influence the community phenotype, but that is beyond the

scope of this study. The co-culture was 1:100 propagated to fresh medium once it was fully

grown. The experiment started when the co-culture reached exponential growth and was 1:100

propagated to fresh medium containing different nitrogen sources in triplicate.

Metabolite analysis

Supernatant from the batch cultivation was taken from the septum vials by taking 1 ml of

growth medium and filtered through a 0.2 μm polyethersulfone (PES) filter and stored at

-20˚C until further processing. Samples were analyzed for fermentation products (i.e. formate,

succinate, acetate, propionate, lactate, and butyrate) by high performance liquid chromatogra-

phy (HPLC) with a Phenomenex Rezex ROA 300x7.8mm column at 55˚C and occupied with

RID 10A and SPD 20A detectors having a flow rate of 0.5ml/min and eluent of 5mM H2SO4.

NO3
- was measured according Yang et al. [21] and NO2

- was measured spectrophotometrically

at 520nm by diazotization of sulphanilamide by nitrite. CO2 and H2 were measured by taking

100 μl gas sample from the head space with a syringe (Terumo 1 mL syringe) and the gas was

immediately analyzed on a Shimadzu GC2010 system equipped with a Carboxen 1010 column

(30m�0.58mm, 105˚C) and a barrier discharge ionization detector (BID). Helium was used as a

carrier gas at 28.2 mL/min at a pressure of 37.2 kPa.

Quantification of cells

DNA was extracted with the PowerSoil DNA isolation kit (MO BIO Laboratories, Solana

Beach, CA, USA), according the manufacturer protocol, from 2 ml of culture. Species abun-

dance was measured by quantitative PCR using primers for C. acetobutylicum [22] and W.

Model-based quantification of metabolic interactions from dynamic microbial-community data
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succinogenes (forward primer (5’!3’): CCACACGACACTACCCTCAC and reverse primer

(5’!3’): CGGTGCTTACGATTCCCAGT) on a 7300 Real Time PCR System (AB Applied

Biosystems, CA, USA). Both primer sets are selective for the target species and the quantifica-

tion of genes is corrected with the number of genes on the genome. The following PCR pro-

gram was used for C. acetobutylicum quantification: a start-up step of 50˚C for 2 minutes,

followed by an initial denaturation step at 94˚C for 10 minutes, 40 cycles of 94˚C for 30 sec-

onds, 54˚C for 30 seconds and 72˚C for 40 seconds, plus a final elongation step at 72˚C for 5

minutes. For quantification of W. succinogenes we used: a start-up step of 50˚C for 2 minutes,

followed by an initial denaturation step at 94˚C for 10 minutes, 45 cycles of 94˚C for 10 sec-

onds, and 60˚C for 30 seconds.

Models and software

All simulations were done using CBMPy 0.7.0 (http://cbmpy.sourceforge.net/), a Python-

based software package. The genome-scale metabolic model of C. acetobutylicum [13], a

coarse-grained metabolic model and a genome-scale metabolic model of W. succinogenes (see

supplements), using the SBML level 3 standards [23], were used to perform the simulations

(All models and scripts are available on https://sourceforge.net/projects/cbmpy/files/

publications/data/2017_Hanemaaijer/). The method to reconstruct the genome-scale meta-

bolic model of W. succinogenes is described in the supplemental material. Dynamic flux bal-

ance analysis simulations were based on the method by Zhuang et al. [24], but implemented in

Python using the LSODA integrator provided by the SciPy scientific library [25]. The CPLEX-

solver (academic license) from IBM1 was used for optimization of the metabolic networks.

The method for model reconstruction and co-culture growth simulations are described in the

supplements. The Flux Variability Analysis was performed according Mahadevan et al. [26].

Results

Design of co-culture and media composition that gives rise to different

metabolic interactions

We designed a synthetic co-culture of C. acetobutylicum and W. succinogenes, serving as a

model system for anaerobic interspecies hydrogen transfer. These species are chosen, because

they allow for tunable metabolic interactions by changes made to the medium composition, in

particular the nitrogen source (Fig 1).

We choose C. acetobutylicum because it produces H2 from glucose, which can be consumed

by W. succinogenes to generate energy for the reduction of NO3
- to NO2

- or, further, to NH4
+

when the NO3
- concentration is low. We choose a high NO3

- concentration in our experimen-

tal set-up to prevent this. As an alternative to H2 W. succinogenes can use formate. Since C.
acetobutylicum cannot use NO3

- as a nitrogen-source it has to fix N2 gas when NO3
- is the sole

nitrogen source in pure culture [27]. However, in co-culture C. acetobutylicum can use NO2
-

produced by W. succinogenes. Alternatively, when NH4
+ is present, both organisms can use it

as nitrogen source, but W. succinogenes would still not grow because it lacks an energy source.

Varying the nitrogen source also has additional effects. When NH4
+ and NO3

- is present, C.
acetobutylicum is independent of W. succinogenes and supplies H2 to W. succinogenes. C. aceto-
butylicum becomes dependent on W. succinogenes when only NO3

- is present. Then W. succi-
nogenes cross feeds NO2

- to C. acetobutylicum, which, in turn, supplies H2 that facilitates NO3
-

to NO2
- reduction by W. succinogenes. Thus we can design co-cultures with uni- and bidirec-

tional metabolic interactions. We studied four different conditions; the associated, expected

metabolic interactions are shown in Fig 1.

Model-based quantification of metabolic interactions from dynamic microbial-community data
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Experimental data of four growth conditions

The co-culture was grown in four different environmental conditions, in which we varied the

nitrogen-source to study its influence on the state of the community, outlined in Fig 1. The

media either contained NH4
+ and NO3

-, only NH4
+, only NO3

- or neither. N2 was the only

nitrogen-source in the absence of NH4
+ and NO3

-, with the expectation that only C. acetobuty-
licum can grow. Across conditions, the biomass abundances and metabolite concentrations

were measured in time to study the impact of the nitrogen-source on the co-culture dynamics.

The different conditions influenced the growth and metabolic profiles of the co-culture

(Fig 2). The co-culture grew slower in the N2 condition and led to a 2-fold lower optical den-

sity than the NO3
- condition (Fig 2A). In the N2 condition, C. acetobutylicum fixes N2 gas to

acquire nitrogen, which is an energetically unfavourable process [28, 29]. The N2 condition

Fig 1. Source of nitrogen is expected to influence the metabolic interactions between C. acetobutylicum and W. succinogenes. A shows the

expected interactions between C. acetobutylicum and W. succinogenes in the presence of NH4
+ and NO3

-. B shows the interactions in the presence of only

NH4
+, C in the presence of only NO3

- and D shows the expected interactions in the presence of only N2. Although we expect certain interactions in the co-

culture during the various environmental conditions, we do not know at what rate the metabolites are exchanged.

doi:10.1371/journal.pone.0173183.g001
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was also the only condition where glucose was not completely consumed at the end of the

experiment. A drop in the optical density was observed in two conditions at the end of the

experiment, because of induction of sporulation by C. acetobutylicum. We only detected H2

when NO3
- was absent (Fig 2B), suggesting that W. succinogenes consumed all the H2 produced

by C. acetobutylicum in the presence of NO3
- (since no formate was detected). The final

amounts of butyrate, acetate, CO2 (produced by C. acetobutylicum) and reduced NO3
- (by W.

succinogenes) varied between the different conditions (Fig 2C). In the absence of NO3
-, more

butyrate was formed out of glucose, at the expense of acetate. This indicates a bidirectional

interaction: in the presence of NO3
-, when W. succinogenes grows, the H2 concentration is kept

low by W. succinogenes, such that C. acetobutylicum has a different fermentation profile due to

alleviation of H2-inhibition, which is consistent with literature [30]. This is therefore proof of a

bidirectional interaction, because C. acetobutylicum behaves as in pure culture in the absence

of NO3
-, with high H2 and butyrate concentrations. Note that H2 accumulates in the absence

of NO3
-, because the growth rate of W. succinogenes decreases (Fig 2E). C. acetobutylicum pro-

duced 30% more CO2 from glucose in the ‘N2’ condition relative to the other conditions.

Fig 2. Nitrogen-source alters the phenotypic behaviour of the co-culture in batch experiments. A shows optical density measurements at 600 nm. B is

the measured H2 concentrations. C are fermentation products per consumed glucose at the the end of the cultivation period and is the sum of the production

and consumption of the species in the co-culture. The NO3
- is the amount of NO3

- reduced. D and E are the quantified gene copies concentration per mL of C.

acetobutylicum and W. succinogenes. F shows the ratios of C. acetobutylicum and W. succinogenes based on gene-copy number. This is to show that both

strains show balanced growth during batch cultivation. The copy numbers are corrected for the amount of genes on the genome.

doi:10.1371/journal.pone.0173183.g002
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Fig 2F indicates time periods during which a constant biomass ratio of the two species were

observed. Only in the presence of NH4
+, W. succinogenes was outgrown by C. acetobutylicum

after 13.5 hours, because no NO3
- is available for W. succinogens to convert H2. In the other

cases we found constant biomass ratios, always after 13.5 hours of cultivation, indicating that

the two microorganisms grew at the same specific rate. Equal specific growth rates indicate

that the growth of the two organisms was coupled. Such growth coupling can either result

from bidirectional exchange of growth-supporting metabolites, or a unidirectional exchange

from the slower-growing to the faster-growing microorganism. A bidirectional exchange was

expected in the presence of only NO3
-, whereas in the presence of NH4

+ and NO3
- a unidirec-

tional exchange was expected. Coupling occurs because the microorganism that is capable of a

higher growth rate becomes limited by the other organism, which cannot supply its resources

fast enough.

Which metabolites are exchanged and at what rate across those conditions cannot be

deduced directly from the experimental data. For instance, we cannot conclude whether C.
acetobutylicum only consumed NH4

+, or that NO2
- was also consumed in the presence of

NH4
+ and NO3

-. Also the H2 production rate of C. acetobutylicum remains unknown, as we

could not detect H2 in two of the four conditions. Even though we can conclude that the spe-

cies do exchange metabolites with each other, as they grew equally fast, we are not sure which

metabolites are being exchanged let alone at what rate. To address those questions we analysed

our experimental data with metabolic models of the two species.

Stoichiometric models of co-culture metabolism and growth

We used stoichiometric metabolic models of C. acetobutylicum and W. succinogenes to fit the

experimental data for the inference of metabolic interactions between the species during dif-

ferent environmental conditions. The metabolic models only describe the stoichiometry of

metabolic reactions, based on genomic and biochemical information, and do therefore not

contain any kinetic parameters of all the individual enzymes. In addition, we took the growth

rates and the biomass abundances of the microorganisms into account to capture the metabo-

lism and the dynamics of the co-culture, using an existing method called dynamic flux balance

analysis (dFBA) [31], which extends the stoichiometric model by adding kinetic information

of growth-limiting substrate importers in the form of an irreversible Michaelis-Menten equa-

tion (vupt ¼ Vmax
½S�

Kmþ½S�
), where vupt represents the uptake reaction, Vmax the maximum rate of

the uptake reaction, [S] the substrate concentration and Km the substrate affinity. At each time

step in dFBA the biomass production rate for each organism is independently optimised based

on the specific substrate uptake rate. Implementing such dynamic uptake reaction enables the

model to respond to changes in external concentrations.

For the simulations we use a genome-scale metabolic model for the metabolism of C. aceto-
butylicum and for W. succinogenes a coarse-grained model, which lumps metabolic segments

into single reactions. We used a coarse-grained model as we expected that we could model our

results without the need for full genome-scale reconstruction. We did do the reconstruction to

verify that this was indeed the case (see supplemental material). Having a coarse-grained

model facilitates computation and interpretation, especially if these methods are applied to

larger and more complex microbial ecosystems.

Conversely, the detailed model of C. acetobutylicum has the advantage that it captures

changes in its metabolism, as we observed that final acetate and butyrate concentrations, pro-

duced by C. acetobutylicum changes when the growth medium was varied. Another advantage

is that it describes the metabolic flexibility associated with H2 production by C. acetobutylicum
and leads to oxidization of ferredoxin. Ferredoxin is a conserved moiety whose total

Model-based quantification of metabolic interactions from dynamic microbial-community data
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concentration does not change (only its redox state), and when it is oxidized by another reac-

tion, it will result in decreased H2 production. Since C. acetobutylicum contains several reac-

tions that can oxidize or reduce ferredoxin, the H2 production flux is flexible, influencing the

community interactions that we aim to quantify. For instance, NO2
- uptake decreases the

amount of H2 production, because both reactions require ferredoxin, which results in potential

interesting dynamics between the two species, because W. succinogenes provides NO2
-, but

requires H2 which is produced by C. acetobutylicum. Several genome-scale metabolic models

of C. acetobutylicum are available [32, 33]. We decided to use the model created by Salimi and

co-workers [13], because this model was already successfully used for dFBA simulations.

We constructed a coarse-grained model of the core metabolism of W. succinogenes, con-

taining eight reactions (S1 Table) that was detailed enough to fit the exchange fluxes to experi-

mental data; the data indicated that C. acetobutylicum shows most metabolic flexibility. The

ATP yield of NO3
- reduction, when H2 is oxidized, was taken from literature [34]. We fitted

the elemental composition of W. succinogenes biomass. It can use acetate as a carbon source

[35], but with an unknown biomass yield. Similarly the NH4
+ and ATP requirements for the

production of one unit of biomass are unclear. We estimated all these values by varying them

and used those values that resulted in the best fit with the experimental data. An advantage of

working with coarse-grained models is that the model complexity is greatly reduced and the

degrees of freedom are limited, whereas in genome-scale metabolic models these can increase

rapidly [36–38]. However, we also constructed a draft genome-scale metabolic model of W.
succinogenes to compare the results from the simulations with this model with the coarse-

grained model (S1 File).

The two metabolic models were coupled through exchange fluxes for H2, NO2
- and acetate.

The co-culture model was manually fitted to the experimental data, using dFBA, to infer the

metabolic exchange fluxes in the microbial community. Manually fitting was done by chang-

ing the kinetic parameters (S2 Table), biomass composition of W. succinogenes (S1 Table) and

ratio of acetate/butyrate production and NH4
+/NO2

- consumption until the simulation agreed

most with the experimental data. ame

The metabolic models can simulate the experimental data

Once the simulations agree with the experimental data, the corresponding metabolic fluxes

can be extracted from the simulations, including the exchange fluxes between the two species.

This allows us to infer the metabolic interactions between species in a microbial community.

To fit the model with the experiments, we varied the parameters of the models (S2 Table) to

find an optimal fit. These parameters influence the rate of consumption and production of the

metabolites in the co-cultures and can be different between the various environmental condi-

tions. For instance, the Vmax of glucose uptake in C. acetobutylicum changes between the dif-

ferent conditions (S2 Table). Although the parameters can change between the conditions, we

did not change the metabolic models itself. The structure of the metabolic models, therefore,

remain identical between the different environmental conditions.

For C. acetobutylicum, we had to constrain the ratio of butyrate and acetate production

fluxes and the ratio of the NH4
+ and NO2

- consumption to fit the experimental data (S2

Table). Removing those ratios resulted in incorrect simulation of the metabolic profiles, which

is the result of apparent suboptimal behaviour of C. acetobutylicum. One reason for this could

be that H2 inhibits certain reactions and results in suboptimal behavior. Several studies showed

that H2 affects the metabolism of Clostridia species [30, 39]. An other reason could be that

there is a yield/rate trade-off and a high growth rate would result in a suboptimal biomass

yield as observed for other organisms. Flux balance analysis will always find the flux

Model-based quantification of metabolic interactions from dynamic microbial-community data
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distribution that maximizes this yield, not the rate. We also had to fit Vmax and Km of glucose

uptake by C. acetobutylicum and the Vmax and Km of H2 uptake by W. succinogenes (S2 Table).

The simulation with the metabolic models are consistent with the experimental data, except

that W. succinogenes grew in the absence of NO3
-, which was not predicted with the model

(Fig 3). This is most likely caused by carry-over of NO3
- from the pre-culture and by cell lysis.

However, these phenomena were not taken into account in the simulations of the metabolic

model and therefore, no growth of W. succinogenes was predicted with the metabolic models

(Fig 4B and 4D). Simulations where the genome-scale metabolic model of W. succinogenes was

used were similar relative to the simulations with the coarse-grained model of W. succinogenes
(S1 File).

Influence of environmental conditions on the metabolic exchange fluxes

between C. acetobutylicum and W. succinogenes

Simulations with the fitted model indicates that the growth rates of C. acetobutylicum and W.
succinogenes are dynamic during the experiment (Fig 4). The biomass yields on substrate, how-

ever, remain constant during the whole experiment (S2 Fig). The dynamic behaviour of the

community resulted therefore solely from the interplay between the dynamic concentrations

of the environmental nutrients and products and the biomass abundances.

W. succinogenes grew faster than C. acetobutylicum in the first 10 hours in the presence of

NH4
+ and NO3

-. This is possible, because C. acetobutylicum is more abundant than W. succino-
genes and can provide excess H2 despite the slower growth of C. acetobutylicum. After 10

Fig 3. The dFBA simulations agree mostly with the experimental data for the four different cultivation conditions and were used to infer the

metabolic fluxes. The metabolite profile plots contain error bars, but the other subplots not. The biomass ratios are based on the gene-copy data and the

carbon balance consisted of the measured metabolites that contained carbon. The remaining missing carbon is assumed to be incorporated into biomass.

doi:10.1371/journal.pone.0173183.g003
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Fig 4. Growth of W. succinogenes was limited by the growth-rate of C. acetobutylicum, based on the inferred growth-rates. Balanced growth was

observed after 10 hours of cultivation in the NH4
+ + NO3

- (A) and NO3
- conditions (C). No growth of W. succinogenes was simulated in the NH4

+ (B) and N2

conditions (D).

doi:10.1371/journal.pone.0173183.g004
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hours, both species grew at the same specific rate. This is reflected in the experimental data of

the biomass ratios of C. acetobutylicum/W. succinogenes, which decreased in the first hours of

the experiment suggesting that W. succinogenes grows faster than C. acetobutylicum. This indi-

cates that C. acetobutylicum determined the growth-rate of the community, because H2 con-

sumption of W. succinogenes was limited by the H2 production of C. acetobutylicum after ten

hours of cultivation.

Different nitrogen sources lead to changed metabolic interactions between C. acetobutyli-
cum and W. succinogenes (Fig 5). The H2 production rate of C. acetobutylicum, during cultiva-

tion in the presence of NO3
-, differed between the conditions: 1.10 and 0.94 mol/mol H2 per

consumed glucose, for the ‘NH4
+ + NO3

-’ and ‘NO3
-’ condition, respectively. H2 production

was reduced by 17% in the ‘NO3
-’ condition relative to the ‘NH4

+ + NO3
-’ condition. H2 is

associated with oxidization of ferredoxin and this ferredoxin is also oxidized when NO2
- is

reduced to NH4
+. Since ferredoxin is a conserved moiety, an increase in the NO2

- reduction

flux causes a lower H2 production flux, which occurred in the ‘NO3
-’ condition. Therefore,

there is an interesting dynamic between C. acetobutylicum and W. succinogenes when NO3
- is

in the medium, because C. acetobutylicum can use its ferredoxin for the production of H2, but

Fig 5. Nitrogen-source also had an impact on the H2 and the NO2
- exchange rates. In A the calculated flux-values for C. acetobutylicum are normalized

for the glucose uptake. B shows the calculated flux-values for W. succinogenes and are normalized for the H2 uptake. Note that H2 production by C.

acetobutylicum is not equal to the specific H2 uptake rate of W. succinogenes as the biomass abundances should be taken into account, which were not equal

during the experiment.

doi:10.1371/journal.pone.0173183.g005
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also for the consumption of NO2
-, which is produced by W. succinogenes. We show that the

nitrogen source can have implications for interspecies hydrogen transfer in a community. An

oxidized nitrogen source, in this case NO2
-, would decrease H2 transfer and therefore NH4

+ is

the preferred substrate for maximization of interspecies hydrogen transfer. Contrary to our

expectations, a combination of NH4
+ and NO2

- is predicted to be utilized by C. acetobutylicum
in the NH4

+ + NO3
- condition. One explanation for C. acetobutylicum’s utilization of NO2

- is

to detoxify the medium. High NO2
- concentrations inhibit growth and utilizing NO2

- as a

nitrogen source could be a detoxification strategy [40].

In contrast to the inferred fluxes of C. acetobutylicum, the inferred fluxes of W. succinogenes
were equal between the ‘NH4

+ + NO3
-’ and ‘NO3

-’ conditions (Fig 5B), suggesting that W. suc-
cinogenes was insensitive to the change in environmental conditions. This is primarily due to

the limited flexibility of the model of W. succinogenes; however, the model fits with the experi-

mental data, which suggests that the inferred fluxes are realistic. The simulations with the draft

genome-scale metabolic model of W. succinogenes showed similar results relative to the

coarse-grained model, except that the amount of consumed NO3
- and produced NO2

- per H2

was different (S3 Fig). This is primarily caused by the nitrogen and energy requirements for

the production of biomass and is different for both models. We expect that a more accurate

biomass function for the genome-scale metabolic model of W. succinogenes would improve the

results.

Intracellular fluxes of C. acetobutylicum can be inferred from community-

level experimental data

In addition to calculation of the uptake and production fluxes, the genome-scale metabolic

model of C. acetobutylicum informs us about intracellular flux values across the different con-

ditions. This gives additional information about the active metabolic pathways. Due to the

large number of reactions in the genome-scale metabolic model, the predicted values of the

intracellular fluxes in the metabolic network are likely underdetermined, because we have too

few experimental data to constrain those fits sufficiently.

We therefore performed a Flux Variability Analysis (FVA) [26], to check whether alterna-

tive intracellular flux values of the C. acetobutylicum metabolic network could fit the experi-

mental data equally well. This analysis indicates a small flexibility, only 41 reactions of the 744

reactions had variable values (5.5%) (https://sourceforge.net/projects/cbmpy/files/

publications/data/2017_Hanemaaijer/). Those 41 reactions are involved in either malate

cycling, proline and nucleotide biosynthesis, and carry very small fluxes relative to the fluxes

in C. acetobutylicum’s core-metabolism. Two reactions that did carry a high flux are involved

in ferredoxin cycling, but had no impact on the H2 production flux. There was also no variabil-

ity identified in other uptake or production fluxes. These results suggest that in our system, the

calculated flux distribution within C. acetobutylicum can be robustly predicted from commu-

nity-level experimental data alone.

Modelling predicts that co-culture behaviour can be enhanced

Besides providing a method for inferring experimental fluxes from experimental data, the met-

abolic model can also be used to predict the optimal behaviour of the community when not

constrained with experimental data. Optimisation informs us about optimal metabolic cou-

pling between the microorganisms when growth of both species are optimised.

Here, we consider the co-culture as optimal when the growth rates of both organisms are

maximal. In dFBA this means that we optimise the flux towards biomass of both organisms on

the supplied nutrients to the community. We determined the metabolic fluxes (internal and

Model-based quantification of metabolic interactions from dynamic microbial-community data
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exchange), growth rate and biomass abundances corresponding to the optimal state in the

‘NH4
+ + NO3

-’ and ‘NO3
-’ condition when we released the constraints on the butyrate/acetate

production ratio and the NH4
+/NO2

- consumption ratio of C. acetobutylicum (Fig 6).

The model predicted that an optimal C. acetobutylicum would have a changed metabolism

relative to the experimental data. For instance, acetate rather than butyrate should be produced

when C. acetobutylicum grows optimally. This behaviour was seen both in the ‘NH4
+ + NO3

-’

and the ‘NO3
-’ condition. The explanation is that more ATP can be generated from acetate

production than from butyrate production. An optimal C. acetobutylicum would not consume

NO2
- when growing at the ‘NH4

+ + NO3
-’ condition, because NO2

- reduction by nitrite reduc-

tase decreases growth of C. acetobutylicum according to the metabolic model. As explained,

the amount of H2 produced is inversely related with the amount of NO2
- taken up. As a conse-

quence, 159% more H2 was produced in the optimal scenario relative to the experiments in the

‘NH4
+ + NO3

-’ condition. A smaller increase in H2 production (+23%) was shown in the

‘NO3
-’ condition, suggesting that the interactions between the two species were not optimal in

the experiments at those two conditions. However, the experimental growth-rate of C. acetobu-
tylicum was close to its maximal, computed value. For the ‘NH4

+ + NO3
-’ the experimental

growth rate was 87% of the optimal value, whereas for the ‘NO3
-’ this was 94%. These results

suggest that the experimental behaviour of the community with imposed bidirectional interac-

tions is closer to the optimal metabolic behaviour than a community with unidirectional

interactions.

Discussion

In this study we showed that the combination of a stoichiometric metabolic model with mea-

sured community-level concentrations and biomass abundances allows for the inference of

metabolic interactions in a microbial community. This approach is complementary with cur-

rent approaches that are based on correlation or co-occurrence networks, which predicts the

community-interaction structure for large complex ecosystems [5, 41, 42]. These networks

identify co-occurrence of species, suggesting that certain species in an ecosystem form a posi-

tive relationship with each other. However, the mechanisms behind the interactions remain

unknown; here we infer them with metabolic models.

Stoichiometric models of metabolism make inference of metabolic exchange fluxes possible

because they relate the uptake and production of environmental metabolites, to intracellular

metabolic fluxes, organism abundance and growth rate. Such models are therefore integrating

heterogeneous data types from which we make inferences about community behaviour. In

addition to experimental data of species abundances and metabolite concentrations, molecular

data can be used in the construction of stoichiometric metabolic models [43–45]. It is the inte-

grative capability of stoichiometric models that makes them so useful for addressing current

challenges in microbial ecology.

Metabolic models have been used to predict the behaviour of industrially relevant co-cul-

tures and the type of interactions required to predict this behaviour [13, 14]. We show that this

approach also works for ecologically relevant communities, where interspecies hydrogen

transfer is the dominating interaction. Additionally, not only the type of interactions is identi-

fied, but we also infer the size of the interactions from the experimental data. With this method

we show that the nitrogen source plays an important role in the rate of H2 exchange in our co-

culture. Recently, Embree et al. [46] also inferred metabolic interactions of a microbial com-

munity, but optimized each species individually as a steady-state simulation and did not com-

bine all metabolic models into one community. We, on the other hand, simulated the

dynamics of the co-culture, because we fitted data from a dynamic system where species could
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change their metabolic behaviour during the experiment, which is closer to natural

environments.

We have shown that our approach works for a co-culture and a next step would be the

inference of metabolic interactions in a complex ecosystem. A complex community will have

more interactions between the members of the community. In addition to beneficial relation-

ships, competition can also play an important role in microbial communities [1]. The advan-

tage of our dFBA based approach is that these type of interactions can also be inferred.

Moreover, our results indicate that it is not even necessary to use full-blown genome-scale stoi-

chiometric models for all members of a complex community as a coarse-grained model of W.
succinogenes sufficed for the inference of metabolic interactions, as we recently suggested [7].

More detail can always be added later to refine predictions or resolve discrepancies, depending

on the research question and data at hand.

Even though metabolic interactions can be inferred from experimental data, not all data

and systems are equally amenable to a modeling approach. Firstly, a community with growing

micro-organisms is advantageous. Growing cells have an active metabolism and increase their

biomass in time, while interacting with other species. While non-growing species may also

have an active metabolism, they do not increase in biomass, causing them to have lower fluxes,

which makes it difficult to assign flux-values to such organisms. Secondly, controlled environ-

ments allow for more targeted perturbations of the community. Manipulation of the environ-

ment results in different dominating processes in the ecosystem [47]. In addition, a basic

understanding of the core metabolism of the studied organisms is required. In our system, we

had already an idea what type of interactions would take place, but this will not always be pos-

sible with complex ecosystems with poorly studied microorganisms. In such cases, metabolic

reconstruction based on complete genomes is the best option to get a hint at the basic meta-

bolic capacities. Lastly, a medium that is well-defined and minimal, is advantageous. Metabo-

lites, which are turned over, are more easily identified in such media. A medium which, for

instance, contains yeast extract provides all types of vitamins, amino acids and carbon com-

pounds to the community members, and could mask or compromise the metabolic interac-

tions in the ecosystem. With improved analytics, such challenges may be overcome, and we

believe in view of the complexity of microbial communities, metabolic models are a promising

-and arguable the only- tool for the inference of the metabolic interactions of co-cultures.

To conclude, in our eyes metabolic models are an indispensable tool for the inference of the

metabolic interactions, as illustrated with our co-culture study. We have shown that the nitro-

gen-source quantitatively influences the interspecies hydrogen transfer, which was not feasible

with experimental data alone. Moreover, the metabolic models can be used for more purposes

than inference of metabolic interactions. They can also be used to infer the intracellular fluxes

of species, which informs us about the metabolic adaptations of microorganisms, during dif-

ferent conditions. The models can also be used to investigate whether species in a community

grow optimally or whether they are limited by external factors. This is particularly interesting

for communities used for industrial processes, such as the anaerobic digestion process, where

high biogas yields are desired. Finally, metabolic models could indicate strategies to steer the

community in a desired direction, guiding community engineering approaches. Thus

Fig 6. The ‘NO3
-’ condition behaved more optimal than the ‘NH4

+ + NO3
-’ condition. The calculated experimental specific uptake and consumption rates

(mmol/(gDW�h)) for C. acetobutylicum (white bars) and the in-silico optimal rates (gray bars) were compared. All specific uptake and production fluxes were

normalized to the specific glucose uptake rate.

doi:10.1371/journal.pone.0173183.g006
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metabolic models have great potential –are simply required– to study complex, microbial

ecosystems.
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ratios are based on the gene-copy data and the carbon balance consisted of the measured

metabolites that contained carbon. The remaining missing carbon is assumed to be incorpo-

rated into biomass.
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S2 Fig. Product and substrate yields did not change during different growth rates. The

extracted specific uptake and production rates (mmol/(gDW�h)) are plotted against the simu-

lated growth rate μ (h-1). All lines are lineair what suggests that the specific uptake and pro-

duction rates of both species are scaled with the growth. The N2 condition is not plotted,

because the simulated growth rate was constant over the whole simulation.
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S3 Fig. Inference of the metabolic interactions using a draft genome-scale metabolic model

of W. succinogenes showed only differences in the NO2
- production and NO3

- consumption

per utilized H2. In A the calculated flux-values for C. acetobutylicum are normalized for the

glucose uptake. B shows the calculated flux-values for W. succinogenes and are normalized for

the H2 uptake. Note that H2 production by C. acetobutylicum is not equal to the specific H2

uptake rate of W. succinogenes as the biomass abundances should be taken into account, which

were not equal during the experiment.
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S1 File. Draft genome-scale metabolic model of W. succinogenes. The reactions and the cor-

responding reversibility and bounds are listed in ‘reactions’. The metabolites-id and the corre-

sponding names are listed in ‘metabolites’. All reactions and their corresponding substrates
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