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Abstract

Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step
consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an
organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and
yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but
low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine
phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previously
developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon
deletion of ldh, the adhE*(EA) Dldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA)
Dldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for
future metabolic engineering efforts.
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Introduction

A major challenge of this century is to develop sustainable

technology for production of fuels and chemicals independent of

fossil fuels. Lignocellulosic biomass is an abundant resource [1]

that has potential to be used as a feedstock for the production of

fuels and chemicals. Consolidated Bioprocessing (CBP) [2,3] is a

promising approach that could help make cellulosic fuel produc-

tion economical; however, no natural organisms are known that

can both hydrolyze cellulosic biomass and produce a liquid fuel at

high yield and titer under industrially relevant conditions.

Clostridium thermocellum is a cellulolytic bacterium that has

potential to be engineered for CBP. It is known to rapidly ferment

cellulosic biomass to ethanol, acetate, formate and lactate. But

unlike highly ethanologenic microbes such as Saccharomyces cerevisiae

and Zymomonas mobilis, wild type strains are only able to tolerate

low levels of ethanol (ca. 20 g/L) [4]. Increased tolerance would

allow higher titer and more economic product recovery. Recent

studies have aimed to understand the mechanisms by which C.

thermocellum is able to evolve tolerance to higher levels of ethanol

[5,6]. An ethanol tolerant strain of C. thermocellum ATCC 27405

was developed to tolerate ethanol concentration up to 5% v/v [6].

Genome sequencing of this ethanol tolerant strain revealed

approximately 400 mutations. Amongst these mutations, two

single nucleotide polymorphisms were found in the alcohol

dehydrogenase (adhE) gene [7]. Transfer of this mutated gene to

C. thermocellum DSM 1313 conferred ethanol tolerance, resulting in

strain C. thermocellum adhE*(EA). Cell extracts from both the

original ethanol tolerant mutant and adhE*(EA) contained no

detectable NADH-dependent alcohol dehydrogenase (ADH)

activity and an increase in the NADPH-dependent ADH activity,

suggesting a link between ethanol sensitivity, central metabolism

and redox cofactor balancing [7].

The C. thermocellum adhE*(EA) strain decreased ethanol and

increased lactate synthesis relative to wild type C. thermocellum DSM

1313 [7]. To begin to understand the metabolic effects of altered

ADH cofactor specificity and to build a platform strain for future

metabolic engineering, we deleted the hypoxanthine phosphor-

ibosyltransferase gene (hpt) to create a genetic background for

making unmarked gene deletions [8]. The redirection of carbons

and electrons as lactate in ethanol tolerant C. thermocellum

adhE*(EA) strain offered a metabolic challenge to understand

ethanol tolerance and improve ethanol production. In this study,
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lactate dehydrogenese (ldh) was deleted in an attempt to redirect

carbon and electrons towards the ethanol production pathway.

Materials and Methods

Strains and Culture Conditions
Escherichia coli TOP10 and BL21 were grown in LB medium

supplemented with 12 mg ml21 chloramphenicol when appropri-

ate. Clostridium thermocellum DSM1313 and mutant strains were

grown in the rich medium described by Tripathi [9], which is

based on DSM122 medium, supplemented with 5 mg ml21

thiamphenicol, 50 mg ml21 5-fluoro-29-deoxyuridine and 500 mg
ml21 8-azahypoxanthine as needed. Final medium composition

was (L21): 3 g sodium citrate tribasic dehydrate, 1.3 g ammonium

sulfate, 1.43 g potassium phosphate monobasic, 1.8 g potassium

phosphate dibasic trihydrate, 0.5 g cysteine-HCl, 10.5 g 3-

morpholino-propane-1-sulfonic acid (MOPS), 6 g glycerol-2-

phosphate disodium, 5 g cellobiose, 4.5 g yeast extract, 0.13 g

calcium chloride dehydrate, 2.6 g magnesium chloride hexahy-

drate, 0.0011 g ferrous sulfate heptahydrate and 0.0001 g

resazurin, adjusted to pH 7.0. The minimal medium used was

MTC [10] prepared as described in [5], consisting of (L21): 2 g

sodium citrate dehydrate, 1.25 g citric acid monohydrate, 1 g

sodium sulfate, 1 g potassium phosphate dibasic trihydrate, 2.5 g

sodium bicarbonate, 1.5 g ammonium chloride, 2 g urea, 1 g

magnesium chloride hexahydrate, 0.2 g calcium chloride dehy-

drate, 0.1 g ferrous chloride tetrahydrate, 1 g L-cysteine hydro-

chloride monohydrate, 5 g cellobiose, 0.001 g resazurin, 5 g 3-

morpholino-propane-1-sulfonic acid (MOPS), 20 mg pyridox-

amine dihydrochloride, 1 mg riboflavin, 1 mg nicotinamide,

0.5 mg DL-thioctic acid, 4 mg 4-amino benzoic acid, 4 mg D-

biotin, 0.025 mg folic acid, 2 mg cyanocobalamin, 4 mg thiamine

hydrochloride, 0.5 mg MnCl2.4 H2O, 0.5 mg CoCl2.6 H2O,

0.2 mg ZnSO4.7 H2O, 0.05 mg CuSO4.5 H2O, 0.05 mg HBO3,

0.05 mg Na2MoO4.2 H2O, 0.05 mg NiCl2.6 H2O.

Plasmid and Strain Constructions
To delete hpt for use as a negative selectable marker as in [8],

plasmid pAMG231 (sequence in File S1) was transformed in C.

thermocellum adhE*(EA) via electroporation as previously described

[11]. Deletion of the chromosomal copy of hpt (Clo1313_2927)

and simultaneous plasmid loss was selected using 500 mg ml21 8-

azahypoxanthine (Acros Organics, Pittsburgh, PA), as previously

described [8], generating strain C. thermocellum adhE*(EA) Dhpt.
Plasmid pMU1777 was used as previously described [8] to delete

ldh (Clo1313_1160), resulting in strain C. thermocellum adhE*(EA)

Dhpt Dldh, which is hereafter referred to as C. thermocellum

adhE*(EA) Dldh. Deletion was confirmed by PCR as described in

the text, using primers P1- forward TATTATTTCTTTTA-

GAGTGTTTCCGG, P1/P2- Reverse CATTGATGCT-

CAGCGGACTT, P2-forward- CGTACTGTCCTTC-

CAAAAGGC, P3-forward-

CTTGGCTTCATTGCTGTAAGATAC, and P3- reverse- AC-

CGCTGGAACATTAACAGATT. The strain was further con-

firmed by 16S rRNA gene sequencing and sequencing of the

relevant chromosomal mutations in adhE*(EA).

Fermentation Conditions
The inoculum for batch fermentation was prepared by growing

the mutants in rich medium overnight at 55uC in an anaerobic

chamber (COY laboratory products, Inc.). The fermentation was

carbon limited and carried out in 25 ml Balch tubes with 10 ml of

either rich or minimal media containing 5 g L21 of cellobiose

under a headspace of 20:80% v/v CO2:N2 mixture sealed with

butyl rubber stoppers. The tubes were inoculated with 0.5% v/v

culture and incubated at 55uC. The samples from the tubes were

collected at regular intervals using 1 ml syringe to determine the

fermentation product concentrations. The fermentation products

were determined after 48 h of growth.

Ethanol Tolerance
Ethanol tolerance was tested in Balch tubes containing rich

medium with 0, 1, 2, 3, 4 and 5% v/v added ethanol, inoculated

with 0.5% of overnight grown culture and incubated at 55uC.
Growth was monitored by measuring the optical density at

600 nm on a Unico 1200 spectrophotometer.

Analytical Methods
Fermentation products including ethanol, acetate, lactate and

formate were analyzed on Breeze 2 HPLC (High Performance

Liquid Chromatograph) system using an Aminex-HPX-87H

column with a 5 mM sulfuric acid mobile phase.

Results

Deletion of Lactate Dehydrogenase in C. thermocellum
adhE*(EA) Increases Ethanol Production
To better understand metabolic flux and to build a platform

strain for further metabolic engineering, hypoxanthine phosphor-

ibosyltransferase (hpt) was deleted to provide a counter-selectable

marker for further genetic manipulations, followed by deletion of

the lactate dehydrogenase gene (ldh) from the chromosome of C.

thermocellum adhE*(EA). Three primer sets were used to confirm the

ldh gene deletion in the wild type locus (Fig. 1A and B). Primer set

(P1) and (P2) amplified 863 bp and 729 bp fragments of the ldh

gene, respectively, which is present in the wild type but absent in

adhE*(EA) Dldh. Primer set (P3) amplified the 3200 bp region of

the wild type locus, while amplification from adhE*(EA) Dldh
resulted in a 2200 bp fragment, confirming gene deletion. The

adhE gene was further sequenced to verify that the strain

maintained the adhE*(EA) mutations.

Consistent with the deletion of ldh, production of lactate was

nearly eliminated in adhE*(EA) Dldh strain in both rich and defined

media. Ethanol production decreased 40% in the parent

adhE*(EA) strain relative to the wild type strain DSM 1313.

Deletion of ldh restored the carbon flux to ethanol synthesis in rich

medium (Fig. 2), increasing ethanol production by ,78% relative

to its parent strain, making it comparable to wild type ethanol

production. Acetate production was also higher in adhE*(EA) Dldh,
increasing by 38% and 76% relative to the parent and wild type

strains, respectively. While wild type C. thermocellum made formate

as a fermentation product, adhE*(EA) and adhE*(EA) Dldh
produced 3 and 4.5 fold less, respectively. Interestingly, the

growth rate and maximum optical density of adhE*(EA) were

decreased as compared to wild type (Fig. 3). Deletion of ldh did not

substantially rectify this growth defect.

On minimal medium, strain adhE*(EA) grew very poorly (Fig. 4)

and thus made little ethanol. The fermentation profile of

adhE*(EA) Dldh, on the other hand, was much more similar in

terms of ethanol, acetate and formate to wild type (Fig. 5). The

production of ethanol improved by ,24-fold compared to the

parental adhE*(EA) strain and 30% more than the wild type. Again

consistent with the deletion of ldh, the presence of lactate was near

the limit of detection. In contrast to rich medium, however,

adhE*(EA) Dldh produced similar amounts of formate as wild type

during fermentation on minimal medium.

Metabolic Engineering in Tolerant C. thermocellum
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C. thermocellum adhE*(EA) Dldh Maintains Ethanol
Tolerance Phenotype
While mutation of adhE confers ethanol tolerance, the cause of

the deficiency that is corrected by this mutation is unclear.

However, the role of AdhE in balancing carbon and electron flux

makes it reasonable to suspect that the adhE mutation corrects a

redox imbalance. Because Ldh is also involved in redox balancing,

we wanted to test whether adhE*(EA) Dldh is still ethanol tolerant.
The adhE*(EA) Dldh strain was evaluated for its growth in rich

medium supplemented with ethanol ranging from 0–5% v/v

(Fig. 6). The mutant strain adhE*(EA) Dldh had a growth profile

similar to the ethanol tolerant parent strain adhE*(EA) during

growth in the presence of exogenous ethanol. While wild type C.

thermocellum showed a dramatic decrease in its growth yield

(maximum OD) above 2% v/v of ethanol, the ethanol tolerant

parent strain adhE*(EA) and adhE*(EA) Dldh continued to show

substantial growth even at 5% added ethanol. The maximum OD

decreased by approximately half in adhE*(EA) and adhE*(EA) Dldh
as ethanol concentration increased from 0 to 5% v/v.

Discussion

The mechanism of ethanol tolerance in C. thermocellum

adhE*(EA) appears to be related to correcting an imbalance

between NADH-NADPH cofactors, perhaps with an overabun-

dance of NADPH being detrimental to growth in the presence of

added ethanol [7]. While the predominant pathway for NADPH

production in C. thermocellum is unclear, possible sources include

Rnf (Clo1313_0061–0066) [12], NfnAB (Clo1313_ 1848–1849)

[13], or the ‘‘malate shunt’’ consisting of phosphoenolpyruvate

carboxylation to oxaloacetate by PEP carboxykinase, NADH-

Figure 1. Deletion of ldh – overview and confirmation. A) The ldh gene was deleted using the same methodology as [8]. Primer binding sites
for PCR detection of ldh are indicated with arrows. P1, binding sites for forward and reverse primer set 1, P2, binding sites for forward and reverse
primer set 2 and P3, binding sites for forward and reverse primer set 3. B) PCR confirmation of deletion of lactate dehydrogenase (ldh). Lane m, DNA
ladder with molecular weights noted (in kilobases); Lane a, adhE*(EA) Dldh template; Lane b, C. thermocellum wild type template; Lane c, No template
PCR control.
doi:10.1371/journal.pone.0086389.g001

Metabolic Engineering in Tolerant C. thermocellum
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Figure 2. Fermentation products of C. thermocellum wild type, C. thermocellum adhE*(EA), and C. thermocellum adhE*(EA) Dldh on rich
medium.
doi:10.1371/journal.pone.0086389.g002

Figure 3. Growth profile of C. thermocellum mutants on rich medium. Symbols: closed square, C. thermocellum wild type; closed circle, C.
thermocellum adhE*(EA); closed triangle, C. thermocellum adhE*(EA) Dldh.
doi:10.1371/journal.pone.0086389.g003
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Figure 4. Growth profile of C. thermocellummutants on minimal medium. Symbols: closed square, C. thermocellum wild type; closed circle, C.
thermocellum adhE*(EA); closed triangle, C. thermocellum adhE*(EA) Dldh.
doi:10.1371/journal.pone.0086389.g004

Figure 5. Fermentation products of C. thermocellum wild type, C. thermocellum adhE*(EA), and C. thermocellum adhE*(EA) Dldh on
minimal medium.
doi:10.1371/journal.pone.0086389.g005
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dependent oxaloacetate reduction to malate by malate dehydro-

genase, and NADP+-dependent malate decarboxylation to pyru-

vate by malic enzyme [14,15,16,17]. Despite the increased flux to

lactate in adhE*(EA), our successful deletion of ldh without

diminishing ethanol tolerance clearly demonstrates that lactate

production is not required as an electron sink in this strain.

Instead, removal of Ldh allows flux to ethanol and acetate to

continue without the substantial loss of carbon and electrons to

lactate production. The low growth rate and yield of adhE*(EA)

and adhE*(EA) Dldh suggests lactate production is a result of

overflow metabolism, similar to amino acid production seen

previously [18,19]. Previous work demonstrated that the ethano-

l:acetate ratio was similar to wild type after deletion of ldh in a wild

type background [8]. In rich medium, the adhE*(EA) Dldh strain

synthesized 78% more ethanol than parent adhE*(EA) and a

similar amount to the wild type. However, acetate production also

increased relative to the parent and wild type strains. Interestingly,

formate production decreased in both adhE*(EA) strains. In

minimal medium, on the other hand, the metabolic effects were

different. Ethanol production was ca. 30% higher in adhE*(EA)

Dldh than wild type, but acetate and formate levels were similar

between these strains. Additionally, adhE*(EA) Dldh grew substan-

tially better on minimal medium than parent strain adhE*(EA) for

reasons that are not clear. Future investigations into these

metabolic differences, including mechanisms to produce NADPH,

could help elucidate the mechanisms by which C. thermocellum

coordinates carbon and electron flux through different pathways.

C. thermocellum lactate dehydrogenase (Ldh) is an allosterically

regulated enzyme that is activated by the presence of fructose-1,6

bisphosphate (FBP) [20]. In the rich medium, the adhE*(EA) strain

synthesized 50% more lactate than the wild type, consistent with a

metabolic bottleneck that results in accumulation of FBP.

According to this hypothesis, carbon and electron flux would be

directed to lactate synthesis and decrease ethanol production.

Deletion of ldh eliminated lactate as a metabolic outlet for carbon

and electrons, but this mutation is unlikely to have corrected the

bottleneck that causes FBP accumulation. The similar slow growth

rate of adhE*(EA) Dldh to adhE*(EA) most likely reflects slow flux to

acetyl-CoA, and thus to ethanol and acetate.

While the cellulolytic capability of C. thermocellum makes it a

promising host for production of ethanol via CBP, the low ethanol

tolerance of wild type C. thermocellum has been a significant hurdle

in realizing its potential as an industrial strain. Most studies on

ethanol tolerance in C. thermocellum have focused on strain

ATCC27405, which is challenging to genetically modify. By

utilizing a more genetically tractable ethanol tolerant strain of C.

thermocellum, we have built a platform for further metabolic

engineering for high yield and titer ethanol production.
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